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Cell membranes are a key element of life because they keep the
genetic material and metabolic machinery together. All present
cell membranes are made of phospholipids, yet the nature of the
first membranes and the origin of phospholipids are still under de-
bate. We report here the first detection in space of ethanolamine,
NH2CH2CH2OH, which forms the hydrophilic head of the simplest
and second most abundant phospholipid in membranes. The
molecular column density of ethanolamine in interstellar space is
N=(1.51±0.07)×1013 cm−2, implying a molecular abundance with
respect to H2 of (0.9-1.4)×10−10. Previous studies reported its pres-
ence in meteoritic material but they suggested that it is synthesized
in the meteorite itself by decomposition of amino acids. However,
we find that the proportion of the molecule with respect to water in
the interstellar medium is similar to the one found in the meteorite
(10−6). These results indicate that ethanolamine forms efficiently in
space and, if delivered onto early Earth, it could have contributed to
the assembling and early evolution of primitive membranes.
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L ife is based on three basic subsystems: a compartment, a
metabolic machinery, and information-bearing molecules

together with replication mechanisms (1, 2). Among these key
elements, compartmentalization is a fundamental prerequisite
in the process of the emergence and early evolution of life
(3, 4). Indeed, cellular membranes encapsulate and protect
the genetic material, as well as enable the metabolic activities
within the cell. The membranes of all current cells are made of
a bilayer of phospholipids (Fig. 1a&b), which are composed of
a polar hydrophilic head (an alcohol phosphate group combined
with a head group such as ethanolamine, choline or serine), and
two non-polar hydrophobic tails (hydrocarbon chains derived
from fatty acids), as depicted in Fig. 1c.

The process through which the first phospholipids were
formed remains unknown. Initial works proposed that phos-
pholipids could be synthesized under possible prebiotic con-
ditions (5–7), but the availability of the precursor molecules
on early Earth was questioned (3, 8). Alternatively, the build-
ing blocks of phospholipids could have been delivered from
space. A broad repertoire of prebiotic molecules could have
been provided to the early Earth through the bombardment of
comets and meteorites (9, 10). Laboratory impact experiments
(11, 12) have demonstrated that a significant fraction of the
prebiotic molecules in comets and meteorites can survive both
passage through the planetary atmosphere and the impact on
the surface.

In particular, some structural parts of phospholipids are
known to be present in meteorites, such as fatty acids, alcohols
and phosphonic acids (10, 13, 14). The glycerol phosphate
group has been shown to be synthesized in irradiation exper-
iments of interstellar ice analogues (15, 16), which supports
the idea that they can form in space. Regarding the different
head groups of phospholipids, ethanolamine (also known as
glycinol or 2-aminoethanol, NH2CH2CH2OH, Fig. 1d), is the
simplest one, and it forms the second most abundant phos-
pholipid in biological membranes: phosphatidylethanolamine
(PE, see Fig. 1c). In addition, ethanolamine has been pro-
posed as a direct precursor of the simplest amino acid, glycine
(NH2CH2COOH), in simulated archean alkaline hydrothermal
vents (17), considered as one of the likely environments for
the origin of life (18).

Ethanolamine (hereafter EtA) has been found in the Alma-
hata Sitta meteorite (19), yet its origin is not known. A possi-
ble chemical formation route was proposed to be the thermal
decomposition of amino acids under specific unusual condi-
tions in the parent asteroid. This would limit the availability
of EtA in the early Earth for the formation of phospholipids
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Fig. 1. Structure of cellular membranes. a) Schematic view of a cell; b) Zoom-in view of the cell membrane, formed by a phospholipid bilayer; c) Three-dimensional structure of
the phospholipid phosphatidylethanolamine (PE), formed by a hydrophilic head composed of ethanolamine, a phosphate group linked to glycerol, and two hydrophobic fatty-acid
tails (black, red, blue and white balls denote carbon, oxygen, nitrogen and hydrogen atoms, respectively); d) Ethanolamine (EtA), the molecular species detected in space for
the first time and reported in this work.

and thereafter of cell membranes. Another possibility is that
EtA is formed from smaller interstellar precursors. However,
the detection of EtA in the interstellar medium (ISM) has
remained so far elusive (20).

Results. We have detected EtA towards the molecular cloud
G+0.693-0.027 (hereafter G+0.693), located in the SgrB2
complex in the Galactic Center, as shown in Fig. 2. This
region is one of the most chemically rich reservoirs of molecules
in the Galaxy, with a plethora of organic species detected (21–
25). The extremely rich gas-phase chemical composition of
this region is due to erosion of the ice mantles of interstellar
dust grains by large-scale low-velocity (< 20 km s−1) shocks
(26) induced by a collision between massive molecular clouds
(27). For the typical (intermediate) densities of G+0.693 of
a few 104 cm−3 (27), the emission is sub-thermally excited,
yielding very low excitation temperatures (Tex) in the range
5−15 K (21, 22). Since only low-energy molecular transitions
are excited, the density of molecular lines is substantially
lower than in hotter sources such as massive molecular hot
cores or low-mass hot corinos, alleviating the problems of line
blending and line confusion. This, along with the effect of
shock-induced desorption of interstellar ices, makes G+0.693
an excellent target for the detection of new molecular species
in the ISM.

We analyzed the molecular data of a high sensitivity un-

biased spectral survey carried out with the IRAM 30m and
the Yebes 40m radiotelescopes. Detailed information about
the observations is presented in the Materials and Methods
section. The identification of the rotational transitions of
EtA was performed using the SLIM (Spectral Line Identifi-
cation and Modeling) tool within the MADCUBA package
(28). We predicted the synthetic spectrum of EtA under the
assumption of Local Thermodynamic Equilibrium (LTE) con-
ditions. Among the numerous (23,655) transitions of EtA that
fall in the spectral range covered by the survey, only tens of
them are expected to be excited considering the low excitation
temperatures measured in G+0.693 (Tex ∼5−15 K) (21, 22).

We have detected the 45 brightest transitions of EtA, as
predicted by the LTE simulation (with line intensities T ∗

A >
5 mK), 14 out of which appear either unblended or slightly
blended with emission from other molecules. These transitions
are shown in Fig. 2, and their spectroscopic information
is provided in Table 1. The remaining 31 transitions are
consistent with the observed spectra but appear blended with
brighter emission lines from other molecular species already
identified in this molecular cloud (see below). These transitions
are shown in Fig. 3, and listed in Table 2.

To confirm that the spectral lines detected at the frequen-
cies of the transitions of EtA are not produced by any other
molecule, we have performed an extensive search for molecular
species in our spectral survey, which includes all the species
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Fig. 2. Unblended or slightly blended transitions of EtA towards the G+0.693-0.027 molecular cloud. The quantum numbers involved in the transition are indicated in the upper
left of each panel, and the energies of the upper level are indicated in the upper right. The red thick line depicts the best LTE fit to the EtA rotational transitions. The thin
blue line shows the expected molecular emission from all the molecular species identified in our spectral survey, overplotted to the observed spectra (gray histograms). The
three-dimensional structure of EtA is shown in the center of the figure: black, red, blue and white balls denote carbon, oxygen, nitrogen and hydrogen atoms, respectively.

detected so far in the ISM (29), and all other species reported
towards G+0.693 in previous works (21–25). The predicted
contribution from all molecular species is shown with a blue
solid line in Fig. 2, confirming that 14 transitions of EtA are
either clean or not significantly contaminated by the emis-
sion from other molecules. We have used these 14 transitions
to perform the LTE fit and to derive the physical parame-
ters of the emission of EtA. We used the AUTOFIT tool of
MADCUBA−SLIM, which finds the best agreement between
the observed spectra and the predicted LTE model (see details
in the Materials and Methods section). To perform the fit
we have considered not only the emission of EtA, but also
the predicted emission from all the species identified in the
region (blue line in Fig. 2). The best fitting LTE model for
EtA gives a molecular column density of N=(1.51±0.07)×1013

cm−2, an excitation temperature of Tex=10.7±0.7 K, and a
velocity of vLSR=68.3±0.4 km s−1 (the linewidth was fixed to
15 km s−1, see details in the Materials and Methods section).
The derived Tex and vLSR are very similar to those from other
species previously analyzed in G+0.693 (21–25). To derive
the abundance of EtA with respect to molecular hydrogen, we
have used the H2 column density inferred from observations of
C18O (26), obtaining a value in the range (0.9−1.4)×10−10.

We have also performed a complementary analysis using
the rotational diagram method implemented in MADCUBA
(see further description in the Materials and Methods section).
Fig. 4 shows the rotational diagram obtained using the 14
EtA transitions from Fig. 2. We derived physical parameters
fully consistent with the MADCUBA−AUTOFIT analysis:
N=(1.5±0.3)×1013 cm−2, and Tex=12±1 K.

Discussion. We report a clear detection in the ISM of EtA, a
precursor of phospholipids, with a relatively high abundance
(10−10 with respect to molecular hydrogen). This detection
adds to that of precursors of ribonucleotides (23–25) and amino
acids (30, 31) in the ISM. The building blocks of the three
subsystems of life could therefore have been synthesized by
interstellar chemistry, being part of the natal material that
formed the Solar System.

The formation routes of EtA in the ISM are however poorly
known. Grain-surface formation of EtA has been demonstrated
by laboratory experiments of ultraviolet (UV) irradiation of
interstellar ice analogues (32). In these experiments, photolysis
of H2O:CH3OH:NH3:HCN ices with a 20:2:1:1 mixture yields
EtA as well as other prebiotic species such as the amino acids
glycine, alanine and serine. However, the detailed routes
that result into the formation of EtA are still not understood.
We discuss here several possible chemical pathways for the
formation of EtA in the ISM, which are summarised in Fig. 5.

To our knowledge, the only route proposed in the literature
(33, 34) is the hydrogenation chain of HNCCO on dust grain
surfaces (see gray-shaded area in Fig. 5). HNCCO could
be formed on grains by N-addition to ketenyl (HCCO) (34).
HCCO is rarely found in the ISM, with only two detections
reported towards the cold dark clouds Lupus-1A and L483 (35).
We have also searched for HCCO in G+0.693, and tentatively
detected it. The details about this detection are provided
in the Materials and Methods section. We obtain a column
density of ∼0.5×1013 cm−2, a factor ∼3 lower than that of
EtA. HCCO is expected to be a highly reactive radical on dust
grains. This would result in a low ice abundance of HCCO,
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Fig. 3. Transitions of ethanolamine that appear blended in the observed spectra of G+0.693. All of them have line intensities > 5 mK, according to the best LTE fit described in
the text. The quantum numbers involved in the transition are indicated in the upper left of each panel, and the energies of the upper level are indicated in the upper right. The
red thick line depicts the best LTE fit obtained fitting the EtA rotational transitions shown in Fig. 2. The thin blue line shows the predicted molecular emission from all the
molecular species identified in our spectral survey, overplotted to the observed spectra (gray histograms).



Fig. 4. Rotational diagram of EtA. The analysis procedure is described in the Materials
and Methods section. The red dots correspond to the 14 EtA transitions shown in
Fig. 2 and Table 1. The black line is the best linear fit to the data points. The derived
values for the molecular column density (N ) and the excitation temperature (Tex),
along with their uncertainties, are indicated in blue in the upper right corner.

and consequently also in the gas phase, due to shock-induced
sputtering desorption. Alternatively, the amount of HCCO
detected towards G+0.693 might have been produced directly
in the gas phase through the reaction CCH + OH → HCCO
+ H proposed by (36), since CCH is highly abundant in this
cloud (37).

HNCCO could also be formed on dust grains from ketene
(H2CCO), after two hydrogen abstractions, and reaction with
the imine radical NH (Fig. 5). G+0.693 presents a variety of
imines with relatively high abundances (22, 23, 37), which con-
firms that imine radicals are available on grain surfaces. This
route is plausible since ketene is abundant towards G+0.693
(21) with a column density of N=2.9×1014 cm−2, a factor of
∼20 larger than that of EtA. Alternatively, the formation of
HNCCO on grains could proceed as proposed by (38) (Fig. 5)
through the combination of HNC and CO, species expected
to be abundant on grain surfaces.

The subsequent hydrogenation of HNCCO can form
NH2CHCO (Fig. 5). This species might also form through
other surface-chemistry routes. (39) proposed a barrierless
reaction between NH3, CO and atomic C (Fig. 5). Given that
3-body reactions are less efficient that 2-body reactions, this
route could contribute to the formation of NH2CHCO only if
a relatively high abundance of atomic C is available. Since it
has been observed that the abundance of C is indeed large in
Galactic Center molecular clouds, around half of that of CO
(40), and considering that C is expected to be highly reactive,
this route might be indeed viable in G+0.693. We note that
the barrierless NH2CH + CO reaction proposed by (41) might
also contribute to the formation of NH2CHCO (Fig. 5).

The hydrogenation of NH2CH could yield the NH2CH2
radical, which might be a key precursor of EtA. In recent lab-
oratory experiments (42, 43) of the non-energetic formation of
simple amino acids and sugars under pre-stellar conditions, in-
termediate radicals such as NH2CH2 and CH2OH are efficiently
formed in the hydrogenation reactions towards methylamine
(CH3NH2) and methanol (CH3OH). These radicals represent
the structural units of EtA and hence, this species could be
produced by the non-diffusive reaction between NH2CH2 and

CH2OH on the surface of dust grains (Fig. 5). Similar radical-
radical reactions have been proposed as viable routes to form
other complex species in the ISM (44–46). NH2CH2 is ex-
pected to be present on the dust grains of G+0.693 since it
is an intermediate product between methanimine (CH2NH)
and methylamine (CH3NH2) (41, 42, 47), two species that are
abundant in G+0.693 (22).

Moreover, NH2CH2 could react with CO, as proposed by
(41), to form NH2CH2CO, which can be hydrogenated to form
EtA (Fig. 5). Unfortunately, there is no rotational spec-
troscopy available for HNCCO, NH2CHCO, or NH2CH2CO so
we cannot search for any of these possible precursors of EtA
in the G+0.693 spectral survey.

The penultimate step of the hydrogenation chain that re-
sults into EtA is aminoacetaldehyde (NH2CH2CHO). The
rotational spectra of this species has been studied theoreti-
cally by (48), although the accuracy of the predicted frequen-
cies (∼0.2%) is still not high enough for any reliable identi-
fication in the ISM. Our detection of EtA towards G+0.693
makes NH2CH2CHO a promising species for future interstellar
searches, and should motivate new laboratory works to obtain
its microwave rotational spectrum with higher accuracy.

The detection of EtA reported in this work with an abun-
dance of∼10−10 with respect to H2 enables a rough comparison
with the concentration of this species measured in meteoritic
material (19). Considering that the abundance of water in the
ISM is of the order of 10−4 (49), the EtA/H2O abundance
ratio measured in G+0.693 is of the order of 10−6. The Alma-
hata Sitta meteorite, where EtA was detected (19), has been
classified as a ureilite with a anomalously high fraction of
other materials, being the enstatite chondrites (EC) the most
abundant (50). Interestingly, EC meteorites have recently
been proposed as the origin source of most of Earth’s water
(51). Therefore, meteorites such as Almahata Sitta could have
simultaneously delivered to Earth not only water but also pre-
biotic chemicals such as EtA. From the concentration of EtA
measured in the Almahata Sitta meteorite of 20 ppb (19), and
the average concentration of water in EC meteorites (∼7500
ppm) (51), we derive a meteoritic EtA/H2O abundance ratio
of 3×10−6. This value is consistent with that derived in the
ISM. Although isotopic analysis of EtA would be needed to
confirm its interstellar origin in meteorites, our results suggest
that phospholipid precursors such as EtA formed in the ISM
could have been stored in planetesimals and minor bodies
of the Solar System, to be subsequently transferred to early
Earth.

Once EtA was available on Earth’s surface, it could form
phospholipids (in particular PE, see Fig. 1c) under plausible
early Earth conditions, as proposed by ref. (6), and confirmed
by prebiotic experiments (7). It is commonly assumed that the
first cell membranes could have been composed of amphiphilic
molecules such as fatty acids/alcohols, which are chemically
simpler than phospholipids (3, 8). However, the availability
of EtA in an early Earth could have enabled the progressive
replacement of fatty acids/alcohols by more efficient and per-
meable amphiphilic molecules such as phospholipids. In this
scenario, the protocells could have been able to incorporate
from the environment the precursor molecules required to start
the synthesis of ribonucleic acid (RNA) and eventually other
polymeric molecules (52, 53) needed for the first replicative
and metabolic processes of life. This has important implica-
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Table 1. Spectroscopic information (rest frequency, Einstein coeffi-
cients (Aul), and energy of the upper levels (Eup) of the 14 unblended
or slightly blended rotational transitions of EtA detected towards the
G+0.693 molecular cloud (shown in Fig. 2).

Frequency (GHz) Transition logAul (s−1) Eup (K)

39.7379429 4(0,4) - 3(0,3) -5.64603 4.8
40.4083769 4(2,3) - 3(2,2) -5.74549 6.7
41.1366268 4(2,2) - 3(2,1) -5.72208 6.7
42.2557255 4(1,3) - 3(1,2) -5.59088 5.5
49.1932727 5(0,5) - 4(0,4) -5.35979 7.2
73.0048603 7(1,6) - 6(1,5) -4.84093 14.6
76.6071016 8(0,8) - 7(0,7) -4.76916 16.9
80.0223886 8(2,7) - 7(2,6) -4.73500 19.2
82.8757878 8(1,7) - 7(1,6) -4.67140 18.6
84.2912932 8(2,6) - 7(2,5) -4.66443 19.8
89.7254251 9(2,8) - 8(2,7) -4.57750 23.5
91.6032870 9(3,7) - 8(3,6) -4.57780 26.0
91.8301065 9(4,5) - 8(4,4) -4.61854 29.2
94.7010488 10(0,10) - 9(0,9) -4.48695 25.5

tions not only for theories of the origin of life on Earth, but
also on other habitable planets and satellites anywhere in the
Universe.

Materials and Methods

Astronomical Observations. We have analysed a high-
sensitivity spectral survey of the molecular cloud G+0.693-
0.027 conducted with the Yebes 40m telescope (Guadalajara,
Spain) and the IRAM 30m telescope (Granada, Spain). The
observations were centered at the equatorial coordinates of
G+0.693: RA(J2000)=17h 47m 22s, DEC(J2000)= -28º 21’
27”.

Yebes 40m telescope. The observations were carried out with the
Yebes 40 m telescope located in Yebes (Guadalajara, Spain),
during 6 observing sessions in February 2020, as part of the
project 20A008 (PI Jiménez-Serra). We used the new Nanocos-
mos Q-band (7 mm) HEMT receiver that enables ultra broad-
band observations in two linear polarizations (54). The re-
ceiver is connected to 16 fast Fourier transform spectrometers
(FFTS) with a spectral coverage of 2.5 GHz and a spectral
resolution of 38 kHz. The final spectra were smoothed to a
resolution of 251 kHz, corresponding to a velocity resolution

of 1.7 km s−1 at 45 GHz. We covered a total spectral range
from 31.075 GHz to 50.424 GHz. The position switching mode
was used, with the reference position located at (-885”,+290”)
with respect to G+0.693 (24, 27). The telescope pointing and
focus were checked every one or two hours through pseudo-
continuum observations towards VX Sgr, a red hypergiant star
near the target source. The spectra were measured in units of
antenna temperature, T ∗

A, since the molecular emission toward
G+0.693 is extended over the beams (55). The noise of the
spectra depends on the frequency range, reaching values as low
as 1.0 mK, while in some some intervals it increases up to 4.0
mK. The half power beam width (HPBW ) of the telescope is
48” at 36 GHz.

IRAM 30m telescope. We have carried out a spectral survey at 3
mm using the IRAM 30m telescope. The observations were
performed in two observing runs during 2019: April 10-16
and August 13-19, from projects numbers 172-18 (PI Martín-
Pintado), 018-19 (PI Rivilla). We used the broad-band Eight
MIxer Receiver (EMIR) and the fast Fourier transform spec-
trometers in FTS200 mode, which provided a channel width
of ∼200 kHz. The final spectra were smoothed to a 609 KHz,
i.e. a velocity resolution of 1.8 km s−1 at 100 GHz. The
full spectral coverage is 71.770-116.720 GHz. The telescope
pointing and focus were checked every 1.5 h towards bright
sources. The spectra were also measured in units of antenna
temperature, T ∗

A. The noise of the spectra (in T ∗
A) is 1.3-2.8

mK in the range 71-90 GHz, 1.5-5.8 mK in the range 90-115
GHz, and ∼10 mK in the range 115-116 GHz. The half power
beam width (HPBW ) of the observations vary between 21.1”
and 34.3”. The position switching mode was used in all ob-
servations with the off position located at (-885”,+290”) from
the source position.

SLIM Molecular line fitting. The identification of the molecular
lines was performed using the SLIM (Spectral Line Identifica-
tion and Modeling) tool of the MADCUBA package∗. SLIM
solves the radiative transfer equation, as described in detail
in ref. (28), and generates the expected synthetic spectra of
the molecular species under the assumption of Local Ther-
modynamic Equilibrium (LTE) conditions. SLIM implements
a stand-alone HyperSQL† database that contains the spec-

∗Madrid Data Cube Analysis on ImageJ is a software developed at the Center of Astrobiology (CAB)
in Madrid: https://cab.inta-csic.es/madcuba/

†http://hsqldb.org/



tral line catalogues of the Jet Propulsion Laboratory‡ (JPL)
(56), and the Cologne Database for Molecular Spectroscopy§

(CDMS) (57, 58).
For the case of EtA, we have used the spectroscopic entry

61004 (version September 2003) of the JPL database, based on
different laboratory works (59–61). The value of the partition
function (Q) at the temperatures of the fit (Tex ∼ 11 K) has
been interpolated from the values reported in the JPL catalog
in the logQ-logT plane, using the two adjacent temperatures:
Q(9.375 K)=254.2935 and Q(18.75 K)=716.8160.

To derive the physical parameters from the molecular emis-
sion, we have used the AUTOFIT tool of SLIM (28), which per-
forms a non-linear least squares fitting of simulated LTE spec-
tra to the observed data. It uses the Levenberg˘Marquardt al-
gorithm (62, 63), which combines the gradient descent method
and the Gauss–Newton method to minimise the χ2 function.

For the analysis of EtA, we fixed the linewidth (full width at
half maximum, FWHM) to 15 km s−1, which reproduces well
the observed spectral profiles of the EtA transitions and that
is consistent with those measured for other molecules in the
region (22, 24, 25). We note that the upper energy levels (Eup)
of the transitions used in the analysis span a range between
4.8 and 29.2 K, allowing us to determine the excitation tem-
perature (Tex) of the emission. The molecular column density
(N), Tex and the velocity (vLSR) were left as free parameters.
The best fitting LTE model gives N=(1.51±0.07)×1013 cm−2,
Tex=10.7±0.7 K, and vLSR=68.3±0.4 km s−1.

To compute the relative molecular abundance with respect
to molecular hydrogen we have used the value of the H2
column density inferred from observations of C18O, 1.35×1023

cm−2 (26). We have assumed a 20% error uncertainty in the
determination of the H2 column density, and propagated the
error accordingly. The EtA molecular abundance falls in the
range (0.9−1.4)×10−10.

Rotational diagram method. The rotational diagram is calcu-
lated following the standard procedure (64) implemented in
MADCUBA (28). For the case of optically thin emission the
velocity integrated intensity over the linewidth (FWHM=15
km s−1), W (in K km s−1), is converted into the column den-
sity in the upper level of the transition Nup (in cm−2) using
the expression:

Nup = 8πkν2W/(hc3Aul), [1]

where k is the Boltzmann constant, ν the frequency of
the transition, h is the Planck’s constant, c is the speed of
light, and Aul is the Einstein coefficient of spontaneous emis-
sion from the upper level u to lower level l. Then, the level
population derived for all observed transitions can be com-
bined to determine the total molecular column density, N (in
cm−2), and the excitation temperature, Tex (in K), through
the equation:

log(Nup/gup) = log(N/Q(Tex))− log(e)× Eup/(kTex), [2]

where gup and Eup are respectively the statistical weight
and energy (in K) of the upper levels of the transitions, and
Q is the partition function.

‡https://spec.jpl.nasa.gov/
§https://cdms.astro.uni-koeln.de/

Fig. 4 shows the plot of log(Nup/gup) versus Eup for all
the unblended or slightly blended transitions (see Fig. 2
and Table 1). The error bars indicate the uncertainty of the
velocity integrated intensity (∆W ), which are derived using
the expression :

∆W = rms× (∆v/FWHM)0.5 × FWHM, [3]

where rms is the noise of the spectra, and ∆v is the spectral
resolution of the data in velocity units. The coefficients of
the straight line that fits the data points (black line in Fig.
4) provides the values for log(N/Q) and log(e)/Tex, from
which MADCUBA derives N and Tex, calculating Q(Tex) as
explained above.

Blended transitions of ethanolamine. We present in Fig. 3 the
transitions of EtA with line intensities T ∗

A >5 mK, as predicted
by the LTE simulation described in the main text, that appear
blended with emission from other molecular species already
identified in the G+0.693 molecular cloud. The spectroscopic
information of these transitions is shown in Table 2.

Tentative detection of ketenyl (HCCO) towards G+0.693-0.027.
We have used the CDMS entry 041506 (June 2019), based
on several spectroscopic works (65–67). We have tentatively
identified three groups of HCCO lines corresponding to the
rotational transitions 2−1, 4−3, and 5−4. The spectra are
shown in Fig. 6, and the spectroscopic information of the
transitions are listed in Table 3. This detection should be con-
sidered tentative, since only two transitions, the 5(6,6)−4(5,5)
and 5(6,5)−4(5,4) (at 108.3040553 GHz and 108.3051187
GHz, respectively) are not contaminated by emission from
other species (Fig. 6). We have produced LTE spectra us-
ing MADCUBA-SLIM and assuming vLSR=65 km s−1 and
FWHM=20 km s−1. The predicted spectra reproduce well
the two unblended transitions for a Tex of 10 K, and a col-
umn density of N ∼0.5×1013 cm−2 (thick red line in Fig. 6).
This column density translates into a molecular abundance of
∼0.4×10−10 with respect to molecular hydrogen.
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Fig. 6. Transitions of HCCO tentatively identified in the spectra of G+0.693. The rotational quantum numbers involved in the transition are indicated in the upper left of each
panel, and the energies of the upper level are indicated in the upper right. The red thick line depicts the LTE synthetic spectrum of HCCO. The blue thin line shows the predicted
molecular emission from all the molecular species identified in our spectral survey, overplotted to the observed spectra (gray histograms).

Table 2. Spectroscopic information (rest frequency, Einstein coeffi-
cients (Aul), and energy of the upper levels (Eup) of the transitions
of EtA that appear blended in the observed spectra of G+0.693 (see
Fig. 3). All of them have line intensities > 5 mK, according to the
best LTE fit described in the text.

Frequency (GHz) Transition logAul (s−1) Eup (K)

31.7653500 3(1,2) - 2(1,1) -6.00114 3.5
38.3746402 4(1,4) - 3(1,3) -5.71626 5.1
47.8493375 5(1,5) - 4(1,4) -5.40899 7.4
50.4153833 5(2,4) - 4(2,3) -5.39849 9.1
73.4680803 7(2,5) - 6(2,4) -4.85633 15.7
75.9126193 8(1,8) - 7(1,7) -4.78270 17.0
81.4338930 8(3,6) - 7(3,5) -4.74841 21.6
81.4392902 8(4,5) - 7(4,4) -4.80721 24.8
81.4863522 8(4,4) - 7(4,3) -4.80646 24.8
82.2698610 8(3,5) - 7(3,4) -4.73500 21.7
85.1653931 9(1,9) - 8(1,8) -4.62876 21.0
85.6467486 9(0,9) - 8(0,8) -4.62059 21.0
91.7192567 9(4,6) - 8(4,5) -4.62007 29.2
92.4964225 9(1,8) - 8(1,7) -4.52562 23.0
93.0416052 9(3,6) - 8(3,5) -4.55708 26.2
94.3821793 10(1,10) - 9(1,9) -4.49166 25.6
95.0023981 9(2,7) - 8(2,6) -4.49975 24.3
99.3388437 10(2,9) - 9(2,8) -4.43880 28.3
101.7229298 10(3,8) - 9(3,7) -4.42905 30.9
101.8639901 10(1,9) - 9(1,8) -4.39813 27.9
102.0183898 10(4,7) - 9(4,6) -4.45929 34.1
102.2528632 10(4,6) - 9(4,5) -4.45637 34.1
103.5718907 11(1,11) - 10(1,10) -4.36815 30.5
103.7762062 11(0,11) - 10(0,10) -4.36532 30.5
103.9759166 10(3,7) - 9(3,6) -4.39964 31.2
105.5481523 10(2,8) - 9(2,7) -4.35654 29.4
108.8642389 11(2,10) - 10(2,9) -4.31491 33.5
111.0166375 11(1,10) - 10(1,9) -4.28448 33.2
111.7757005 11(3,9) - 10(3,8) -4.29721 36.3
112.7422238 12(1,12) - 11(1,11) -4.25550 35.9
112.8698247 12(0,12) - 11(0,11) -4.25393 35.9

Table 3. Spectroscopic information (rest frequency, Einstein co-
efficients (Aul), and energy of the upper levels (Eup) of the rota-
tional transitions of ketenyl (HCCO) tentatively detected towards the
G+0.693 molecular cloud (shown in Fig. 6).

Frequency (GHz) Transition logAul (s−1) Eup (K)

43.3176674 2(3,3) - 1(2,2) -6.0192 3.1
43.3211451 2(3,2) - 1(2,1) -6.1404 3.1
43.3295421 2(2,2) - 1(1,1) -6.0343 3.1
43.3354627 2(2,1) - 1(1,0) -6.2739 3.1
43.3368615 2(3,2) - 1(2,2) -6.6741 3.1
43.3373040 2(2,1) - 1(2,1) -6.4207 3.1
86.6191857 4(4,3) - 3(3,3) -6.9202 10.4
86.6423419 4(5,5) - 3(4,4) -5.0703 10.4
86.6438483 4(5,4) - 3(4,3) -5.0942 10.4
86.6558306 4(4,4) - 3(3,3) -5.0772 10.4
86.6574849 4(4,3) - 3(3,2) -5.1070 10.4
86.6652791 4(5,4) - 3(4,4) -6.3845 10.4
108.2823800 5(5,4) - 4(4,4) -6.7293 15.6
108.3040553 5(6,6) - 4(5,5) -4.7698 15.6
108.3051187 5(6,5) - 4(5,4) -4.7840 15.6
108.3178903 5(5,5) - 4(4,4) -4.7747 15.6
108.3190248 5(5,4) - 4(4,3) -4.7916 15.6
108.3280559 5(6,5) - 4(5,5) -6.2997 15.6
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