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Abstract—The privacy of mobile apps has been extensively
studied, but much less attention has been paid to the privacy
of the mobile OS itself. A mobile OS may communicate with
servers to check for updates, send telemetry and so on. We
undertake an in-depth analysis of the data sent by six variants of
the Android OS, namely those developed by Samsung, Xiaomi,
Huawei, Realme, LineageOS and /e/OS. We find that even when
minimally configured and the handset is idle these vendor-
customized Android variants transmit substantial amounts of
information to the OS developer and also to third-parties (Google,
Microsoft, LinkedIn, Facebook etc) that have pre-installed system
apps. While occasional communication with OS servers is to be
expected, the observed data transmission goes well beyond this
and raises a number of privacy concerns. There is no opt out
from this data collection.

I. INTRODUCTION

The analysis of whether mobile apps disclose sensitive
information to their associated back-end servers has been the
focus of much research [1], [2], [3], [4], [5], especially with
a view to risks such user de-anonymization, location tracking,
behaviour profiling, and cross-linking of data by different
stakeholders in the device/software supply chain. In contrast,
the disclosure of information at operating system level has re-
ceived almost no attention and is not well understood. Mobile
OS behaviour has come to the fore only recently, with analyses
of the Google-Apple Exposure Notification (GAEN) system
that underpins Covid contract tracing apps [6] and following
revelations of mass surveillance of journalists, politicians, and
human rights activists though spyware exploiting zero-touch
vulnerabilities (see the Pegasus project [7]).

We report on an in depth measurement study of the data
shared by a range of popular proprietary variants of the
Android OS, namely those developed by Samsung, Xiaomi,
Huawei and Realme1. In addition, we report on the data
shared by the LineageOS and /e/OS open-source variants of
Android. Samsung currently has by far the largest share of this
market, followed by Xiaomi, Huawei and Oppo (the parent
company of Realme) [8]. LineageOS is probably the most
popular open-source Android variant, currently used on around
30M handsets,2 while /e/OS is a new privacy-focused fork of
LineageOS.

1Note that we study the European models of handsets from Samsung,
Xiaomi, Huawei and Realme and use the handsets within Europe. The data
collection behaviour on models targeted at other regions may, or may not,
differ.

2https://stats.lineageos.org/, accessed 31st July 2021

It is worth noting that much of the functionality of the
Android OS3 is provided by so-called system apps. These are
privileged pre-installed apps that the OS developer bundles
with the OS. System apps cannot be deleted (they are installed
on a protected read-only disk partition) and can be granted
enhanced rights/permissions not available to ordinary apps
such as those that a user might install. It is common for
Android to include pre-installed third-party system apps, i.e.
apps not written by the OS developer. One example is the so-
called GApps package of Google apps (which includes Google
Play Services, Google Play store, Google Maps, Youtube
etc). Other examples include pre-installed system apps from
Microsoft, LinkedIn, Facebook and so on.

We intercept and analyse the data traffic sent by the Android
OS, including by pre-installed system apps, in a range of
scenarios. We focus on defining simple scenarios that can
be applied uniformly to the handsets studied (so allowing
direct comparisons) and that generate reproducible behaviour.
We assume a privacy-conscious but busy/non-technical user,
who when asked does not select options that share data but
otherwise leaves handset settings at their default value. This
means that the user has opted out of diagnostics/analytics/user
experience improvement data collection and has not logged in
to an OS vendor user account. The user also does not make
use of optional services such as cloud storage, find my phone
etc. Essentially, the handset is just being used to make and
receive phone calls and texts. This provides a baseline for
privacy analysis, and we expect that the level of data sharing
may well be larger for a less privacy-conscious user and/or a
user who makes greater use of the services on a handset.

We find that the Samsung, Xiaomi, Huawei and Realme
Android variants all transmit a substantial volume of data
to the OS developer (i.e. Samsung etc) and to third-party
parties that have pre-installed system apps (including Google,
Microsoft, Heytap, LinkedIn, Facebook). LineageOS sends
similar volumes of data to Google as these proprietary Android
variants, but we do not observe the LineageOS developers
themselves collecting data nor pre-installed system apps other
than those of Google. Notably, /e/OS sends no information
to Google or other third parties and sends essentially no
information to the /e/OS developers.

While it is perhaps unsurprising that a privacy-focused OS
such as /e/OS collects almost no data, it nevertheless provides
a useful baseline and establishes that extensive data collection

3By Android OS we mean the distribution as installed on a handset, not
just the kernel.

https://www.scss.tcd.ie/Doug.Leith/Android_privacy_report.pdf


TABLE I
SUMMARY OF DATA COLLECTION BY EACH ANDROID OS VARIANT.

Samsung Xiaomi Realme Huawei LineageOS /e/OS Google
Long-lived
Device
Identifiers

IMEIs, hardware
serial numbers

IMEIs, Secure
DeviceID,
MD5 hash of
Wifi MAC
address

IMEI,
deviceID, guid

hardware serial
number, device
RSA cert

- - IMEI,
hardware serial
number, Wifi
MAC address

Resettable
Identifiers
Relinkable to
Device

Samsung
Consumer ID,
Firebase IDs

VAID, Google
Ad ID

VAID, OAID,
device id,
registrationId,
Google Ad ID,
Firebase IDs

- - - AndroidID,
Google Ad ID

Third-Party
System
App Data
Collectors

Google, Mobile
Operator,
Microsoft,
LinkedIn, Hiya

Google,
Mobile
Operator,
Facebook

Google,
Heytap

Google, Daily
Motion, Avast,
Qihoo 360,
Microsoft

Google -

Main Telemetry
Collectors (By
Data Volume)

Google,
Samsung,
Microsoft

Google,
Xiaomi

Google,
Heytap

Google,
Microsoft

Google -

Loggers of App
Usage Over
Time

Samsung Google,
Xiaomi

- Google,
Microsoft

- -

Loggers of
Apps Installed
On Handset

Google,
Samsung

Google,
Xiaomi

Google,
Realme,
Heytap

Google,
Huawei

Google -

by a mobile OS is neither necessary nor essential, but rather
a choice made by the OS developer. Although occasional data
transmission to the OS developer to check for updates, etc. is
to be expected, as we will see the observed data transmission
by the Samsung, Xiaomi, Huawei, Realme and LineageOS
Android variants goes well beyond this.

Table I summarises the data collected by each of the
Android OS variants studied.

Re-linkability of advertising identifiers. Samsung, Xiaomi,
Realme and Google all collect long-lived device identifiers,
e.g. the hardware serial number, as well as user-resettable
identifiers, such as advertising IDs. By analysing the identifiers
sent together in connections, we find that a long-lived device
identifier is sent alongside the resettable identifier on these
handsets. This means that when a user resets an identifier
the new identifier value can be trivially re-linked back to the
same device. This largely undermines the use of user-resettable
advertising identifiers. See the second row of Table I for a list
of resettable identifiers that can be re-linked to the handset in
this way.

Data ecosystem. We also find that typically multiple parties
collect data from each handset and that considerable potential
exists for cross-linking of data collected by these different
parties. On every handset, apart from the /e/OS handset,
Google collects a large volume of data. On the Samsung
handset the Google Advertising ID is sent to Samsung servers,
a number of Samsung system apps use Google Analytics to
collect data and the Microsoft OneDrive system app uses
Google’s push service. On the Huawei handset the Microsoft
Swiftkey keyboard sends the Google Advertising ID to Mi-
crosoft servers. On the Xiaomi handset the Google Advertising
ID is sent to Xiaomi servers, while on the Realme handset the
Google Advertising ID is sent to Heytap (who partner with
Realme/Oppo to provide handset services, so linkage of data
collected by Heytap and Realme is also possible).

Recording of user interactions with handset. System apps
on several handsets upload details of user interactions with
the apps on the handset (what apps are used and when,
what app screens are viewed, when and for how long). The
effect is analogous to the use of cookies to track users
across web sites. On the Xiaomi handset the system app
com.miui.analytics uploads a time history of the app windows
viewed by the handset user to Xiaomi servers. This reveals
detailed information on user handset usage over time, e.g.
timing and duration of phone calls. Similarly, on the Huawei
handset the Microsoft Swiftkey keyboard (the default system
keyboard) logs when the keyboard is used within an app,
uploading to Microsoft servers a history of app usage over
time. Again, this is revealing of user handset usage over time
e.g. writing of texts, use of the search bar, searching for
contacts. Several Samsung system apps use Google Analytics
to log user interactions (windows viewed etc). On the Xiaomi
and Huawei handsets the Google messaging app (the system
app used to send and receive SMS texts) logs user interactions,
including when an SMS text is sent. In addition, with the
notable exception of the /e/OS handset, Google Play Services
and the Google Play store upload large volumes of data from
all of the handsets (at least 10× that uploaded by the mobile
OS developer). This has also been observed in other recent
studies [6], which also note the opaque nature of this data
collection.

Details of installed apps. Samsung, Xiaomi, Realme,
Huawei, Heytap and Google collect details of the apps in-
stalled on a handset. Although less worrisome than tracking
of user interactions with apps, the list of installed apps
is potentially sensitive information since it can reveal user
interests and traits, e.g. a muslim prayer app, an app for a
gay magazine, a mental health app, a political news app. It
also may well be unique to one handset, or a small number
of handsets, and so act as a device fingerprint (especially



when combined with device hardware/system configuration
data, which is also widely collected). See, for example, [9],
[10] for recent analyses of such privacy risks and we note
that in light of such concerns, Google recently introduced
restrictions on Play Store apps collection of this type of data4,
but such restrictions do not apply to system apps since these
are not installed via the Google Play store.

No opt-out. As already noted, this data collection occurs
even though privacy settings are enabled. Handset users there-
fore have no easy opt out from this data collection.

Where Data Is Sent. On most handsets data appears to be
sent to servers located within Europe. A notable exception is
the Xiaomi handset which sends data from Europe to servers
estimated to be located in Singapore5. The Samsung handset
also sends data to server capi.samsungcloud.com which ap-
pears to be located in the US.

In summary, we find that /e/OS collects essentially no data
and in that sense is by far the most private of the Android
OS variants studied. On all of the other handsets the Google
Play Services and Google Play store system apps send a
considerable volume of data to Google, the content of which
is unclear, not publicly documented and Google confirm there
is no opt out from this data collection. LineageOS collects no
data beyond this data collected by Google and so is perhaps the
next most private choice after /e/OS. We observe the Realme
handset collecting device data, including details of installed
apps, but nothing more. The Samsung, Xiaomi and Huawei
handsets collect details of user interactions with the handset,
in addition to device/app data. Of these, Xiaomi collects the
most extensive data on user interactions, including the timing
and duration of every app window viewed by a user. On the
Huawei handset it is the Microsoft Swiftkey keyboard that
collects details of user handset interactions with apps, Huawei
themselves are only observed to collect device/app data. We
observe Samsung collecting data on user interaction with their
own system apps, but not more generally.

A. Ethical Disclosure

The mobile OS’s studied here are in active use by many
millions of people. We informed Samsung, Xiaomi, Huawei,
Realme, Microsoft/SwiftKey and Google of our findings and
delayed publication to allow them to respond. Huawei and
Google responded with some clarifications, which we have
included.

II. THREAT MODEL: WHAT DO WE MEAN BY PRIVACY?

The transmission of user data from mobile handsets to
back-end servers is not intrinsically a breach of privacy. For
instance, it can be useful to share details of the device mod-
el/version and the locale/country of the device when checking
for software updates. This poses few privacy risks if the data
is common to many handsets and therefore cannot be easily
linked back to a specific handset/person [11], [12].

4https://thehackernews.com/2021/04/google-limits-which-apps-can-access.
html

5Including tracking.intl.miui.com, api.ad.intl.xiaomi.com, data.mistat.intl.
xiaomi.com. Server location estimated from IP address using the https:
//ipinfo.io/ service, and verified using ping times/trace route.

Two major issues in handset privacy are (i) release of
sensitive data, and (ii) handset deanonymisation i.e. linking
of the handset to a person’s real world identity.

Release of sensitive data. What counts as sensitive data is a
moving target, but it is becoming increasingly clear that data
can be used in surprising ways and that so-called metadata
can be sensitive data. One example of potentially sensitive
metadata is the name, timing and duration of the app windows
viewed by a user. This can be used to discover the time and
duration of phone calls, when texts/messages are sent and
received, when a prayer or dating app is used, and so on. More
generally, such data reveals what apps a user spends most time
viewing and which windows within the app they look at most.
Another example is the list of apps installed on a handset. This
can reveal user interests and traits [9], [10]. The list of apps
can also acts as a handset fingerprint, unique to only a small
number of handsets, and so be used for tracking.

Data which is not sensitive in isolation can become sensitive
when combined with other data, see for example [13], [14],
[15]. This is not a hypothetical concern since large vendors
including Google, Samsung, Huawei, and Xiaomi operate
mobile payment services and supply custom web browsers
with the handsets they commercialize.

It is important to be note, however, that the transmission
of user data from mobile handsets to back-end servers is
not intrinsically a breach of privacy. For instance, it can
be useful to share details of the device model/version and
the locale/country of the device when checking for software
updates. This poses few privacy risks if the data is common
to many handsets and therefore cannot be easily linked back
to a specific handset/person [11], [12].

The key requirement for privacy is that the data is common
to many handsets. Risk factors therefore include whether data
is tagged with identifiers that can be used to link different data
together and to link it to a specific handset or person. Tagging
data with the handset hardware serial number immediately
links it to a single handset. Other long-lived device identifiers
include the IMEI (the unique serial number of a SIM slot
in a handset) and the SIM IMSI (which uniquely identifies a
SIM on the mobile network). To mitigate such risks, Google
provides a Google Advertising ID that a user can reset to a
new value. The idea is that data tagged with the new value
cannot be linked to data tagged with the old value, and so
resetting the identifier creates a break with the past. However,
this is undermined if the new and old values can both be tied
back to the same device and so linked together. It is worth
noting that there already exist commercial services that given
a Google Advertising ID offer to supply the name, address,
email etc of the person using the handset6.

Deanonymisation. Android handsets can be directly tied to
a person’s identity in at least two ways, even when a user takes
active steps to try to preserve their privacy. Firstly, via the SIM.
When a person has a contract with a mobile operator then the
SIM is tied to that contract and so to the person. In addition,
several countries require presentation of photo ID to buy a
SIM. Secondly, via the app store used. On Android handsets

6https://www.vice.com/en/article/epnmvz/industry-unmasks-at-scale-maid-
to-pii, accessed 18th Aug 2021.



the Google Play store is the main way that people install apps.
Use of the Google Play store requires login using a Google
account, which links the handset to that account since Google
collect device identifiers such as the hardware serial number
and IMEI along with the account details [6], [16].

A handset can also become linked to a person’s identity
when data is collected that allows their identity to be inferred
or guessed with high probability. On way that this might
happen is via a handset’s location time history. Many studies
have shown that location data linked over time can be used to
de-anonymize users, see e.g. [17], [18] and later studies. This
is unsurprising since, for example, knowledge of the work and
home locations of a user can be inferred from such location
data (based on where the user mostly spends time during the
day and evening), and when combined with other data this
information can quickly become quite revealing [18]. It is
worth noting that every time a handset connects with a back-
end server, it necessarily reveals its IP address, which acts as
a rough proxy for user location via existing geoIP services.
With this in mind, the frequency with which connections are
made becomes relevant, e.g. observing an IP address/proxy
location once a day has much less potential to be revealing
than observing one every few minutes.

III. THE CHALLENGES OF SEEING WHAT DATA IS SENT

It is generally straightforward to observe packets sent from a
mobile handset. Specifically, we configure the handsets studied
to use a WiFi connection to a controlled access point, on which
we use tcpdump to capture outgoing traffic. However, this is
of little use for privacy analysis because (i) packet payloads
are almost always encrypted – not just due to the widespread
use of HTTPS to transfer data but, as we will see, also because
the message data is often further encrypted by the sender
using a cipher that may not be explicitly specified through
meta-data, particularly when the data may be sensitive (end-
to-end encryption); (ii) prior to message encryption, data is
often encoded in a binary format for which there is little or
no public documentation; and (iii) for proper attribution, we
need to be able link a message to the sending process/app on
the handset.

A. Reverse Engineering

A fairly substantial amount of non-trivial reverse engineer-
ing is generally required in order to decrypt messages and to
at least partially decode the binary plaintext.

1) Handset Rooting: The first step is to gain a shell on the
handset with elevated privileges, i.e. in the case of Android
to root the handset. This allows us then to (i) obtain copies
of the system apps and their data, (ii) use a debugger to
instrument and modify running apps (e.g. to extract encryption
keys from memory and bypass security checks), and (iii) install
a trusted SSL root certificate to allow HTTPS decryption,
as we explain below. Rooting typically requires unlocking
the bootloader to facilitate access to the so-called fastboot
mode, disabling boot image verification and patching the
system image. Unlocking the bootloader is often the hardest
of these steps, since many handset manufacturers discourage
bootloader unlocking. Some, such as Oppo, go so far as

to entirely remove fastboot mode (the relevant code is not
compiled into the bootloader). The importance of this is that
it effectively places a constraint on the handset manufacturers/
mobile OSes that we can analyse. Xiaomi and Realme provide
special tools to unlock the bootloader, with Xiaomi requiring
registering user details and waiting a week before unlocking.
Huawei require a handset-specific unlock code, but no longer
supply such codes. To unlock the bootloader on the Huawei
handset studied here, we needed to open the case and short
the test point pads on the circuit board, in order to boot the
device into the Huawei equivalent of Qualcomm’s Emergency
Download (EDL) mode. In EDL mode, the bootloader itself
can be patched to reset the unlock code to a known value
(we used a commercial service for this), and thereby enable
unlocking of the bootloader.

2) Decompiling and Instrumentation: On a rooted handset,
the Android application packages (APKs) of the apps on
the /system disk partition can be extracted, unzipped and
decompiled. While the bytecode of Android Java apps can
be readily decompiled, the code is almost always deliberately
obfuscated in order to deter reverse engineering. As a result,
reverse engineering the encryption and binary encoding in an
app can feel a little like exploring a darkened maze. Perhaps
unsurprisingly, this is frequently a time-consuming process,
even for experienced researchers/practitioners. It is often very
helpful to connect to a running system app using a debugger,
so as to view variable values, extract encryption keys from
memory, etc. On most of the handsets studied we used Frida7

to provide a convenient debug interface, allowing dynamic
hooking of running code to extract variable values, overwrite
function return values and indeed replace the implementation
of whole functions. However, on the Huawei handset studied,
this approach is not possible since a protected memory model
appears to be used, which causes an app to crash when a
debugger attaches to it. The protected memory model is likely
a write-rarely one – essentially the memory can be modified
during the initial startup of an app, but not thereafter [19].
To work around this, we used the fact that on Android all
Java apps are cloned/forked from a single Zygote process
that is started early after the system boots. We used Riru8

to modify the Zygote process to allow code injection, and
edXposed9 to provide an interface to Riru that loads user
specified code. Riru works by replacing a dynamic library
loaded by Zygote, and since this occurs at Zygote startup, it is
compatible with the Huawei protected memory model. Once
Zygote is modified, the changes propagate to all apps, since
they run in clones of the Zygote process, and so all apps can
be instrumented/modified. This is less convenient than Frida
since changes require a reboot plus Java Native Interface (JNI)
C code cannot be instrumented.

3) Decrypting Data: A number of system apps on the
Xiaomi, Realme and Huawei handsets first encrypt data, gen-
erally using either AES/ECB or AES/CBC, before transmitting
it over an SSL connection. In more detail:

7https://frida.re/
8https://github.com/RikkaApps/Riru
9https://github.com/ElderDrivers/EdXposed



i) Xiaomi. The app com.miui.analytics sends extensive teleme-
try to the server tracking.intl.miui.com. The data sent is
AES/ECB encrypted. The key exchange protocol between
handset and server involves the handset generating a random
128-bit AES key, encrypting this using an RSA public key
and transmitting it base64 encoded to the server specified
in /track/key_get endpoint. The server responds by
sending a second AES key encrypted using the first, together
with a SID value that is sent along with later encrypted
messages to identify the key used for encryption. The handset
decrypts the received key, generates an RSA private/public key
pair in the handset Secure Element, and uses the public key to
encrypt the AES key before storing it on disk as a SharedPref-
erence data entry. Since the RSA private key is held within the
secure element, it is only accessible to the app. This approach
means that the AES key is never unencrypted at rest and so it is
necessary to extract the key from the memory of the running
app. We do this using Frida to intercept the entry points to
the various functions used to carry out AES encryption and
record the key as it is passed in. A similar key exchange
protocol is used by other Xiaomi system apps. In particular, the
app com.miui.msa.global sends encrypted data to the server
api.ad.intl.xiaomi.com which appears to be associated with
ad management. A number of user-facing system apps, e.g.
the file manager com.mi.android.globalFileexplorer, the Set-
tings app com.xiaomi.misettings and the Security Center app
com.miui.securitycenter, use a similar approach to encrypt data
sent to data.mistat.intl.xiaomi.com. Since the user agent header
value is the same for all of these apps, to determine the app
associated with a connection to data.mistat.intl.xiaomi.com (so
that we can extract the AES key from its memory) we monitor
the handset TCP sockets in /proc.
ii) Realme. The app com.heytap.mcs, which appears to im-
plement the main Heytap services on the Realme handset,
encrypts data with AES/CBC before sending it to dceuex.
push.heytapmobile.com. The 128-bit AES key and IV are
hard-coded in the app and so can be readily extracted and
used to decrypt the data sent. The plaintext is encoded as
a protobuf. Messages sent to ifrus-eu.coloros.com by app
com.nearme.romupdate are AES/CTR encrypted base-64 en-
coded JSON. A token that helps reconstruct the AES key using
a custom encoding scheme is appended to the end of the base-
64 message. Using this, the message can be decrypted.
iii) Huawei. Data sent to query.hicloud.com by app com.
huawei.android.hwouc has an extra_info field with en-
crypted information. The extra info field consists of three
sections, the first is AES encrypted by a custom obfuscated
JNI C library, the second section is AES encrypted in Java,
and the third section is the AES key encrypted using an
RSA public key. Since we do not have access to the RSA
private key, we cannot decrypt this third section to obtain
the AES key. Instead, we use Riru/edXposed to extract the
key from the memory of the running app and then use it
to decrypt the data in the second section. The C code that
encrypts the first section uses AES encryption, but the key
is generated by heavily obfuscated code (symbol names in
the code appear to refer to so-called white-box cryptography,
i.e. where the crypto algorithm remains secure even when

the software implementation can be inspected). Due to the
protected memory implementation on the Huawei handset, we
cannot instrument this C code (Riru/edXposed can only be
used with Java code). Instead, we use Riru/edXposed to extract
the plaintext data sent into the JNI library by the Java app. The
com.huawei.systemmanager contains embedded SDKs: com.
avast.android.sdk from Avast plus com.qihoo.cleandroid.sdk
and other SDKs from Qihoo 360. These encrypt the data
sent, respectively, to avast.com and 360safe.com. The Avast
SDK uses 128-bit AES/CBC encryption and a key exchange
protocol with rotating keys. To decrypt the data, we used
Riru/edXposed to extract the AES key and IV from the app
memory – since the keys frequently rotate, we do this on an
ongoing basis and dump the keys to the handset log where
they can be viewed using logcat. The plaintext is a binary
encoded protobuf. The Qihoo 360 SDK periodically (every
1-2 days) sends data to mvconf.cloud.360safe.com/safeupdate
and mclean.cloud.360safe.com/CleanQuery. The data is sent in
a custom binary data format with the payload encrypted using
a JNI C library. To decrypt the data we therefore extracted the
plaintext from the app memory using Riru/edXposed.

It goes without saying that the reverse engineering involved
was time consuming and required quite some persistence.

4) Decoding Data: Sometimes the plaintext data (i.e. after
decryption, if needed) is human-readable, e.g. json. However,
frequently it is encoded, often with multiple nested encodings.
Common encodings that are straightforward to detect and
decode include: JWT tokens10, base64, hexstring and URL
encoding of binary data, gzipping. More complex data is often
binary encoded in the Google Protobuf serialization format11.
Protobuf’s can be decoded without knowledge of the scheme,
although this means that field names are missing and there is
sometimes with ambiguity as to interpretation of field types.
We used the Google Protobuf compiler for this, with the
--decode raw option when a protobuf schema was unavailable.
Google apps often encode data in a Protobuf array format,
namely as a sequence of ¡length/varint¿¡protbuf¿ entries, from
which the individual Protobufs need to be extracted and
decoded. For Firebase Analytics we manually reconstructed
the protobuf schema from the decompiled Firebase code.
Other encoding formats that we less commonly observed
include Snappy12, Avro13, Bond14 and also some proprietary
formats. In particular, the Microsoft Swiftkey system app
sends telemetry data encoded in gzipped Avro serialisation
format. Unlike protobufs, Avro cannot be decoded without
knowledge of the schema used for encoding. We therefore
extracted the schema from the app by executing a getSchema()
call on app startup (by dynamically patching the app using
edxposed) and then dumping the large (about 200KB) json
response to disk. The Microsoft OneDrive system app sends
telemetry data encoded in Microsoft’s Bond Compact Binary
format. Again the schema is needed to decode Bond data.
Bond works by compiling the schema to Java code, and so we

10https://jwt.io
11https://developers.google.com/protocol-buffers/
12https://google.github.io/snappy/
13https://avro.apache.org/
14https://github.com/microsoft/bond



Fig. 1. Measurement setup. Mobile handset configured to access the Internet
using a WiFi access point hosted on a Raspberry Pi. A system certificate
is installed on the phone to be able to decrypt outgoing traffic. The laptop
pretends to any process running on the handset to be the destination server,
creates a connection to the actual target, and relays requests and their replies
between handset and server while logging the traffic.

decompiled the app, manually reconstructed the schema from
the decompiled code and then compiled a C++ programme
based on th reconstructed schema using Microsoft’s Bond
compiler to yield a decoder that can deserialise the observed
POST payload data, then re-serialise to json so that its human
readable. The Qihoo 360 SDK uses a proprietary binary format
that we reconstructed by decompiling the SDK and inspecting
the code.

Once decoded, known values such as the handset IMEI,
hardware serial number, Google Advertising Id can often
be readily identified. Otherwise, we manually examined the
decompiled app to find the code that writes each value and
so establish how the value is generated. This is necessary, for
example, to identify values that are hashes of device identifiers.

B. Decrypting HTTPS Connections
Almost all of the data we observe is sent over HTTPS con-

nections and so encrypted using TLS/SSL (in addition to any
other encryption used by the app). However, decrypting SSL
connections is relatively straightforward. We route handset
traffic via a WiFi access point (AP) that we control, configure
this AP to use mitmdump as a proxy [20] and adjust the
firewall settings to redirect all WiFi HTTP/HTTPS traffic to
mitmdump so that the proxying is transparent to the handset.
When a process running on the handset starts a new network
connection, the mitmdump proxy pretends to be the destination
server and presents a fake certificate for the target server. This
allows mitmdump to decrypt the traffic. It then creates an
onward connection to the actual target server and acts as an
intermediary, relaying requests and their replies between the
app and the target server while logging the traffic. The setup
is illustrated schematically in Figure 1.

System processes typically carry out checks on the au-
thenticity of server certificates received when starting a new
connection and abort the connection when these checks fail.
Installing the mitmproxy CA cert as a trusted certificate causes
these checks to pass, except on the Huawei handset. Installing
a trusted cert is slightly complicated in Android 10, since the
system disk partition, on which trusted certs are stored, is read-
only and security measures prevent it being mounted as read-
write. Fortunately, folders within the system disk partition can
be overriden by creating a new mount point corresponding to
the folder, and in this way the mitmdump CA cert can be added
to the /system/etc/security/cacerts folder. On the
Huawei handset each system app contains embedded server

certificate SHA256 hashed and when starting an HTTPS con-
nection checks that the certificate offered by the server matches
one of these hashes. It is thus necessary to bypass these checks
on each app individually (installing a system-wide trusted cert
is not enough). We used Riru/edXposed for this.

IV. EXPERIMENTAL SETUP

A. Hardware and Software Used
Mobile handsets: (i) Samsung Galaxy S9 (model SM-

G960F)/Android 10 (build QP1A.190711.020, One UI v2.0),
(ii) Xiaomi Redmi Note 9 (model M2003J15SG)/Android 10
(build QP1A.190711.020, MIUI Global 12.0.7 QJOMIXM),
(iii) Realme 6 Pro (model RMX2063)/Android 10 (build
RMX2063 11 A.38, realme UI v1.0), (iv) Huawei P10 Lite
(model MAR-LX1B)/Android 915 (build 9.1.0.372, EMUI
9.1.0), (v) Google Pixel 2/Android 10 (LineageOS build 17.1-
20210316, opengapps 10.0-nano-20210314), (vi) Google Pixel
2/Android 10 (eos build e-0.11-q-20200917). Rooted using
Magisk v20.4 and Magisk Manager v7.5.1.

WiFi access point: Raspberry Pi 4 Model B Rev 1.2/Rasp-
bian GNU Linux 11/Mitmproxy 6.0.2 with iptables firewall
configured to redirect HTTP/S traffic to port 8080 (on which
mitmproxy listens) and also to block UDP traffic on HTTPS
port 443 (so as to force any Google QUIC traffic to fall back
to using TCP since we have no tools for decrypting QUIC).

B. Device Settings
At the start of each test we removed any SIM card and

carried out a hard factory reset of the handset, i.e. we used
TWRP to manually wipe the data partition, thereby forcibly
removing all user data and settings, all user installed apps
and resetting any disk encryption. Note that we observed
that simply clicking on the “factory reset” option in the UI
sometimes did not fully remove user data and settings.

Following this factory reset, the handset reboots to a wel-
come screen and the user is then typically asked to agree to
terms and conditions, and presented with a number of option
screens. We note that all of the option toggle switches default
to the opt-in choice, and so it is necessary for the user to
actively select to opt-out. To mimic a privacy conscious user,
we unchecked any of the options that asked to share data
and only agreed to mandatory terms and conditions. Samsung:
we unchecked the Sending of Diagnostic Data, Information
Linking, Receipt of Marketing Information components of the
terms and conditions, skipped the Protect Your Phone screen,
did not sign into a Samsung account (which raises a warning
that it disables Samsung Cloud, Bixby, Galaxy Themes, Find
My Mobile, Samsung Pass, Galaxy Store, Secure Folder).
Xiaomi: we unchecked the Location, Send Diagnostic Data
Automatically, Automatic System Updates, Personalised Ads,
User Experience Programme options. Realme: we unchecked
the User Experience Programme and Uploading Device Error
Log Data components of the terms of service, unchecked the
WiFi Assistant and Auto-update Overnight options. Huawei:
we selected No Thanks on the Enhanced Services screen,
Later on the User Experience Improvement Programme screen,

15Following US trade sanctions against Huawei, Android 9 is the latest
version of Android available on a Huawei handset that we could root.



Update Manually on the Keep Your Software Up To Date
screen. LineageOS: we unchecked the Help Improve Lin-
eageOS, Location Services options. /e/OS: we unchecked the
Location Services option, skipped Fingerprint Setup, Protect
You Phone and /e/ account setup. All of the mobile OSes,
apart from //e/OS, also displayed a Google services screen on
first startup. On this we unchecked the Use Location, Allow
Scanning, Send Usage and Diagnostic Data options, and we
did not log in to a Google user account.

During this startup process, we left WiFi disabled and
since no SIM was inserted, there was also no cellular data
connection. This allowed us to install the mitmproxy CA cert,
and on the Huawei handset Riru/edXposed modules to disable
HTTPS cert checks by individual system apps, before the
handset made any network connections. WiFi access was then
enabled after these steps were completed.

C. Test Design

We seek to define simple experiments that can be applied
uniformly to the handsets studied (so allowing direct com-
parisons) and that generate reproducible behaviour. Mobile
OS developers commonly provide add-on services that can
be used in conjunction with their handsets, e.g. Samsung offer
Cloud storage, Bixby, the Samsung Store; Huawei offer Cloud
storage, the AppGallery store; Xiaomi offer Xiaomi Cloud,
Mi Coin and Credit. Here we try to keep these two aspects
separate and to focus on the handset as a device in itself,
separate from optional services such as these. We also assume
a privacy-conscious but busy/non-technical user, who when
asked, does not select options that share data but otherwise
leaves handset settings at their default values.16

On Android the Settings app must be used to e.g. enable
location and WiFi. Since use of the Settings app is not optional
for handset users, we include them in our tests. In addition,
while on Android apps may be sideloaded over adb, all of the
handsets provided include the Google Play store and for most
users this is the primary way to install apps. Other than on
/e/OS, use of the Google Play store requires the user to sign
in to a Google account and so disclose their email address
and perhaps other personal details. We therefore also include
opening of the handset Google Play store app and login to a
Google account in our tests.

With these considerations in mind, for each handset we
carry out the following experiments:

1) Start the handset following a factory reset (mimicking a
user receiving a new phone), recording the network activity.

2) Insert a SIM, recording the network activity.
3) Following startup, leave the handset untouched for sev-

eral days (with power cable connected) and record the network
activity. This allows us to measure the connections made

16There is also an important practical dimension to this assumption.
Namely, each handset has a wide variety of settings that can be adjusted by a
user and the settings on each handset are generally not directly comparable.
Exploring all combinations of settings between a pair of handsets is therefore
impractical. A further reason is that the subset of settings that a user is
explicitly asked to select between (typically during first startup of the handset)
reflects the design choices of the handset developer, presumably arrived at
after careful consideration and weighing of alternatives. Note that use of non-
standard option settings may also expose the handset to fingerprinting.

when the handset is sitting idle. This test is repeated with
the user being logged in and logged out, and with location
enabled/disabled.

4) Open the pre-installed Google Play app and log in to a
user account, recording the network activity. Then log out and
close the app store app.

5) Open the settings app and view every option but leave
the settings unchanged, recording the network activity. Then
close the app.

6) Open the settings app and enable location, then disable.
Record the network activity.

7) Make and receive a phone call, send and receive a text.
Record the network activity.

D. Additional Material: Connection Data
The content of connections is summarised and annotated

in the additional material available anonymously at
https://www.dropbox.com/s/b137n94i9rpp177/additional
material neversleepingears.pdf.

V. RESULTS

As already noted, Table I gives an overview of the data
collection observed on the handsets studied. It is helpful to
consider this in light of four basic questions: (i) who is
collecting data, (ii) what sort of data is being collected, (iii)
can resettable identifiers be relinked to the device, (iv) what
is the potential for cross-linking of data collected by different
parties.

A. Who Is Collecting Data?
1) Mobile OS Developers: We observe that Samsung, Xi-

aomi, Realme and Huawei all collect data from user handsets,
despite the user having opted out of data collection/teleme-
try/analytics and making no use of services offered by these
companies. This data is tagged with long-lived identifiers that
tie it to the physical device, including across factory resets.

In contrast, LineageOS and /e/OS were not observed to
collect handset data. The latter is notable because a case might
be made for the necessity of mobile OS operators collecting
handset data in order to monitor software operation and catch
problems early (i.e. devops). However, it is hard to justify the
necessity of such data collection, i.e. that users should have no
opt-out, when two mobile OSes adopt an opt-in approach. It
is also worth noting that it can be hard to distinguish between
diagnostics for existing software and beta testing (or A/B
testing) for new or updated software/features. Traditionally,
beta testing has always been opt-in. Finally, it is worth noting
that it is hard to see why data collection for diagnostics cannot
be carried out in a fully anonymous manner, without any use
of long-lived identifiers.

2) Pre-installed Third-Party System Apps: System apps are
pre-installed on the /system partition of the handset disk.
Since this partition is read-only, these apps cannot be removed.
They are also privileged in the sense that they can be assigned
permissions without needing user consent, be silently started,
etc. The Settings app is, for example, a system app. All of
the mobile OSes studied, apart from /e/OS, have pre-installed
Google system apps. We discuss these further below, but first
we consider pre-installed system apps from other companies.



The Samsung handset studied also contains pre-installed
system apps from Microsoft that send handset telemetry data to
mobile.pipe.aria.microsoft.com, app.adjust.com (a third-party
analytics company17) and use Firebase push messaging. A
LinkedIn (now owned by Microsoft) system app also sends
telemetry to www.linkedin.com/li/track. This third-party data
collection occurs despite no Microsoft/LinkedIn apps were
ever opened on the device, and no popup or request to send
data was observed.

The Samsung and Xiaomi handsets studied also contain pre-
installed system apps from mobile operators (SFR/Altice in
France, Deutsch Telekom in Germany), which were observed
to send telemetry. Note that our handsets were bought second-
hand on the Internet and a more controlled study of operator
installed system apps may well be warranted. As well as
sending telemetry directly, the SFR/Altice app on the Samsung
handset also uses Google Analytics to log events.

The Realme handset studied contains pre-installed system
apps from Heytap, a Singapore-based private company. It ap-
pears that Realme partners with Heytap, who provide account
management, cloud data, an app store, etc.

Huawei also appear to partner with a number of third parties
to provide handset system services. The Huawei handset
studied contains a pre-installed com.huawei.systemmanager
app which has embedded within it components from third-
party scanning/anti-virus services Avast (based in the Czech
Republic) and Qihoo 360 (based in China). App data is sent
to avast.com when an app is installed on the handset. Periodic
connections are also observed to 360safe.com (associated with
Qihoo 360) that send device data. The com.huawei.himovie.
overseas system app sends handset data to servers associ-
ated with Dailymotion, even though no video app was ever
opened on the handset (perhaps these connections prefetch
news/topical videos). The Microsoft Swiftkey keyboard app
com.touchtype.swiftkey is pre-installed on the Huawei handset
and sends crash data to in.appcenter.ms/logs and telemetry data
to telemetry.api.swiftkey.com.

In addition to mobile operator system app sharing data on
the Xiaomi handset, a pre-installed Facebook app collects data.

Apart from Google’s GApps, no third-party system apps on
the LineageOS handset were observed to perform data collec-
tion. On /e/OS, we observed no data collection by system
apps.

3) Google System Apps (GApps): The Samsung, Xiaomi,
Realme and Huawei handsets studied all have pre-installed
Google system apps, the so-called GApps package. These
include Google Play Services,18 Google Play Store, YouTube,
Gmail, Maps, Drive, Wallet, Chrome. On LineageOS it is
necessary to install GApps to use the Google Play store, but
this is not necessary with /e/OS (which uses the open-source
MicroG re-implementation of Google Play Services and the
Google Play app). It is known that Google Play Services and

17Their website says “Adjust offers a number of analytics tools designed
to give you the deepest insight into your user interaction, your marketing
channels, and your campaign performance”.

18Google Play Services provides the API for Google Firebase services such
as Google Analytics and Crashlytics to apps on the handset, but also performs
device logging/telemetry on behalf of Google.
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Fig. 2. The average volume of the network traffic generated on each handset
by each data collector.

the Google Play store send large volumes of handset data to
Google and collect long-lived device identifiers, although until
recently there has been a notable lack of measurement studies
(see [6], [16]). Other Google apps such as YouTube and Gmail
also send handset data and telemetry to Google.

It is worth noting that the volume of data uploaded by
Google is considerably larger than the volume of data uploaded
to other parties. For example, Figure 2 shows the average
rate at which data is uploaded from each handset when lying
idle, broken down by data source. The volume of data sent to
Google is broken out into a separate plot to make it easier to
see the volumes sent to other companies.

It can be seen that no data is uploaded to the LineageOS
or /e/OS developers. On the Realme handset Heytap uploads
around 3-4× more data than Samsung, Xiaomi and Huawei.
Realme themselves collect far less data than Heytap, about
half of that collected by Samsung, Xiaomi and Huawei. On the
Samsung handset the Microsoft system app uploads a similar
volume of data as Samsung.

The volume of data uploaded by Google varies across the
handsets. It is zero for /e/OS, since it uses the MicroG open
source re-implementation of Google GApps. LineageOS and
Samsung send similar volumes of data, Xiaomi and Huawei
about twice as much and Realme about three times as much.
These differences are likely related to different configurations
of Google GApps e.g. on LineageOS the so-called nano
version of GApps was installed (other options includes micro,
mini, full, stock19). In all cases the volume of data uploaded
to Google is at least 10× that uploaded by the mobile OS
developer. For Xiaomi, Huawei and Realme the volume rises
to around 30×. Recall that this is despite the “usage &
diagnostics” option being disabled for Google services on all
handsets (and also the diagnostics/analytics options also being
disabled for the mobile OS developers, see Section IV-B).

Note however that from a privacy viewpoint it is not the
volume of data that is primarily of concern, but rather the
contents of that data and the frequency with which it is sent.

B. What Sort Of Data Is Being Collected?
The data that we observe being sent from handsets can be

roughly categorised as: (i) device/user identifiers, (ii) device
configuration data and (iii) event logging data/telemetry.

1) Device/User Identifiers: We observe that most of the
connections from a handset are tagged with an identifier
of some sort. Single-use identifiers can be used to avoid

19See https://github.com/opengapps/opengapps/wiki/Package-Comparison



duplicate messages being received and session identifiers can
be used to link together groups of connections, e.g. when
accessing authenticated resources. These types of identifier are
ephemeral, i.e. they are short-lived, hard to link to a particular
device and so carry little privacy risk. Longer-lived identifiers
can also be used, e.g. to maintain state, and so long as the same
identifier is shared by many devices, this carries little privacy
risk. Google’s Safe Browsing service is a good example of
such an approach [21].

Unfortunately we observe little use of such privacy-friendly
identifiers in our handset measurements. Instead we find that
sending persistent identifiers in connections is ubiquitous.
Table I lists the main identifiers sent in connections on each
handset. Some of these identifiers are long-lived, e.g. the IMEI
(which is typically engraved on the SIM slot), hardware serial
number and, on Huawei handsets, the device RSA cert [22].
These identifiers persist across factory resets of the device
and are effectively permanent and indelible. Others, such as
the Google Advertising Id and VAID, are user-resettable either
manually or by a factory reset of the phone. But in practice that
means they rarely change and act as strong device identifiers.
Further, as we discuss in more detail below, most of these
resettable identifiers can be relinked back to the device since
long-lived identifiers are sent alongside them.

This means that connections from the same handset can
generally be easily linked together over time, which has several
consequences. One is that data on device and user behaviour is
linked over time, with obvious privacy implications. Another
is that every time a handset connects with a back-end server
it necessarily reveals the handset IP address, which acts as
a rough proxy for user location via existing geoIP services.
Many studies have shown that location data linked over time
can be used to de-anonymise, e.g. see [17], [18] and later
studies. This is unsurprising since, for example, knowledge of
the work and home locations of a user can be inferred from
such location data (based on where the user mostly spends time
during the day and evening), and when combined with other
data this information can quickly become quite revealing [18].

2) Device Configuration Data: Sharing device hard-
ware/system configuration data such as the device model,
screen size, operating system version, radio version generally
carries little privacy risk since these are common to many
devices (e.g. all devices of the same model). Such data is
needed when checking for software updates and selecting the
right version of an app to install. Samsung, Xiaomi, Realme
and Huawei all collect this type device configuration data, as
do Google and many third-party system apps.

Additionally, Samsung, Xiaomi, Realme, Huawei, Heytap
and Google also collect details of all apps installed on a
handset. This is potentially more sensitive information since
the set of apps installed is more likely to be unique to
one handset, or a small number of handsets, and so act as
a device fingerprint (especially when combined with device
hardware/system configuration data). It is not clear why this
data collection is needed (if just to check for app updates or to
scan for malware then that could be carried out anonymously
and without revealing the full set of apps installed on a
handset).

1 POST https://tracking.intl.miui.com/track/v4
2 Headers
3 OT_SID: 1904b90...536c63d4
4 OT_ts: 1627029461128
5 OT_net: WIFI
6 OT_sender: com.miui.analytics
7 "seq": [
8 {
9 "event": 1,

10 "pkg": "com.google.android.dialer",
11 "class": "com.android.incallui.InCallActivity",
12 "ts": 1627028918422,
13 "vn": "67.0.383690429",
14 "stat": "app_start"
15 },
16 {
17 "event": 2,
18 "pkg": "com.google.android.dialer",
19 "class": "com.android.incallui.InCallActivity",
20 "ts": 1627028934973,
21 "vn": "67.0.383690429",
22 "duration": 16551,
23 "stat": "app_end",
24 "app_duration": 16551
25 }

Fig. 3. Xiaomi telemetry logs the user interaction with the dialer app when
receiving a phone call, including the start and end times of the call.

3) Event Logging Data/Telemetry: Samsung and Xiaomi
both log data that can reveal user interactions occurring on
a handset. Third-party system apps by Google and Microsoft
also carry our event logging that can reveal user interactions.
Heytap, Daily Motion and the mobile operator log events
related to operation of their specific app.

Some logging of events is probably reasonable, e.g. to allow
early detection of app performance issues (excessive battery
drain, slow operation, etc.). But ongoing detailed logging of
the activity on a handset, particularly user activity, can quickly
become intrusive and a serious privacy concern. The last
row of Table I lists the companies carrying out ongoing and
frequent telemetry/event logging on each handset.

Notr that this occurs despite the user opting out of diag-
nostics/analytics collection on the handsets during onboarding
following factory reset.

Xiaomi collects extensive event logging data/telemetry. This
is mainly sent to tracking.intl.miui.com. The data sent is
doubly-encrypted i.e. the data is first AES encrypted and then
sent over an encrypted HTTPS connection. After quite some
work reverse engineering the AES key management scheme
used, we managed to decrypt the data. The data consists
of both timestamped individual events and timestamped se-
quences of events grouped together. The events logged include,
for example, every opening and closing of an app window
(“activities” in Android parlance) plus the duration a window
is open. Since all window events appear to be logged, this
can easily reveal detailed information on user handset usage.
For example, Figure 3 shows decrypted logging data sent to
Xiaomi when a phone call is received. The dialer app opens
its InCallActivity window when the call arrives and closes it
when the call ends. Timestamps of the open and close events,
plus the duration, are sent to tracking.intl.miui.com. Xiaomi
system apps com.miui.msa.global, com.xiaomi.discover, com.
android.thememanager also log events using Google Analytics.

Microsoft’s Swiftkey keyboard (used on the Huawei hand-



1 {’event’: {’metadata’:
2 {’installId’: b’\xe7\x19\xec\xa8KD\xff\xa1&E\xa3\x066G\

xf6[’, ’appVersion’: ’7.8.3.5’, ’timestamp’:
3 {
4 ’utcTimestamp’: 1628165014657, ’utcOffsetMins’: 0}, ’

vectorClock’: {’major’: 103, ’minor’: 482, ’order’: 100}
5 },
6 ’application’: ’com.google.android.apps.messaging’, ’

durationMillis’: 6891,
7 ’typingStats’:
8 {’totalTokensEntered’: 0, ’tokensFlowed’: 0, ’

tokensPredicted’:
9 0, ’tokensCorrected’: 0, ’tokensVerbatim’: 0, ’

tokensPartial’: 0, ’netCharsEntered’: 3, ’deletions’: 1,
’characterKeystrokes’: 0, ’predictionKeystrokes’: 0, ’
remainderKeystrokes’: 0, ’predictionSumLength’: 0, ’
typingDurationMillis’: 837, ’emojisEntered’: 0, ’
totalTokensEnteredEdited’: 0, ’tokensFlowedEdited’: 0, ’
tokensPredictedEdited’: 0, ’tokensCorrectedEdited’: 0, ’
tokensVerbatimEdited’: 0, ’tokensPartialEdited’: 0},

10 ’languagesUsed’: 0, ’termsPerLanguage’: {}, ’
tokensPerSource’: {}, ’tokensShownPerSource’: {’’: 6, ’
en_GB/en_GB.lm’: 16, ’user/dynamic.lm’: 6},

11 ’userHandle’: 0
12 }}

Fig. 4. The Microsoft Swiftkey keyboard logs user interaction with the
messaging app when sending a textl.

set) also carries out extensive event logging, sending this data
to telemetry.api.swiftkey.com. In particular, when the keyboard
is used within an app then the app name, number of characters
entered and an event timestamp are sent. In this way use,
for example, of the searchbar, contacts and messaging apps is
logged and so can easily reveal detailed information on user
handset usage. See, for example, Figure 4. Interactions with
the keyboard, e.g. opening the clipboard, viewing/modifying
the settings, are also logged. Information on Swiftkey app
crashes, including stack traces, is sent to in.appcenter.ms.

Several Samsung system apps use Google Analytics to
log user interaction events, including windows/activities
viewed plus duration and timestamp. System apps
instrumented in this way include com.wssyncmldm, com.
samsung.android.samsungpass, com.samsung.android.authfw,
com.samsung.android.bixby.agent, com.samsung.android.
game.gamehome, com.sec.android.app.samsungapps. The app
api.omc.samsungdm.com logs when a SIM is inserted and
samsung-directory.edge.hiyaapi.com logs making/receiving of
a phone call.

We did not observe any substantial event logging by
Huawei, Realme (including Heytap), LineageOS or /e/OS.

On the Xiaomi and Huawei handsets the Google messaging
app com.google.android.apps.messaging uses Google Analyt-
ics to log user interaction, including screens/activities viewed
plus duration and timestamp, and logs the event that text is
sent. In addition, with the notable exception of the /e/OS hand-
set, Google Play Services and the Google Play store collect
large volumes of data from all of the handsets (see Figure 2).
This has also been observed in other recent studies [6], which
also note the opaque nature of this data collection (no docu-
mentation, binary encoded payloads, obfuscated code). From
our discussions with Google we understand that they plan to
publish documentation on this data collection/telemetry, but to
date that has not happened.

Other event logging/telemetry that we observed is confined

to operation of specific apps. On the Samsung handset the
Microsoft OneDrive app sends data with device details and
installed Microsoft apps to mobile.pipe.aria.microsoft.com and
app.adjust.com, and uses Firebase push messaging. Events and
data related to the mobile operator app com.altice.android.
myapps are logged to sun-apps.sfr.com and via Google Ana-
lytics (e.g. duration app has been active, errors, stack traces).
On the Realme handset events related to app com.heytap.mcs
(launch etc) are logged to dceuex.push.heytapmobile.com. On
the Huwaei handset events related to app com.huawei.himovie.
overseas are logged to pebed.dmevent.net, and when a new
app is installed the app details are sent to a scanning service
at apkrep.ff.avast.com20.

C. Can Resettable Identifiers Be Relinked to Device?
In response to privacy concerns, identifiers used to track

user behaviour are now often resettable [23]. For example,
the Google Advertising Identifier (GAID) can be reset via
the Settings app on an Android handset. The idea is that
by resetting such an identifier a person effectively unlinks
themselves from the data collected about them in the past
and starts afresh. However, this aim is largely subverted as
the data collected allows relinking of the new identifier to
the same physical user/handset. We find that data collection
allowing the potential for relinking is commonplace.

Note that we are not in a position to know whether such re-
linking actually takes place. However, by observing identifiers
sent together in the same data connection, we can see whether
such relinking could be easily carried out, if desired.

It can be seen from Table I that Samsung, Xiaomi, Realme,
Huawei and Google all collect long-lived identifiers from
the handset, e.g. the IMEI (which is typically engraved on
the SIM slot) or hardware serial number. These identifiers
persist across factory resets of the device and are effectively
permanent and indelible. If a long-lived identifier is sent in
the same connection as a resettable identifier, then relinking
of the resettable identifier to the handset is trivial. If one such
resettable identifier can be relinked, and is then sent in a
connection with other resettable identifiers, then these too can
be relinked to the device. Using such an analysis we find that
many of the resettable identifiers used by Samsung, Xiaomi,
Realme, Huawei and Google can be relinked to the device.

The relevant identifiers are detailed in Table I. Google can
potentially relink both the Google AndroidID and Google
Advertising Identifier to the device21. Xiaomi and Realme can
relink the Google Advertising Identifier to the device, as well
as all of the other identifiers commonly sent in connections.
The same applies to Heytap on Realme handsets. Samsung can
relink their Consumer ID, which is sent in many connections to
Samsung servers, to the device. Samsung also collect Google
Firebase identifiers/authentication tokens (used in conjunction
with Google Analytics, etc.) and they can potentially relink

20According to Huawei this can be disabled by opening the Optimiser app,
entering the settings sctreen and unchecking the “Auto-clean junk files” and
“online virus scan” option, although we have not verified this.

21We note that the Google Play policy https://support.google.com/
googleplay/android-developer/answer/9857753# prohibits re-linking of adver-
tising identifiers by apps on the Google Play store, and Google have stated
to us that internally they also adhere to this policy.
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these to the device via Google since the Google AndroidID
is sent in Firebase connections and Google can relink the
AndroidID to the device. Hence the Google Analytics data
collected by Samsung system apps can potentially be relinked
to the device. Huawei sends the handset hardware serial
number (a long-lived device identifier) in connections, but we
observed little use of other identifiers and no potential for
relinking of resettable identifiers by Huawei. We also did not
observe any potential for relinking on LineageOS and /e/OS.

D. Potential For Cross-linking Data Collection?

We find that typically multiple parties collect data from
a handset. For example, on a Samsung handset Samsung,
Google and Microsoft/LinkedIn all collect data. That raises
the question of whether the data collected separately by these
parties can be linked together (and of course combined with
data from other sources). While we are not in a position to
know whether such linking actually takes place, by inspection
of the identifiers jointly collected by the parties we can see
whether the potential exists for data linking.

Figure 5 illustrates these potential linkages as a graph.
Samsung record the Google Advertising Id, as do Google

and there is therefore immediately potential for Samsung and
Google to link their separate data. It is also worth noting that a
number of Samsung system apps use Google Analytics to log
data. Google already make some of their own data visible to
third parties via the Google Analytics dashboard interface, e.g.
user demographics, and so limited data sharing from Google
to Samsung is likely taking place via that channel.

On the Samsung handset the Microsoft system app sends
data to Microsoft servers and to app-adjust.com, and pre-
sumably Microsoft have access to the data that their app
sends to app-adjust.com. The Google Advertising ID is sent
to app-adjust.com, potentially allowing linkage to Google
handset data. A LinkedIn system app also collects data. Since
Microsoft own LinkedIn they may have access to that data, as
well as other data held by LinkedIn.

Xiaomi records the Google Advertising Id, as do Google,
and so linking of their data is possible. Xiaomi can display
adverts within handset system apps and the UI and so some
limited data sharing from Google to Xiaomi may be occurring
via the that channel. We also note that a Facebook system
app is installed in the Xiaomi handset and the Facebook Ad
SDK is embedded in a number of Xiaomi system apps, and so

there appear to be connections between Xiaomi and Facebook
although we saw no evidence of sharing of identifiers in our
measurements.

On the Realme handset Heytap records the Google Adver-
tising Id as do Google, and so linking of Google and Heytap
data is again possible. In its connections Realme sends an
identifier supplied by a Heytap server (the registrationId is
sent by shorteuex.push.heytapmobile.com) and so linkage of
data collection by Realme and Heytap is possible, and via
Heytap with Google.

On the Huawei handset a hash of the handset android id
is sent to avast.com and a uuid is sent to 360safe.com22 but
neither seem easily linked to the hardware serial number sent
to Huawei servers. The Swiftkey keyboard sends the Google
advertising is to telemetry.api.swiftkey.com, but we did not
observe this id being sent to Huawei servers.

VI. RELATED WORK

While the Android ecosystem continues to evolve, most
smartphone users remain largely unaware of the personal
identifiable information (PII) disclosed by their devices and
the apps they run [24]. This has motivated extensive privacy
and security over recent years, e.g. see [3], [4] and references
therein, and triggered data protection legislation with nearly
100 articles laying out privacy requirements [25].

As nearly a quarter of mobile apps with over 1 billion down-
loads are known to monetize private data [26], Android privacy
analyses have been largely focused on the app ecosystem. Data
collection purposes by mobile apps have been classified in [1].
Ren et al. document systematic collection of (PII) over time
by different apps and the ability of third-parties to link user
activity and locations across apps [2]. Further work examines
over 500 apps on the Google Play Store and shows that 76% of
them collect and transmit PII insecurely, while 34% of these
send PII to third parties [27]. Gamba et al. reveal that the
Android open-source model facilitates harmful behaviours and
backdoors to sensitive data without user consent, while uncov-
ering potential relationships between manufacturers, network
operators and third-parties [28]. Privacy leaks due to misuse of
Inter-component Communications (ICC) in Android apps are
documented in [29]. With most Android users being based
in China, Wang et at. take a look at the degree of domestic

22According to Huawei this uuid value is changed daily.



mobile app tracking, showing a distinctive mobile tracking
market where 10% of users send PII [5].

What information handset operating systems send to their
associated back-end servers is not well understood. Probably
closest to the present work are recent analyses of the data
that web browsers share with their back-end servers [21] and
of the data shared by Google Play Services [6], [16]. The
latter is motivated in part by the emergence of Covid contact
tracing apps based on the Google-Apple Exposure Notification
(GAEN) system, which on Android requires that Google Play
Services to be enabled. The present study is broader in scope,
given that users appear to have no option to disable data
collection by the operating system and by the pre-installed
system apps. To the best of our knowledge there has been
no previous systematic work reporting measurements of the
content of messages sent between Android OSes and the
associated back-end servers.

VII. CONCLUSIONS

We present an in-depth analysis of the data sent by the
Samsung, Xiaomi, Huawei, Realme, LineageOS and /e/OS
variants of Android. We find that, with the notable exception
of e/OS, even when minimally configured and the handset
is idle these vendor-customized Android variants transmit
substantial amounts of information to the OS developer and
also to third-parties (Google, Microsoft, LinkedIn, Facebook
etc) that have pre-installed system apps. While occasional
communication with OS servers is to be expected, the observed
data transmission goes well beyond this and raises a number
of privacy concerns.
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