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Overview Factor Models Mixture Models

Overview

The goal for our setting is to diagnose characteristics associated
with the PVEST framework.

Discuss measurement and modeling in the social sciences.

Present applications involving the Project Knowledge PIAB
items to demonstrate analytic frameworks for future
investigations.
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The Building Blocks of Measurement

We ask people questions and they respond by selecting an
anchor.

Ex. “I usually keep track of my progress toward my goals”
1 = Strongly disagree
2 = Disagree
3 = Uncertain or unsure
4 = Agree
5 = Strongly agree

There are five probabilities to describe responses,

1 2 3 4 5
0.031 0.047 0.307 0.430 0.184
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A Second Item

Consider a second item with five response options,

“I can do even the hardest work in class if I try.”.

1 - Not at all True
2
3 - Somewhat True
4
5 - Very True
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Two Items

There are 25 response patterns for the two items with five
anchors.

For instance, the bivariate probabilities for all arrangements of
item 1 (rows) and item 2 (columns) are,

1 2 3 4 5

1 0.008 0.008 0.011 0.000 0.003

2 0.000 0.008 0.017 0.011 0.011

3 0.011 0.042 0.198 0.042 0.014

4 0.011 0.036 0.187 0.120 0.075

5 0.006 0.003 0.039 0.034 0.103
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The number of probabilities grows exponentially as the number
of items and categories increases.

If there are M anchors and J items there are MJ response
patterns.

For instance, there are 9.765625 ⇥ 106 response patterns for a
10 item instrument with 5 response options.
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Psychometric Models

Rather than study MJ response patterns we approximate them
with a model.

The model mathematically represents our understanding of how
responses are generated.

A “good” model is parsimonious and provides an acceptable
representation of the data.
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The Factor Model

The classic factor model assumes you can map individuals onto
a continuum, ✓.

Individuals with higher ✓’s will choose anchors with higher
values.
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PVEST Informed Constructs

1 Risk factors Responses indicate the presence of factors that
put academic achievement at risk (+R) or the presence of
factors that reduce this risk (-R)

2 Protective factors Responses indicate the presence of
factors that provide support in the face of academic/other
stressors (+P) or the presence of factors that reduce this
support (-P)
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Purpose:

The types and magnitude of stresses associated with being a
student at an HBCU varies due to student life experiences,
institutional histories, and personality traits.

Developing scales capturing risk/protective factors helps to
identify the needs of specific (classes) of HBCU students based
on these attributes.
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Survey Instrument and Data

Data were collected from STEM majors at VSU.

Project Knowledge is a five-year NSF funded project
(#1818458).
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+P Items

Variable Stem
1 SSRQ 1 47 Once I have a goal, I can usually plan how to reach it
2 SSRQ 1 34 I have a lot of willpower
3 SSRQ 1 41 I am able to resist temptation
4 SSRQ 1 32 As soon as I see a problem or challenge, I start looking for possible solutions
5 FFMQ 19 When I have distressing thoughts or images, I ”step back” and am aware of the thought or image without getting taken over by it.
6 FFMQ 22 In di�cult situations, I can pause without immediately reacting.
7 FFMQ 34 When I have distressing thoughts or images, I just notice them and let them go.
8 CERQ 16 I think that other people go through much worse experiences
9 CERQ 23 I think about how to change the situation

10 CERQ 32 I think about a plan of what I can do best
11 PALS SE SH 5 Even if the work is hard, I can learn it.
12 PALS SE SH 4 I can do almost all the work in class if I don’t give up.
13 ZTPI 13 Meeting tomorrow’s deadlines and doing other necessary work comes before tonight’s play.
14 ZTPI 1 I believe that getting together with one’s friends to party is one of life’s important pleasures.
15 ZTPI 32 It is more important for me to enjoy life’s journey than to focus only on the destination.
16 ZTPI 55 I like my close relationships to be passionate.
17 ACSI 19 Sought out people I thought would make me laugh.
18 ACSI 26 Attended a social event (dance, party, movie) to reduce stress caused by the situation
19 ACSI 2.0 Got a group of family or friends together to help with the problem
20 ACSI 3.0 Shared your feelings with a friend or family member.
21 ACSI 4.0 Remembered what a parent (or other relative) once said about dealing with these kinds of situations.
22 ACSI 9 Sought advice about how to handle the situation from an older person in my family or community.
23 ACSI 11 Asked for suggestions on how to deal with the situation during a meeting of my organization or club.
24 ACSI 24 Sought emotional support from family and friends.
25 ACSI 6.0 Went to church (or other religious meeting) to get help from the group
26 ACSI 10 Read a scripture from the Bible (or similar book) for comfort and/or guidance
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+P Factor Model

SSRQ_1_47SSRQ_1_34SSRQ_1_41SSRQ_1_32FFMQ_19FFMQ_22FFMQ_34CERQ_16CERQ_23CERQ_32PALS_SE_SH_5PALS_SE_SH_4ZTPI_13ZTPI_1ZTPI_32ZTPI_55ACSI_19ACSI_26ACSI_2.0ACSI_3.0ACSI_4.0ACSI_9ACSI_11ACSI_24ACSI_6.0ACSI_10

+P1 +P2 +P3
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+P Profiles
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-P Items

Variable Stem
1 SSRQ 1 40 I have trouble making plans to help me reach goals
2 SSRQ 1 8 I don’t notice the e↵ects of my actions until it’s too late
3 CERQ 11 I think that I have to accept the situation
4 ZTPI 37 You can’t really plan for the future because things change so much.
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-P Factor Model

SSRQ_1_40 SSRQ_1_8 CERQ_11 ZTPI_37

−P1
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-P Profiles
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+R Items

Variable Stem
1 SSRQ 1 62 I give up quickly
2 SSRQ 1 6 I get easily distracted from my plans
3 FFMQ 13 I am easily distracted.
4 FFMQ 3 I criticize myself for having irrational or inappropriate emotions.
5 FFMQ 10 I tell myself I shouldn’t be feeling the way I’m feeling.
6 FFMQ 14 I believe some of my thoughts are abnormal or bad and I shouldn’t think that way.
7 FFMQ 26 I tell myself that I shouldn’t be thinking the way I’m thinking.
8 FFMQ 31 I think some of my emotions are bad or inappropriate and I shouldn’t feel them.
9 CERQ 35 I continually think how horrible the situation has been

10 CERQ 20 I think that I cannot change anything about it
11 CERQ 10 I feel that I am the one who is responsible for what has happened
12 ZTPI 4 I often think of what I should have done di↵erently in my life.
13 ZTPI 50 I think about the bad things that have happened to me in the past.
14 ACE1 [emotional abuse of self]
15 ACE2 [physical abuse of self]
16 ACE3 [emotional neglect]
17 ACE4 [parental neglect]
18 ACE5 Were your parents ever separated or divorced?
19 ACE6 [Physical abuse of mother/stepmother]
20 ACE7 Did you live with anyone who was a problem drinker or alcoholic or used street drugs?
21 ACE9 Did a household member go to prison?
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+R Factor Model

SSRQ_1_62 SSRQ_1_6 FFMQ_13FFMQ_3FFMQ_10FFMQ_14FFMQ_26FFMQ_31CERQ_35CERQ_20CERQ_10ZTPI_4ZTPI_50ACE1ACE2ACE3ACE4ACE5ACE6ACE7ACE9

+R1 +R2
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+R Profiles
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Note Factor 2 appears to be a methods factor.

ACE1 to ACE9 are all dichotomous Yes/No responses.
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-R Items

Variable Stem
1 SSRQ 1 1 I usually keep track of my progress toward my goals
2 FFMQ 37 I pay attention to how my emotions a↵ect my thoughts and behavior.
3 PALS SE SH 1 I’m certain I can master the skills taught in class this year.
4 PALS SE SH 2 I’m certain I can figure out how to do the most di�cult class work
5 PALS SE SH 3 I can do even the hardest work in class if I try.
6 ZTPI 10 When I want to achieve something, I set goals and consider specific means for reaching those goals.
7 ZTPI 45 I am able to resist temptations when I know that there is work to be done.
8 ZTPI 40 I complete projects on time by making steady progress.
9 ACSI 17 Spent more time than usual doing things with friends and family
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-R Factor Model
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-R Profiles
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Benefits of the Factor Model

A ✓ can be introduced to represent each underlying theoretical
construct.

The model provides a clear interpretation and connection
between the hypothesized theoretical latent structure and the
items.

Scale development proceeds by writing items to distinguish
high/low standing on each ✓.

Structural models can be specified to relate latent variables to
each other or other outcomes of interest.
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Potential Limitations of the Factor Model

The latent variables are assumed to be continuous.

This framework is less diagnostic and more useful for ranking.

Change in this framework is generally smooth and may not
capture discontinuous shifts between states.
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Discrete Mixture Models

An alternative is to classify individuals into latent groups.

The model assumes individuals’ responses within latent groups
are more similar than di↵erent.
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Benefit of Discrete Mixture Models

We may be able to classify individuals into theoretically
meaningful groups.

Interventions may be designed to target development for
individuals in di↵erent groups.

Change is fundamentally discontinuous as it implies transitions
between states and latent group membership.
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Potential Limitations of Discrete Mixture Models

The connection between theory and group di↵erences is not
explicitly articulated.

The challenge with this approach is that we often need to “read
the tea leaves” to understand the relationship between latent
groups and item responses.

Item writing for scale construction may be more di�cult in this
framework.
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Latent Structure Models (LSMs)

LSMs have features of both the factor and discrete mixture
models [Culpepper, 2019].

Similar to factor models, items are mapped to the latent
structure. Latent groups are theoretically defined.

There is a role for theory in scale construction.

Similar to discrete mixture models, the procedure classifies
individuals into theoretically homogeneous groups.

Measurement is diagnostic with the goal of prescribing
interventions to promote changes in states.
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Rather than a continuous ✓, we introduce vector of binary
attributes,

↵ = (↵1, ↵2, . . . , ↵K).

↵k = 1 for students who possess some attribute and 0
otherwise.

Ex. There are eight latent groups if there are three attributes:

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1).

LSMs allow for di↵erent latent processes (e.g., main-e↵ects and
interactions).
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Application to +P Items

Attribute 1 Attribute 2 Attribute 3
1. SSRQ 1 47 1.00 0.12 0.10
2. SSRQ 1 34 1.00 0.18 0.05
3. SSRQ 1 41 1.00 0.06 0.11
4. SSRQ 1 32 1.00 0.11 0.13
5. FFMQ 19 1.00 0.04 0.21
6. FFMQ 22 1.00 0.09 0.27
7. FFMQ 34 0.79 0.04 0.33
8. CERQ 16 1.00 0.19 0.16
9. CERQ 23 1.00 0.78 0.33
10. CERQ 32 1.00 0.27 0.23
11. PALS SE SH 5 1.00 0.35 0.13
12. PALS SE SH 4 1.00 0.21 0.19
13. ZTPI 13 1.00 0.16 0.85
14. ZTPI 1 0.00 0.00 1.00
15. ZTPI 32 0.00 1.00 0.00
16. ZTPI 55 0.00 1.00 0.00
17. ACSI 19 0.07 1.00 1.00
18. ACSI 26 0.07 1.00 1.00
19. ACSI 2.0 0.03 1.00 1.00
20. ACSI 3.0 0.13 1.00 1.00
21. ACSI 4.0 0.17 1.00 1.00
22. ACSI 9 0.26 1.00 1.00
23. ACSI 11 0.03 0.21 1.00
24. ACSI 24 0.10 1.00 1.00
25. ACSI 6.0 0.35 1.00 1.00
26. ACSI 10 0.07 1.00 1.00
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Class ⇡
1 000 0.125
2 001 0.047
3 010 0.365
4 011 0.088
5 100 0.165
6 101 0.091
7 110 0.068
8 111 0.050
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Attribute 1 for Item 1
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Attribute 1 for Item 2
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Attribute 2 for Item 16
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Attribute 3 for Item 23
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Attributes 2 and 3 for Item 19
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Application to +R Items

Attribute 1 Attribute 2 Attribute 3
1. SSRQ 1 62 1.00 1.00 0.45
2. SSRQ 1 6 1.00 1.00 0.08
3. FFMQ 13 1.00 1.00 0.07
4. FFMQ 3 0.88 1.00 1.00
5. FFMQ 10 1.00 1.00 1.00
6. FFMQ 14 1.00 1.00 1.00
7. FFMQ 26 1.00 1.00 1.00
8. FFMQ 31 1.00 1.00 1.00
9. CERQ 35 1.00 1.00 1.00
10. CERQ 20 1.00 1.00 1.00
11. CERQ 10 1.00 1.00 1.00
12. ZTPI 4 0.36 1.00 0.46
13. ZTPI 50 0.60 1.00 0.69
14. ACE1 1.00 0.40 0.17
15. ACE2 1.00 0.40 0.32
16. ACE3 0.43 0.93 0.08
17. ACE4 0.00 0.00 1.00
18. ACE5 0.00 0.00 1.00
19. ACE6 1.00 0.28 0.40
20. ACE7 1.00 0.15 0.12
21. ACE9 0.38 0.87 0.08
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Class ⇡
1 000 0.050
2 001 0.074
3 010 0.038
4 011 0.194
5 100 0.547
6 101 0.028
7 110 0.027
8 111 0.042



Overview Factor Models Mixture Models

Attribute 1 for Item 20
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Attribute 1 for Item 19
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Attribute 2 for Item 12
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Attribute 2 for Item 16
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Attribute 3 for Item 17
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Attribute 3 for Item 18
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Attributes 1, 2, 3 for Item 1
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Change in Latent Structure Models

In LSMs, change is the process of transitioning from not a state
of not having an attribute to a state of having it
[Chen et al., 2018, Wang et al., 2017].

LSMs are ideal for tracking the change process and for
evaluating factors that promote change.

For LSMs, change is characterized by

↵t�1 = 0, ↵t = 1

or
↵t�1 = 1, ↵t = 0.
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Concluding Thoughts

Consider the computational demands of a unified analysis of
+P, -P, +R, -R items.

Relate the latent attributes to other outcomes of interest, such
as grade point average.

Examine student characteristics and other contextual factors
that describe di↵erences in attribute classifications.
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