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What is the path integral in quantum mechanics?

The path integral formulation of quantum mechanics is a description of quantum theory
which generalizes the action principle of classical mechanics. It replaces the classical notion of a
single, unique trajectory for a system with a sum, or functional integral, over an infinity of
possible trajectories to compute a quantum amplitude. The basic idea of the path integral
formulation can be traced back to Norbert Wiener, who introduced the Wiener integral for
solving problems in diffusion and Brownian motion. This idea was extended to the use of the
Lagrangian in quantum mechanics by P. A. M. Dirac in his 1933 paper. The complete method
was developed in 1948 by Richard Feynman. This formulation has proven crucial to the
subsequent development of theoretical physics, because it is manifestly symmetric between time
and space. Unlike previous methods, the path-integral allows a physicist to easily change
coordinates between very different canonical descriptions of the same quantum system.

((The idea of the path integral by Richard P. Feynman))
R.P. Feynman, The development of the space-time view of quantum
electrodynamics (Nobel Lecture, December 11, 1965).
http://www.nobelprize.org/nobel prizes/physics/laureates/1965/feynman-lecture.html

Feynman explained how to get the idea of the path integral in his talk of the Nobel
Lecture. The detail is as follows. The sentence is a little revised because of typo.

I went to a beer party in the Nassau Tavern in Princeton. There was a gentleman,
newly arrived from Europe (Herbert Jehle) who came and sat next to me. Europeans are
much more serious than we are in America because they think that a good place to
discuss intellectual matters is a beer party. So, he sat by me and asked, «what are you
doing» and so on, and I said, «I’'m drinking beer.» Then I realized that he wanted to
know what work I was doing and I told him I was struggling with this problem, and I
simply turned to him and said, ((listen, do you know any way of doing quantum
mechanics, starting with action - where the action integral comes into the quantum
mechanics?» «Noy, he said, «but Dirac has a paper in which the Lagrangian, at least,
comes into quantum mechanics. I will show it to you tomorrow»

Next day we went to the Princeton Library, they have little rooms on the side to
discuss things, and he showed me this paper. What Dirac said was the following: There
is in quantum mechanics a very important quantity which carries the wave function from
one time to another, besides the differential equation but equivalent to it, a kind of a
kernel, which we might call K(x',x),which carries the wave function w(x) known at

time ¢, to the wave function y/(x") at time, ¢+ ¢ . Dirac points out that this function K

was analogous to the quantity in classical mechanics that you would calculate if you
took the exponential of ig/#, multiplied by the Lagrangian L(x,x) imagining that these



two positions x, x’ corresponded ¢ and 7+ ¢ . In other words, K(x',x)is analogous to

)],

exp[iﬁL(x_x
h £

K(x',x) ~ exp[ifL(ﬂ,x)]. (1)
/) &

Professor Jehle showed me this, I read it, he explained it to me, and I said, «what does
he mean, they are analogous; what does that mean, analogous? What is the use of that?»
He said, «you Americans ! You always want to find a use for everything!» I said, that I
thought that Dirac must mean that they were equal. «No», he explained, «he doesn’t
mean they are equal.» «Welly, I said, «let’s see what happens if we make them equal.»
So I simply put them equal, taking the simplest example where the Lagrangian is

%M)'c2 —V(x), but soon found I had to put a constant of proportionality 4 in, suitably

adjusted. When I substituted exp(ieL /) for K to get

w(x',t+¢)= IAexp[i%L(x;x

X) ]y (x,0)dx ()

and just calculated things out by Taylor series expansion, out came the Schrodinger
equation. So, I turned to Professor Jehle, not really understanding, and said, «well, you
see Professor Dirac meant that they were proportional.» Professor Jehle’s eyes were
bugging out-he had taken out a little notebook and was rapidly copying it down from the
blackboard, and said, «no, no, this is an important discovery. You Americans are always
trying to find out how something can be used. That’s a good way to discover things!»
So, I thought I was finding out what Dirac meant, but, as a matter of fact, had made the
discovery that what Dirac thought was analogous, was, in fact, equal. I had then, at least,
the connection between the Lagrangian and quantum mechanics, but still with wave
functions and infinitesimal times.

It must have been a day or so later when I was lying in bed thinking about these
things, that I imagined what would happen if I wanted to calculate the wave function at a
finite interval later. I would put one of these factors exp(ieL/#) in here, and that would
give me the wave functions the next moment, ¢+ ¢ and then I could substitute that back
into (2) to get another factor of exp(icL/h)and give me the wave function the next
moment, ¢ + 2¢&, and so on and so on. In that way I found myself thinking of a large
number of integrals, one after the other in sequence. In the integrand was the product of
the exponentials, which, of course, was the exponential of the sum of terms like &L/%.
Now, L is the Lagrangian and ¢ is like the time interval dz, so that if you took a sum of
such terms, that’s exactly like an integral. That’s like Riemann’s formula for the integral

det , you just take the value at each point and add them together. We are to take the

limit as & — 0, of course. Therefore, the connection between the wave function of one
instant and the wave function of another instant a finite time later could be obtained by



an infinite number of integrals, (because & goes to zero, of course) of exponential
(iS/h) where S is the action expression (3),

S = j L(x,x)dt . 3)

At last, I had succeeded in representing quantum mechanics directly in terms of the
action S. This led later on to the idea of the amplitude for a path; that for each possible
way that the particle can go from one point to another in space-time, there’s an
amplitude. That amplitude is an exponential of i/# times the action for the path.
Amplitudes from various paths superpose by addition. This then is another, a third way,
of describing quantum mechanics, which looks quite different than that of Schrodinger
or Heisenberg, but which is equivalent to them.

1. Introduction
The time evolution of the quantum state in the Schrodinger picture is given by

v () =U@.)w()).
or
(x| (0)) = (x|O @)y ) = [ e (x[O 6,2 )| (1))

in the |x> representation, where K(x, t; x°, ¢’) is referred to the propagator (kernel) and given by

Kbt = (<0 0)] ) = (x|expl— A =0)]x).

Note that here we assume that the Hamiltonian A is independent of time #. Then we get the form
(x|w(0) = jdx'K(x, x| ().

For the free particle, the propagator is described by

!t A1 m in’l(x_'x')2
K==y ™ on =

(which will be derived later)

((Note))
Propagator as a transition amplitude



K(x,t;x',1") = <x|exp[—%ﬁ(r —)]x")

= <x|exp(—%l:1t) exp(% I:It')| x'>

= <x,t x',t'>
Here we define
X, t> = exp(él:lt)| x> , <x,t = <x|exp(—%[flt) .

We note that

(x.t]a) = <x|exp(—%l:lt)|a> - exp(—%Eat)<x|a> ,

where

1:I|a>:E

a

Q).

((Heisenberg picture))
The physical meaning of the ket |x, t> :

The operator in the Heisenberg's picture is given by

Xy = exp(élflt)fc exp(—%lflt) ,

Xy x,t> = exp(é Hi)Z exp(—%ﬁt) exp(élflt)| x>

= exp(% Flt)fc| x>

= exp(% I:It)x| x>

= xexp(%lflt)| x> = x| x, t>

This means that
We note that

X, t> is the eigenket of the Heisenberg operator x,, with the eigenvalue x.

vs(0) = exp(— vy, ).



Then we get

(+lys(0) = (xlexp(= Ay, ) = (il ).

This implies that

x,t> =

)=l
where S means Schrodinger picture and H means Heisenberg picture.

2 Propagator
We are now ready to evaluate the transition amplitude for a finite time interval

K(x,t;x',t'):<x,t

x',t'>

:<x|exp[—%ﬁAt)]exp[—%I:IAt)] ..... exp[—%I:IAt)]|x'>

where

1

t—t
At = (in the limit of N — )

t

) At

where 7, = ¢ in this figure.
We next insert complete sets of position states (closure relation)
K(x,t;x',t')= <x,t

= Idxljdxz....jdezjdx,\,1I<X|CXP(_%I:IAQ|XN1>

x',t'>

X <x2 | exp(—%ﬁ[Atﬂ X, ><x1 | exp(—%I:IAt)| x'>

This expression says that the amplitude is the integral of the amplitude of all N-legged paths.



((Note))

(x',1), (X, 1)), (X5, 8,), (X5, 85), (X, ),

----- (yastyoa)s (X gatys )y (X o)y (e 2y ) (X5 7)

=t <t <t,<t;<t, <

At

with
to
X0
We define
x'=x,,
X=Xy,

t1 to
x4 X2
t'=t,,
t=t,.

t3 tN-1

X3 XN-1

We need to calculate the propagator for one sub-interval

<xi | exp[— % FIAt)| X, > ,

wherei=1,2, ..., N, and

A2

a-2
2m

Then we have

+V(x),

tN=t

XN = x



<xi |6Xp(—é]:]At)|xl-_1> = j-dpi <xi |pi><pi |exp(_éAtﬁ)|xi—l>

~ j-dpi <xi |pi><pi |i - %Atﬁ|xi—1> + O((At)z)

. A2
_ T L P -
= Jdp. x| )il - A+ V(&)

x,)+0((An)?)

o ) . )
= [dp, (x| p.)(p, i - %At(é)—m)lx,-_J +(p,|- %AtV(x)

X1+ 0((A)°)
_ - a2 i z
= Jdp, x| P =~ AT )+ (= AV Gl )T+ O((80))

= [ap (x| p)p 1= AL VG )+ O(80%)

wherep; (i=1,2,3,...,N),

or

‘ . A2
<xi |eXP(_éHAZ)| xi—l> ~ _[dpi<xi |pi><pi |xi—1>[1 - éAt(i_im +V(x))]
1 ] [
= %Idpi exp[%pi(xi —x_ - %AtE(pi’xifl)]

1 i ;
~ %J.dp, eXp[%pi (xi — xi—l)] exp[—%AtE(pl ’xi—l)]

1 i (x,=x_)
~ o Jdp explAp A= E(pox, )AL

- 1 i (x, —x,)
= [ dpexpl{p, =0

—-E(p.,x,_ )} At
h At (pz 'xl 1)} ]

where

2

D,
E(p,x, )= E +V(x_).

Then we have

K(x,t;x',t") = <x,t x',t'>
= llvif)?ofdxljdxz ....... jde_lj;l§%I;lZ; _______ J‘ dé?;rvhlj'jl;z;l

xexpl 2 o - Py jan



We note that

2

dp, i =xy) p dp,
——exp[— T Ne) P At —exp[— —-X,_)—1I At
[ expltp o= Than = [ 2 p[ P =3 ) =i Al
m imAt X, —X,_,
= ex
rrvha el e vanl
((Mathematica))
1 i 2
Clear["Global " +"]; fl = — Exp[— px - 1 At];

2nh h 2ma
Integrate[fl, {p, -, ®}] //
Simplify[#, {#>0, m>0, Im[at] <0}] &

imx2
(ezAtf’l

A/2 iasth

Then we have

K(x,t;x',6) = lim [, [dv, ... [ vy (o)

mx—x

x exp[— AtZ{ ’1) —V(x._)}]

Notice that as N — oo and therefore Az — 0, the argument of the exponent becomes the standard
definition of a Riemann integral

lim — AtZ{ ,1) —V(x_ )} =~ J.dtL(x %),

At—>0

where L is the Lagrangian (which is described by the difference between the kinetic energy and
the potential energy)



Lo

O | o o t
L(x,%) = %m(fc)z ~V(x).

It is convenient to express the remaining infinite number of position integrals using the
shorthand notation

. m
[ DLx(0)]= lim [, [y oy (=)™
Thus we have

K(x,t;x',t") = <x,t

¥, = [ DLx(@)]exp - SIXO]}-

where
S[x(1)]= jdtL(x, X).

The unit of S'is [erg sec].



When two points at (#, x;) and (¢, xr) are fixed as shown the figure below, for convenience,
we use

S[x(t)] = fdtL(x, X).

X2

X1

A %)

This expression is known as Feynman’s path integral (configuration space path integral). S[x(¢)]
is the value of the action evaluated for a particular path taken by the particle. If one want to
know the quantum mechanical amplitude for a point particle at x’, at time ¢’ to reach a position x,
at time ¢, one integrate over all possible paths connecting the points with a weight factor given by
the classical action for each path. This formulation is completely equivalent to the usual
formulation of quantum mechanics.

The expression for K(x,t;x',¢') = <x,t

x', t'> may be written, in some loose sense, as

<XN =X,ty =1|X, :X',IO It'>z z exp[w]

(all) path h

lSpath—Z

)+ exp(

lSpath—l

iSpath—n
= exp( )+---+exp(T)+--

10



where the sum is to be taken over an innumerably infinite sets of paths.
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(a) Classical case.
Suppose that 7 — 0 (classical case), the weight factor exp[iS/#] oscillates very violently.

So there is a tendency for cancellation among various contribution from neighboring paths. The
classical path (in the limit of %#— 0) is the path of least action, for which the action is an
extremum. The constructive interference occurs in a very narrow strip containing the classical
path. This is nothing but the derivation of Euler-Lagrange equation from the classical action.
Thus the classical trajectory dominates the path integral in the small 7 limit.

In the classical approximation (S >> %)

. S
(xy =x,ty =t|x, =x',1, ="y ="smooth function" exp(%) : (1)

But at an atomic level, S may be compared with %, and then all trajectory must be added in
<xN =x,t, = t|x0 =x',t, = t'> in detail. No particular trajectory is of overwhelming importance,

and of course Eq.(1) is not necessarily a good approximation.

11



(b) Quantum case.
What about the case for the finite value of S/# (corresponding to the quantum case)? The
phase exp[iS/h] does not vary very much as we deviate slightly from the classical path. As a

result, as long as we stay near the classical path, constructive interference between neighboring
paths is possible. The path integral is an infinite-slit experiment. Because one cannot specify
which path the particle choose, even when one know what the initial and final positions are. The

trajectory can deviate from the classical trajectory if the difference in the action is roughly within
h.

((Note))
R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals (extended edition) Dover
2005.

3. Free particle propagator
In this case, there is no potential energy.

N

V12 ol ArST (T Xy
oaing Pl ;{2( vl

K(x,t;x',1') = lim [ [ dx,.......[ dx, \(

or

K(x,£:x¢ 1) = lim jdxl [dx,....Jdx, |

)"'? expl—

2 hils 2 hilt {(xl —x')’ +(x2_x) +(x, _xz) +. +(x_xN—l)2}]

We need to calculate the integrals,

(= x)? (5, —x,)°]

Si=( 2hiAt

——y 2/2J'd

1/2 —-—m N2
= —— — e —_— —
w/4Tc(hiAt) Xp[4hiAt(x2 )]

ﬁ( )1/2

2 7hilt ZhA(3 %)l

i 1 m 2 2
VA =Lg1dxz =E(%) p[—6h ” (x; —x')7]

)% expl— (x, — x,)’]

£ f2(27zhAt 2hilt

12



——(x, =¥

p 1 m_ i
= d e ————d B
5 _ng = Tx ind < nine

. m 1/2 —m(x —x' )2
K(x,t;x',t")y = im(———) “exp[—————
(ot = I Ny P v

or

K(x,t;x',t") = (L)l/z exp[M

2mhi(t — 1) 2hi(t—1) J:

where we uset —t'= NA¢ in the last part.

((Mathematica))
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Free particle propagator;
e=At

Clear["Global *"];

exp_* :=exp /- {Complex[re_, im_] » Complex[re, -im]};
hl= ((x1-x")%+ (x2-x1)?) // Expand;

2nihe --g -m
fO[x1_ ] := (—m] Exp[2 — hl];
1 €

Tl = Integrate[TO[x1], {X1, -, ©}] //
m
Simplify[#, Im[— >O] &
eh

im (x2-x7)2 .
e 4eh _im

eh
2/

2nihe\-3 -m 2 ) )
gl = f1 (—) Exp[ (X3 - x2) ] /7 Simplify;
m 2ihe

' m
f2=L°gld1x2 /1 Simplify[#, |m[;1 >o] &

im (x3-x’)2
e 6ech

2nihe\-3 -m 2 ) )
g2 = f2 (—] Exp[ (X4 - x3) ] // Simplify;
m 21ihe

‘© m
3 - Lngz axs // Simplify[#, |m[;1 > o] &

im (x4-x’)2 ‘
e 8ech _im
eh

2277

2nihe\-3 -m 2 i} }
g3 =13 (—] Exp[ (X5 - x4) ] // Simplify;
m 2ihe

' m
f4 - J:mg3d1x4 /1 Simplify[#, |m[;] > o] &

im (x57x’)2
e 10e n

10 1 ieh
m

14



4. Gaussian path integral

The simplest path integral corresponds to the vase where the dynamical variables appear at
the most up to quadratic order in the Lagrangian (the free particle, simple harmonics are
examples of such systems). The the probability amplitude associated with the transition from the
points (x;,Z,) to (x,,¢,) is the sum over all paths with the action as a phase angle, namely,

1

K(x,t,5%,,0,) = exp[éSc,]F(tf,ti) :

where S, is the classical action associated with each path,
I
S, = [dtL(x%,,0)
t;

with the Lagrangian L(x,x,¢) described by the Gaussian form,
L(x,%,t) = a(t)x” + b(t)xx + c(t)x” +d ()X + e(t)x + f(¢)

If the Lagrangian has no explicit time dependence, then we get
F(t,,t,)=F(@,-t).

For simplicity, we use this theorem without proof.

K(xpot3%,8,) = exp[%SC,]F(tf —1).

((Proof)) R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals.

Let x,(z) be the classical path between the specified end points. This is the path which is an

extremun for the action S. We can represent x(¢) in terms of x,(¢) and a new function y(¢);

x(t) = x, () + y(0)

where y(z,) = y(¢,) =0. At each t, the variables x(¢) and y(¢) differ by the constant . x,,(z) (Of

course, this is a different constant for each value of ¢). Thus, clearly,
dxi = dyl ’

for each specific point # in the subdivision of time. In general, we may say that

15



Dx(t) = Dy(t).

The integral for the action can be written as

Slt,.t]= Jf.L[fC(t),x(t))J]dt,

with

We expand L(x,x,¢) in a Taylor expansion around x,,,x,, . This series terminates after the

12l

second term because of the Gaussian form of Lagrangian. Then

. . oL oL . 1 0L , 0L . 0L .,
L(x,x,t) = L(x,,x,,,t)+—|, — i y+— + P4 A R
(%, x,0) = L(x,, X, 1) axlc,y o e VS G E Y A axzyﬂw

— |
From here we obtain the action

“ oL oL .
Sltyot,1= St 11+ [ dr,, v+ =1, 7)

0°L 2+62L . +82L ),
o " arax” o) )

1t
+—|dt
2;[ (
(s oL
=8,[t, 6,1+ | dt(— +—1, )
At [ 4l D)

+ [dia()y? +b(e)yy +c()y’]

The integration by parts and use of the Lagrange equation makes the second term on the right-
hand side vanish. So we are left with

SIt,st1= Sult o1+ [dila()i? + by +c()y*].

Then we can write

16



STX(e)] = Sl 1+ [[a(0)3” +b()jy +c()y*Jdt .

The integral over paths does not depend on the classical path, so the kernel can be written as

where

y=0

F.t)= | exp{%f[a(t)y‘z +b(t)3y +c()y* 1} Dy ().

y=0

It is defined hat F(¢,,¢,) is the integral over all paths from y =0 back to y =0 during the
interval (¢, —¢,).

((Note))
If the Lagrangian is given by the simple form

L(x,%,t) = a(t)x”> + b(t)%x + c(t)x”

then F(¢,,t,) can be expressed by

f’
F(t,,t)=K(x,=0,t,;x =0,).

4. Evaluation of F(¢,,t,) for the free particle
We now calculate F(z, =¢,¢, =¢') for the free particles, where the Lagrangian is given by the

form,
. I .,
L(x,x,t) =me .

Then we have
y=0

Ll
- [exptl [
F(tp) = [ exply [Z 3Dyt

»=0

17



Replacing the variable y by x, we get

x=

x=0 Ly
L rm .
Fty) = [ expl [Z8deyDx(o)
x=0 t;

In this case, formally F(¢,,z,) is equal to the propagator K(x, =0,7,;x, =0,7,),

F(t,,t)=K(x, =0,t,x =0,t)
= lim [dx, [dx,......[ dx,

N—>ow

m —m
(M)N/z exp[% {x12 +(x, — x1)2 +(x; - xz)z oty — x/vfz)2 + folz}]

L=t 1=t
N N

How can we solve the integral? We use the eigenvalue problem (Gottfried and Yan). Before
that we discuss the eigenvalue problem related to this problem.

Suppose that the matrix A4 (n x n) under the basis {| bl.>} , 1s given by

where we put x, =x'=0, and x,=x=0, and Af =

Al 1 Al 2 Al 3 ot 1n

A21 A22 A23 ot A2n

A3 1 A32 A33 ot A3n
A=

Anl An2 An3 R Ann

where n = N-1. We also a ket |;//> under the basis of {|bi>} is given by

A

A

Now we calculate the average <z// z//> as

18



4, 4, A, A4, \ %
Ay Ay Ay oo Ay | X
Ay Ay Ay oo A, | X
<W A ‘//> =(x x x x,)
Anl An2 An3 . . . Ann xn
=(x7) ax
= in*Al X
ij
where
X
X5
X3
X = ) XT:(xl Xy X3 xn)
xn
We introduce the new basis {| a, >} such that
A a,.> = ai|ai> , (Eigen value problem)

where |ai> is the eigenket of A with the eigenvalue a;. Suppose that |l//> can be expressed under
the basis of {a,)},

|'/’>:Zi:77i|ai>'

Then we have

19



~

(w

where

Ay)=@m n, n

= Za,«m*m

m
7,
75

e

. 7711 )* °

= (771

We introduce the unitary operator U;

where

|ai>:U|bi>,

<bj‘a,.>=<bj ‘U|b,.>_

m,

UE

The eigenvalue problem can be rewritten as

or

or

’21(0|bi>): 4 (U|b,.>),

20

. n,).

m
m,
UE

7,




We note that
)= Z"j‘aj> = in|bi>’
Jj i

where

;= le.<aj ‘bf> - Z<aj ‘bi>xi =Z(U+)ﬁxi ;

l

or
n=UXx=U"X.

Note that each element of matrix U is real; U*=U". Then we have
X=Un,

since U*U =1. We now evaluate the following integral,

Flt,,t) = lim [ [dx,......[dx

m N/2 —-m
R — X
Canint P ias

2 2 2 2 2
07+ =x)" +(0g—x) +o A+ —Xy,) Xy ]

We note that

2 2 2 2 2
S =240 —x)" + 05 —x)" o+ (0 —Xy,) Xy
= 2()c12 + x22 + ot xN_lz) = 20X, + X0 + oo H Xy Xy )
Using the matrix, f can be rewritten as

f=X"AX =(Un) AUn=n'U*AUn=n"(U*4U)n,

with

21



X, 2 -1 0 0 0 . 0

, A= 0 0 -1 2 -1

Xy . . . . .o =1 2

We solve the eigenvalue problems to determine the eigenvalues and the unitary operator, such
that

A 0 0 0 0
04 0 0 0
0 0 4 0 0

Utai=[0 0 0 2, 0,
0 0 0 0 Yl

where /, is the eigenvalue of 4. Then we have

A 0 0 O 0Y n

0 4 0 0 01 n,

0 0 4 O 0
f:(771 mom Mmoo - Myy)0 0 0 4 0

0 0 0 O A, N1y

N-1
= Z 1577;2
i=l

The Jacobian determinant is obtained as

O(X,, Xy 5eees Xpy_y)
01,1055 y_y)

=detU =1.

Then we have the integral

22



F(tf,ti) =F(,t")
g m N/2 -m 2 2 2

= }vlg}ojdmfdﬂz ------- IdﬂN71(2ﬂfliAt) eXp[_2hiAt Am™ +A4mn +.+ Ay ny 7]

m n, |270iAt |27hiAt 2hiAt

27hiAt mA, ml, \ mi,,

=( m )N/Z m )7(N71)/2 1
27mhiAt 27hiAt Ay Ay

. m
27hiAt(det A)
_ m
\ 27uNA:

m

=(

27hit —1")

where

detA= A4 Ay =N

((Mathematica)) Example (N = 6).
The matrix 4 (5x5): N—-1=5

2 1 0 0 0
-12 1 0 0
A= 0 -1 2 1 O
0o 0 -1 2 1
0 0 0 -1 2

The eigenvalues of 4:
A=2+3, 4, =3, 4,=2,2,=1, 4, =2-43.
The unitary operator

U=
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1_21__,.4."
=
l__2 =
o -l
|
| o =

o

| e

| e

2 \;’E

|

-1
f= zﬂﬂ?{z .
i=1

(=]

S o <
o <& o
<o o

<~ o o o

g}

=

I
D
<

detA=N=6.
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Clear["Global %] ;

2 -1 0 0 O

-1 2 -1 0 O
Al=({ 0 -1 2 -1 O |(;

O 0 -1 2 -1

O 0 0 -1 2

eql = Eigensystem[Al]

{{2+V3,8,2,1,2-V3}, {{1, V38,2, -V/3, 1},

{-1,1,0, -1, 1}, {1, 0, -1, 0, 1},

(-1, -1, 0,1, 13, {1, V3, 2,3, 1}}}

x1 = Normalize[eql[[2, 11]] // Simplify
{ 1 1 1 1 1 }

237 2737 27 243
x2 = -Normalize[eql[[2, 2]11] // Simplify

(3203 2
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x3 = Normalize[eql[[2, 3]1] // Simplify
1 1 1

—,0,-—,0, —

=m0

x4 = Normalize[eql[[2, 4]]1] // Simplify
1 1 1 1

22 % 3 3!

x5 = Normalize[eql[[2, 5]1] // Simplify
{ 1 1 1 1 1 }

23727 V3727 23

UT = {x1, x2, x3, x4, x5}; U= Transpose[UT];
UH = UT;
U // MatrixForm

211 1 1 1
2/3 2 V3 2 23
1 1 1 1
2 2 0 2 2
1 1 1
1 o --L o L
V3 V3 V3
1 1 0 1 1
2 2 2 2
1 1 1 1 1
23 2 /3 2 24/3
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UH.U // Simplify; UH.U // MatrixForm
10000
01000
00100
00O010O0
00001

nl
n2
n=1|n3|;
n4
n5

sl=UH.A1.U// Simplify; sl // MatrixForm

2+:/3 000 O
0O 300 O
0O 020 O
0O 001 O
0O 000 2-+/3

Tl = Transpose[n] .sl.n // FullSimplify
[{(2+V3)n1%+3n2%+2n3% + na? - (-2+~/3) n5?})

Det[Al]
6

Kl=eql[[1, 1]]eql[[1, 2]1]1eql[[1, 3]]1eql[[1, 4]]
eql[[1, 511 7/ Simplify

6. Equivalence with Schrodinger equation
The Schrodinger equation is given by

. 0 -
mawm»_mwmy

For an infinitesimal time interval ¢, we can write
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W)~y ) =~ Ay ).

from the definition of the derivative, or

(+] @) = (x| () == (x| iy 0)
ie. h* 0°

= _;[_Eﬁx_ﬁ V(x))x|w(0))

or

(xe) =y (x.0) == (x| 1y (0)
i h* 0’

= _E[_Eax_z +V (x)ly (x,0)

in the |x> representation.

We now show that the path integral also predicts this behavior for the wave function. To this
end, we start with

(v @)= [ Kxex 0=y ).

or
v(x,&e)= de'K(x,g;x',O)l//(x',O) ,
where
K(x,&:x',0)= 27:;8 exp[%L(x;x' , x;x')]
)]
Then we get

vne) = 0 favesl's m ™o r ).
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We now define
xX'-x=n.

Then we have

0 . 2 .
m mn- 1 n
,&)=.—— |dne — +n,0).
w(x,€) w/2 .hg_fw nexpl—. =~ 2)]y/(x 1,0)

The dominant contribution comes from the small limit of 7. Using the Taylor expansion in the

limit of - 0
7y _
eVix+ 2) =&V (x),

Oy (x,0) , n° O’y (x,0)

w(x+1,0) =y (x,0)+n o T o
we get
o om imn® g oy (x,0) 7]_282(//()6,0)
w(m)—w/—mg jdnexp(—m M= VOl (e0)+ =242 5]
0 0 2 0° 0) i
e jn o2ty (50 YD T TVED) iy
ﬂk—V()fﬁfewwm
Thus we have
. hZ 2
V) -y (0 ==Ly (),

which is the same as that derived from the Schrodinger equation. The path integral formalism
leads to the Schrodinger equation for infinitesimal intervals. Since any finite interval can be
thought of a series of successive infinitesimal intervals the equivalence would still be true.

((Note))

im 2rihe) f imn® . ihe(2xne)"”
jdnexp( ") . [ranexpty =22
he i 2he m m

m
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((Mathematica))
Clear["Global "];

Integral[n ] :=

Integrate[n Exp[ ] {n, -, oo}] //

2he

Simplify[#, |m[5 >o] &

K1 = Table[{n, Integral[n]}, {n, 0, 4}];
K1 // TableForm

O \/ZJT

im

eh

[E
o

N
. N
N

[
=i
w

/2

“en)

3V2n

(R
eh

75 Motion of free particle; Feynman path integral
The Lagrangian of the free particle is given by

o

w
o —

ol

L=—x%.

Lagrange equation for the classical path;

d oL
Z(a—) (—) 0,

or

or

x=at+b.
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This line passes through (7', x"), (¢, x);

x—x'

X, —Xx'= t,—1t),
Xt
X1
A
(t,x)
(t'X)
Then we have
x—x'
X, =X+ t,—t'),
= 1)

and

1 dx I x—x'
Lt)=—m(—L)’ ==m
=3 (dtl) "

).

which is independent of #;. Consequently, we have

Scl =

me x—x', m x—x', m(x—x")
Ll == [C= 0 == =) [dy ==

t' t'

——

~

and
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((Approach from the classical limit))

To find A4, we use the fact that as t —¢#'— 0, K must tend to o(x —x"),

o(x— x)—llm ! exp[—(x_x')z]

( A )1/2 A2
1 (x—x').
=1i
oo 2ro expl- 20° |
where
LA
\/5 5
1 (x X ) . .
f(,x',o)= N exp[— ]. (Gaussian distribution).
So we get
Ao /Zhi(t —t")
m b
1 m
(aN)"? N\ 2mhi(t -t
or

Note that

m
F et =1) = [ ———.
freep—amde( ) ZTChl(t - t‘)

((Evaluation of S/#))
From the above discussion, S can be evaluated as
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2
gomA) mA)Ax _mv, p, _"h

2 At 2 At 2 2 24
or
S_mv,  Ip, T
ho 2h 2h 2

where p is the momentum,
p=hk.

Suppose that m is the mass of electron and the velocity v is equal to ¢/137. We make a plot of

%(radian) as a function of Ax (cm).

((Mathematica))
NIST Physics constant : cgs units

Clear["Global %"];

rulel = {c »2.99792x 10", & » 1.054571628 107,
me » 9.10938215 10} ;

me C
Ki1=—— /. rulel

2n
1.2948 x 10%°

K1/137
9.4511 x 10’
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S/# (rad)
1010 ¢

108 L
106 L
104 L

100 ¢

‘ ‘ ‘ AX (cm)
108 1076 1074 0.01 1 100

Fig. %(radian) as a function of Ax (cm), where v = ¢/137. m is the mass of electron.

8. Evaluation of S for the 1D system (example 8-1, Towmsend, 2"* edition)
1 n I
_ o The AL shifts
[n:":‘f:i:-nl T one wave from
Lz the other, which
determines the
-‘iz' ] interference.
5

-

() B

We consider the Young’s double slit;

——X=—pX=——X=—X.

T2 260 202272

The phase difference between two paths is evaluated as

AS 1p, Lo m,
Ao 2h 2 A

34



AS . . e
If 7S is comparable to 7z, the interference effect can be observed.Such a condition is satisfied

when
Ax~=A.

((Note))
In classical physics, the phase difference is given by

27
Ap=—-Ax.
¢ A

9. Single slit experiment
Imagine the slit divided into many narrow zones, width Ay (= & = a/N). Treat each as a
secondary source of light contributing electric field amplitude AE to the field at P.

to point P

ole’e
5
%

0
.
i

%
-

W

A;;\Iasme

We consider a linear array of N coherent point oscillators, which are each identical, even to
their polarization. For the moment, we consider the oscillators to have no intrinsic phase
difference. The rays shown are all almost parallel, meeting at some very distant point P. If the
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spatial extent of the array is comparatively small, the separate wave amplitudes arriving at P will
be essentially equal, having traveled nearly equal distances, that is

E,(n)=E)(n)=..=E,(ry)=E,r) :%

The sum of the interfering spherical wavelets yields an electric field at P, given by the real part
of

E = Re[Ey(r)e""™™ + E,(r)e’ ™™™ + ..+ Ej(r)e"" ]

— Re[EO(r)ei(kﬁ—wf)[l + eik(rz_rl) + eik(rrfl) +. .+ eik(",rrl))]]

((Note))
When the distances »; and r, from sources 1 and 2 to the field point P are large compared with
the separation ¢, then these two rays from the sources to the point P are nearly parallel. The path
difference r, — r| is essentially equal to o siné.

Here we note that the phase difference between adjacent zone is

k(r,— 1) =@ =kSsin0 = k(%sin 0)

k(r,—n)=¢
k(r,—r)=¢
k(ry =1y )=¢

where £ is the wavenumber, k = 2771 It follows that

k(r,=n)=¢
k(r,—n)=2¢
k(r,—n)=3¢p

Thus the field at the point P may be written as
E =Re[E (e ™[I +e7 + e + ..+ "]

We now calculate the complex number given by
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Z=14+e"+e%" ..+
l_eiN(p

1—¢
iNp /2 iNp/2
INQ (el 4

e —iN(p/Z)

—e
ei¢/2(éi(p/2 _e—igo/Z)

sin(M)
— /(N-Dp/2 2

sm( )

If we define D to be the distance from the center of the line of oscillators to the point P, that is
D :%(N—l)késim9+kr1 :%(N—l)go+kr1
KD =)= (N-Dg
Then we have the form for £ as

. sm( )
E =Re[E,(r)e" ™ ——2 _]=Re[Ee ]

sm( )

The intensity distribution within the diffraction pattern due to N coherent, identical, distant point
sources in a linear array is equal to

cEy |32
1=(s)= T‘E
sinz(&) sin (ﬂ ) sinZ(E)
I=1, 2 __j, =7, —2
sin’ (- ) sin ( ’B ) ('Bj
2

in the limit of N—oo, where

sin” (%) = (%)

cgo

I, =="[E,(n]T
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CcE& cE
1,=I,N*= 7°[NE0<r>]2 = 7°E02

P =No= Nkodsinl = kasin @
@ =kosinf

where a = No. We make a plot of the relative intensity //I,, as a function of £.

1 sinz(g)
o
2
Note that
_sin? é)
[[—2ap=2z

[ﬂJz

2
I/Im

0.06 -

0.05}
0.04
0.03}

0.02f

0.01 J
U ’ . B
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2m
-4 -2 0 2 4 Al

The numerator undergoes rapid fluctuations, while the denominator varies relatively slowly. The
combined expression gives rise to a series of sharp principal peaks separated by small subsidiary
maxima. The principal minimum occur in directions in direction &, such that

B

ka .
=—sinfd =mrx

asin@, = l2m7z = i2m7z' =mA
k 2

10.  Phasor diagram
(i) The system with two paths
The phasor diagram can be used for the calculation of the double slilts (Young) interference.

We consider the sum of the vectors given by OS and ST . The magnitudes of these vectors is the
same. The angle between OS and ST is ¢ (the phase difference).
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b2

2 L]

Y
\

X

0O 5

Fig. Phasor diagram for the double slit.

In this figure, 00=0S =QT =R . ZSOM = Z/STM = ¢/2 . Then we have

OT =20M = Zﬁcosg = 2Acos§.

The resultant intensity is proportional to (ﬁ)z ,
I o (ﬁ)z =44’ cos’ % =2A4°(1+cosg).

Note that the radius R is related to OS (= A) through a relation
A=2R sing.
2

When 4 =1 (in the present case), we have the intensity / as

2 ¢

I =4cos™ —
2

The intensity has a maximum (/ = 4) at ¢ =27m and a minimum (/ = 0) at

p=2n(n+1/2).
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(ii) The system with 6 paths.

Q

— 4 = x
o} S

Fig. The resultant amplitude of N = 6 equally spaced sources with net successive phase
difference ¢. /=N ¢ =06 ¢.

(iii) The system with 36 paths (comparable to single slit)

o

Fig. The resultant amplitude of N = 36 equally spaced sources with net successive phase
difference ¢.
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(iv)  Single slit in the limit of N—o0

We now consider the system with a very large N. We may imagine dividing the slit into N
narrow strips. In the limit of large A, there is an infinite number of infinitesimally narrow strips.
Then the curve trail of phasors become an arc of a circle, with arc length equal to the length E,.
The center C of this arc is found by constructing perpendiculars at O and T.

The radius of arc is given by
E,=Rf=R(No).

in the limit of large N, where R is the side of the isosceles triangular lattice with the vertex angle
@, and f1is given by

P =Ne=kasin@,

with the value £ being kept constant. Then the amplitude E, of the resultant electric field at P is
equal to the chord OT , which is equal to

E, = 2Rsin£ = Zﬂsinﬁ =E,
2 g2

Then the intensity / for the single slits with finite width a is given by
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B

sin =

11([32)
2

where I, is the intensity in the straight-ahead direction where f= 0.
The phase difference ¢ is given by f = kasinf = 27[%sin 0 =27psin @ . We make a plot of
1/, as a function of €, where p = a/A is changed as a parameter.

I/Im

Bidegrees)

=20 -10 10 20

Fig. The relative intensity in single-slit diffraction for various values of the ratio p = a/A. The
wider the slit is the narrower is the central diffraction maximum.

11. Gravity: Feynman path integral
((Calculation from the classical limit))

m .,
L=—x" —mgx,
> &

d oL

E(a—) (—)
¥=-g,
g

x, ==t + At + B,
2

Initial conditions:

x1=x and Hh=1t,
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x=-27 1 4t+B.

2
and x,=x'and ¢ =t
x'=—§t’2+At'+B,

A and B are determined from the above two equations.

P (#'—t)lg =)t —1t)+2x]+2(t —t,)x'
b 2(t — 1)

b

_dx, gt —t)(F+1-24)+2(x—x")

Yot 2(t—1")

Then we get the expression of the Lagrangian
: m .
L(x,,x,,t) = 3x12 —mgx, .
The Hamilton’s principle function is

S (e, t,x' 1) = [ L(x, .,y
)

_ mlg*(t—1) —12(x —x')* +12g(t —1')*(x + x")]

- 24(t—1")
K(x,t;x',t") = Aexp[éSC,(x,t :x',t")].

((Classical limit))

When x — x' and ¢ — ¢'+7T , we have
S R T N 1 23 '
C,(x,t.x,t)——ﬂmgT —-x'gmT ,

and
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Vo I vy IX'mgT
K(x,t;x',t')= Aexp(——mgT" —
( ) p( TR 2

B ix'mgT)

)

= 4, exp(

where T is the time during which a particle passes through the system.

i
A = Aexp(———me’T?).
1 p( by g )

((Mathematica)) 1
Clear["Global «"]; eql = X == _—2 g t?2 + At +B;

-1
eq2=x0==—2 g t0® + At0 +B;

rulel = Solve[{eql, eq2}, {A, B}] // Flatten;

-1
x1 = (—2 gtl1? + Atl +B| /. rulel // FullSimplify

~(tO-1t1) (g (t-10) (t-tl) +2Xx) +2 (t-1tl) X0

)
2 (t-t0)

vl =D[x1, t1] // Simplify
g (t-t0) (t+t0-21l1) +2 (X -X0)
2 (t-t0)

I
L1 = 5 vl? -mgxl // FullSimplify

1
8 (t - 10)2
49 (t-10) (- (t0-tl) (g (t-1t0) (t-tl) +2X) +2 (t-tl) x0))

m((g (t-t0) (t+t0-21tl) +2 (x-x0))?-

K1 = JTLl atl // FullSimplify
t0

m (g% (t-10)%-12 (x-x0)?+12g (t-10)? (x +x0) )
- 24 (t - t0)

rulel = {X-»>x0, t->1t0+T}; K2=K1 /. rulel // Simplify

1
52 9MT (g T? + 24 x0)
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12. Simple harmonics: Feynman path integral
((Classical limit))

=" —lma)ozxz,
2 2

d OL
75 (—)

X= —a)ozx ,
= Acos(wyt,) + Bsin(ayt,) .
Initial conditions:
x1=x and H=1
x = Acosmyt+ Bsinwt,
and
x=x"and =1,
X'= Acoswyt'+Bsinwyt'.
A and B are determined from the above two equations.

_ x'sin[@, (¢t —t,)]— xsin[w, (t'-1,)]

i sin[@, (t —1")] ’
P dx, _ —x'w,cos[e,(t - 1)]+ xw, cos[e, (#'-t,)]
booay sin[a, (¢ —1')] '

Then we get the expression of the Lagrangian

. m., 1 2.2
L(x,,x,t,)=—X ——mw, x
1>7410°% 2 1 2 0™

2
mao,

" 2sin’[ay (1~ 1)]

[—2xx'cos[a, (¢ + t'-2t,)

+x" cos[2a, (t —t,)] + x” cos[a, (t'-,)])
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The Hamilton’s principle function is

t
S, (6,6, ) = [ L(x, %, )y
)

mao,

- W[(x +x")cos(w, (t —1')) — 2xx']

K(x,t;x',1") = Aexp[éSd(x,t X,

or

imao,
2hsinf[aw,(t —1")]

K(x,t;x',t") = Aexp[ {(x* +x7)cos(m,(t —1')) — 2xx"}].

In the limit of t —¢'— 0, we have

ima,

K(x,t,x',t')= Aex -
(ntx ) = Al o1

(x=x)"].

To find 4, we use the fact that as t —#'—> 0, K must tend to o(x —x"),
(x—x')°
B

. (x—x")’
= lim exp[———
o020 pl 207 ]

5(x—x ) =1A1£%W

exp[

]

where

O=—F,
V2

_(x_xv)Z

] (Gaussian distribution).

f(x,x',0)= \/%0' exp[

In other words

1 1 ma,
= (ﬂ_AZ)I/Z > 2

A 2iksin{w,(1—1)}

So we get
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A \/Zihsin{a)o(t—t')} y 1 \/ ma,

ma, ’ T ()" \ 2nhisin{e, (1 — 1)}
or
Note that
K(x=0,t,x'=0,f') = _ M —F(t—1)
2nhisin{w,(t —t')}
and
K(x,t,x',t")=F(t - t')exp[%Sc,(x,t;x't')] .
((Mathematica))
Clear["Global " «"];
expr_* := expr /. {Complex[a_, b_] =» Complex[a, -b]}

seql = X == A Cos[w0O t] + B Sin[w0 t];
seq2 = X0 == A Cos[w0 t0] + B Sin[w0 t0] ;

srulel = Solve[{seql, seg2}, {A, B}] // Simplify // Flatten;

X1 = A Cos[tlw0] + BSin[tlw0] /. srulel // Simplify;
vl =D[x1, t1] // Simplify;

2 11 2 2 _ _
L1 =—2 vl _E w0 x1¢ // Simplify;

J_‘Ll atl // FullSimplify
t0

—; mwO (-2xx0 + (X% +x0%) Cos[ (t-t0) w0]) Csc[ (t - 0) wO]

If the initial state of a harmonic oscillator is given by the displaced ground state wave function

(x - xo)z]-

mao
p(x,0) = exp[~—

h
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When

with

_ Mm%
ﬂ—w/h-

Then we have

P(E0) = ——expl- L (£~ &)1,
T 2
and
(&0 = [K(E 15 0 (& ,0)de
= % exp(—ia)—ot) exp[—me_iw"’ {(cf2 + 502 )cot(w,t) + i§2
T 2 2
1
B 2550 sin(a)ot) i]
= }/4 exp(— ia)or)exp[_leii%t {(é:z + éoz)cos(a)ot) + ié:z sin(@,t)
T 2 2
—285}]
- e B yexp— e (g + éf(@)
—285}]
1 ] 1 2 —iwyt 1 2 —2iwyt
= —wexpl- ’“f S =25 g 1))
or
(En = —rexpl- 2 - Lie Log cost - isinay)
T 2 2

+ %foz(l +cos2m,t —isin2wpyt)}]

exp[—%(gg — &, cos a)ot)2 - i(%ot +&,&sinat —%foz sin2w,t)]

1/4
T

Finally we have

49



(&) P= #exp[—(f — & cos(ay)’]

((Mathematica))

Clear["Global " +"];
exp_* :=exp /. {Complex[re_, im_] =» Complex[re, -im]};

KSH[E , t, £ ] = = Exp| - ((£2 + 1%) Cos[w0 t] -2 ¢ €1)];
2nxi Sin[wO €] 2 Sinf[wO t]

1 (£-80)%7.
00[£.] = n 4 Exp[-—————1];

1= jmKSH[& t, £1]1 O[£1] d&L // FullSimplify[#, { Im[Cot[tw0]] > -1, wOt>0}] &

©

(§2+§02) Cot[tul]+i & (£+21 0Cscitu])
e 2 (i+Cot(tu0]) v/-1iCsc[tw0]

7t/4/1 -1 Cot[twOl]

Ampl = f1* f1 // FullSimplify
- (£-£0 Cos[tu0])?

Vo

rulel = {001, €05 1}; H1 = Ampl /- rulel;

Plot[Evaluate[Table[H1, {t, O, 20, 2}], {&, -3, 3}1,
PlotStyle » Table[{Thick, Hue[0.1 1]}, {i, O, 10}], AxesLabel » {"&", "Amplitude™}]

Amplitude

13.  Gaussian wave packet propagation(quantum mechanics)
(x|w (@) = (x[O@ENw () = [ e {x[T e )| x) x|y ()
K(x,t5x',6) = (x[U(t,1) x) = (x| exp[—%l:l(t —1')|x"),

or

(x|w () = jdx'K(x,t;x',f)<x'| w()).
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K(x, t; x°, t’) is referred to the propagator (kernel)

For the free particle, the propagator is given by

, m
K(x,t;x',t') = (=1 exp[

Let’s give a proof for this in the momentum space.

im(x—x")*

H s the Hamiltonian of the free particle.

with

(<) =

e

NPy

Hlk) = E, k),

1k

b

W, =

£
h 3

K(x,t;x',") = (x| exp[—%ﬁl(t —1"))|x')

- J'dk<x| ke )(k| exp[—%ﬁ(f —1")|x")
ihk

= [ dk{x| )k | exp[ - o

= jdkiexp[ik(x—x')—
2z

Note that

and

ihk*

explik(x—x")— 5
m

(t—1")]=exp|

[ dkexp(-iak®) = |-~ .
i ia

(1)

2h(t—1")

ihk?

2m

Il

(t—1"))|x")

(t=19]

_m(x—x'), m(x—x')?
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2ik(t—1") "



or

o m im()c—x')2
Kot ) = =y " on—ry

((Quantum mechanical treatment))

Probability amplitude that a particle initially at x> propagates to x in the interval #-#’. This
expression is generalized to that for the three dimension.

m im|r—r'
Kr,tr't)=[——T"* exp[——].
( =y P!

We now consider the wave function:

2

(x|p(t=0))= \/_;exp(ikox - %) .

2o x

where the probability

2 1 2
P =[xyt = ) = ————exp(— ).

X

has the form of Gaussian distribution with the standard deviation o . The Fourier transform is
given by
(k[y (e = 0)) = [ ebx(k|x){x|y (¢t = 0))

1 1 x’
= dx exp(—ikx)exp(ik,x —
Jirma, Jamd P

1

1
- 2
W2zo, V27
= (EJ \/U_xexp[—ax2 (k —ky)*]
T

O'xx/;exp[—axz (k- ko)z]

or
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(| =0))f = \Eax exp[-20," (k—k,)’]

1 1 (k—k,)’
= exp[— -1
NoY: [21 ] 2( | ]
0, 20,

1 (k—k,)’

exp[—
N27mo, Pl 2Gk2 ]

which is the Gaussian distribution with the standard deviation o, = (—] .

20

X

Then we get the wave function at time ¢,

(x| (6)) = [ ax' K (x,1;2 ,0)(x' |y (0))

12 . )2
= ! m jdx’exp[ikox'— al > +1m(x *) ]
\/ [2no. \ 27 4o 2ht

X

. 2 g 2 2
_ 1 f m Wr 1 exp[— mx(x — 41/(00)(2 )+ 2ik, tho, ]
\/ [2ro, 2riht \/ 1 2im dmo [~ +2ith

o’ th

X

x(x—4ik,o, )+21k2ﬁ0 2

1 1
- ith exp[— ith ]
\/vzmx 14t 40 7 (1+ 2
2mao 2mo,
1 1 (x(x—4ik,0, )+2zk2m Y L
= - exp[— pr e o ]
Wamo, |, it e e
2mao 2m 2mo,
Bkt
o - (= ke + 1 ko)),
\/ 272_0_ lth p 5 t2h2 2h2
\ > |+ —— 4o, (1+——) 8m’c, “(+ )
2mo, dm o dm o,
Since
2242
1+ ith : {4 t’h
2mo, 4m26x

53



the probability is obtained as

2 1 (x_hl;,lot)z
‘<x|(//(t)>‘ - e exp[~ ) 1’ I
\N27o \/1+ i 207 (I+4——9)
* 4m20x dm o,

which has the form of Gaussian distribution with the standard deviation

*h*

dm’o,

o |1+

X 4 °

and has a peak at

m
The Fourier transform:

(k| (0) = [ax{klx)xlw () = ﬁ e (x| ()

1 1 1 x(x — dikyo.”) + 2ik,’ h o’
= I dx exp[—ikx — m
th

: ~ ]
«127z\/ 2ro, \/1+’ 4(7X2(1+ ith )

2mo 2mo,

|
(©]
><
S
i

where

x(x —dikyo *) + 2ik,’ @aj
exp[— m

1
ol L %)
\/ 272'o'x \/1+ ith . 4o 2(1+ ith )

{xlw(®

x 2 2
2mo mo,

Then the probability is obtained as
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21 _(k—k0)2
(kly ) = —expl="— =1

o k

where

o, = .
k
20

X

Therefore

(klw @) =[(klwe=0)).

(Wt

0.1

0o 1 2 3 4

Fig. Plotof ‘<x| 1//(t)>‘2 as a function of x where the time ¢ is changed as a parameter.

In summary, we have

2 1 (x_h,l;ot)z
‘<x|l//(t)>‘ - 252 expl- ) *h? ]
\/27Z'O'X\/1+ T 20,1+ )

4dm o, 4m o,

and
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21 _(k—k0)2
(kly ) = 5 —expl=— =1,

k k

14. Wave packet for simple harmonics (quamtum mechanics)
((L.I. Schiff p.67-68))

(+fw(0) = (xlexp(—— F0fy (e = 0)
=| <x|exp(—%ﬁt)|x'><x’|y/(t = 0))dx’
We define the kernel K (x,x',¢) as
K(x,x',t) = <x|exp(—%ﬁt)| x')
- Y alaexp(-L £l

= zexp(—%Enf)% (), (x")

Note that
&= px,
with
_ |ma,
P h

Then we have
i [N '
y(x,0) = Y exp(——E,) [ dd' o, (Y (x)p, ()

We assume that

ﬂ1/2

1/4
T

v = Lol p -,

or
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%(5)=<f|n>=iﬁ<x|n>=ﬁ¢n<x>,

or

1

1
T

PE) =z expl- (6~ )71,

with
o = P, .
We need to calculate the integral defined by

1= [dx'g, (< (x')
ﬂ1/2

1/4
T

exp[—%ﬂ%x'—a)z]

_ ﬁ 1/2 * ﬁ _l v
=[5 B0 e -6

= [dx'p,(x")

- [dEg (O expl-=(E )]
V4 2

Here

2

R -
0, (&)= N7x2"n)) 2e 2 H (&),

Then we get

=== a2 | dEexp(—) H (&) expl—2 (£- & D).
T 2 2

Here we use the generating function:

exp(25€ =) = 2 H, (&),

Note that
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Jagexp(2ss =5 yexp(- ) expl=1 (€ 51 = . [de-H, @expl-S ) expl—2 (6 &)

o X Sn s 1 )
=§ J A= H,(§)expl—(§" =+ &)
The left-hand side is

j dEexp(2sE )& - £+ L a1 =2 explsd, -

— 7% ex _i "So
p(-= );—n!
Thus we have

A ep SN B =) [4E H Oel(E ~6+3 80

or
1/2 _f_o [ (£ _ 1,
7' exp(-2)G) = [dEH (D expl=(£ = 4+ 26,
Then -
1= Wz exp(—im
and
y(x,0)= Zexp(— En2"n) 2 exp( 5—")50 0.(x).
Since
E, = ho,( +l)
n 0)0 n 2 4
or
exp(— Et) exp(—ga)ot inwgt),
and
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p(e.t)=——y(x1),
\/E X,
we get
V(EN= 20 exp(— )G ™Y expl- S o), (),

or

2

o . &
w(f,r>=#z(2"n!)4 exp(~S2 S ) expl- S e > H,(©)

ep<—§° o & )Zl(%e_’ Sy ()

Using the generating function

,,wnt

. 1 _pinwt _joyt
Yy Y H (&) = expl-— &7 + £ ],
n=0 n' 4
we have the final form

& & 1,2 o

w(s,t)= 1/4eXP(—T—7—5 f—zfoez +&%e " )
1 52 52 l | .
= T exp[—%—?—gwot—zfo (cos2m,t —isin2a,t)

+ &, &(cosmyt —isinwt)]

OR

ol =— L expl- S 5; -& —%éﬁ cos2amyt + 2&,Ecosa,!]
or

W&, l/zexp[ (&—& cosmyf)’]

|l,//(§,t)|2 represents a wave packet that oscillates without change of shape about & = 0 with
amplitude &, and angular frequency .
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15. Mathematica

v "\?QQQQO
\ /
\\ /

X\
AN

Fig. The time dependence of |l//(§,t)|2 = %exp[—(gt —&,cosmpt)’], where &,=1. T =27/ w,.
T

The peak shifts from E=0att=0to E=0at¢t=7/4, &= Satt=1/2, E=- & att=
37/4,and £=0att=T.
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16.  Neutron interferometry
Suppose that the interferometry initially lies in a horizontal plane so that there are no

gravitational effects. We then rotate the plane formed by the two paths by angle ¢ about the
segment AC. The segment BD is now higher than the segment AC by Lsiné.

Interference region
%A/5

B > -

A
f2

f1

1200

1000

800

NEUTRON COUNTS

600

-30 -20 -10 0 10 20 30
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Fig. Dependence of gravity-induced phase on angle of rotation 6. From R. Colella, A. W.
Overhauser, and S. A. Werner, Phys.. Rev. Lett. 34 ( 1975) 1472.

From the previous discussion we have the propagator for the gravity

K(x,t:%,,t,) = Aexp(% S.)

i 2y ixomgT
=exp(———mg' 1" ———
p( 24h & h )

— 4y exp(- 08T

For the path ABD and path ACD, we have
= exp[% S(ABD)]+ exp[% S(ACD)] = exp[% S(ACD)]{1 +exp(iAg)" .

The phase difference between the path ABD and the path ACD is given by

_ 2
Ap= S(4BD) ~S(ACD) _ —lmglsziné‘ __1mighly sino,
h h hnop
or
_lmPgll, . . mPglLA . .
Ap= —%Wsm& = —2—7211231115 =—¢&sino .

where p is the momentum
p=mv.
T is related to /; ( the distance over the horizontal line) as

L ml  ml  mlA

Ir==-=——>1=—"1= .
v p 2 2m
A
The Probability is
2 .
|'//|2 :40052(8 s1n5).
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Note that

m>gll,A
E=—""—,
27h
with
mg=1.025 neV/cm.

where g = 9.80446 m/s” at Binghamton, NY (USA). The energy of neutron is evaluated as

E=

h? e h? [272’
A

2
= — | =40.63 meV
2M, 2M,

for A=1.419A.
((Mathematica))

Clear["Global *"];

rulel = {# - 1.054571628 10™°", mn - 1.674927211x 10"*,
qe » 4.8032068 x 1071%, meV -» 1.602176487 x 107",
AO » 1078, neV - 1.602176487 x 10%*, g » 980.446,
A - 1.419 A0} ;

MY/, rulel
nevV

1.02497

El // . rulel

- 2mn  meV
40.6266

17.  Quantum-mechanical interference to detect a potential difference
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Interference
region

A low-intensity beam of charged particles, each with charge q, is split into two parts. each
part then enters a very long metallic tube shown above. Suppose that the length of the wave
packet for each of the particles is sufficiently smaller than the length of the tube so that for a
certain time interval, say from #; to ¢, the wave packet for the particle is definitely within the
tubes. During this time interval, a constant electric potential V; is applied to the upper tube and a
constant electric potential V; is applied to the lower tube. The rest of the time there is no voltage
applied to the tubes. Here we consider how the interference pattern depends on the voltages V),
and V5.

Without the applied potentials, the amplitude to arrive at a particular point on the detecting
screen is

V=¥, ty,.

The intnsity is proportional to
Iy =lw, +wf =l [+l + @ vs ).

With the potential, the Lagrangian in the path is modified as
Ly—>L=L,—qV.

Thus the wave functions are modified as

P .t
l l
¥ =y expl j (Vi) +y expl j (—qV,,)dt]

iqV, iqV.
L 1))y expl= 2 = 1y)]

h

=y, exp[-

=y, eXp[—%At] +¥, eXp[—%At]
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where At =t—t,. The intensity of the screen is proportional to
2
I=ly]
2

iqV, iqV.
= |l//1 GXP[—%AI] +y, eXp[—%At]

2

9=V
h

= |'//1 +y, exp[

We assume that

_ g, _Vz).

¢ 7

Then we have

= ‘Wl + V/zei¢‘2 - |l//1|2 + |‘//2|2 + (V/l*V/zeiw + Vlll//z*e_iw)

When y, =y, =y, , we have

I= 2|z//0|2(1 +cosg) = 4|1,z/0|2 cos’ %

The intensity depends on the phase; / becomes maximum when ¢ = 2rn7z and minimum at

¢:2(n+%)7r.

((Note)) Method with the use of gauge transformation

The proof for the expression can also be given using the concept of the Gauge
trasnformation. The vector potential 4 and scalar potential ¢ are related to the magnetic field B

and electric field E by
B=VxA,
104
E=———-V9g,
c ot ¢

The gauge transformation is defined by

A=A+Vy,
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b= 1oy
cot’
where ¢ is an arbitrary function. The new wave function is related to the old wave function
through

W () = exp(l;—q v,
C

Suppose that ¢'=0. Then y'(r) =y,(r) is the wave function of free particle. Then we get

p=1% x=cfdtp.

c ot’

The wave function () is given by

w(r) = exp(—;—qz)%(n
C
=exp(— " c[digy,(r)

—exp(-2 [y o)

When V is the electric potential and is independent of time ¢, we have
iq
y(r)= eXp[—; Vit —t)ly,(r)

This expression is exactly the same as that derived from the Feynman path integral.

18. Quantization of magnetic flux and Aharonov-Bohm effect
The classical Lagrangian L is defined by

L:lmvz—q¢+gv-A.
2 c

in the presence of a magnetic field. In the absence of the scalar potential (¢ =0), we get

L, =%mv2+1v-A=Lc(0)—£v-A,

¢
C Cc

where the charge g = -e (¢>0), 4 is the vector potential. The corresponding change in the action
of some definite path segment going from (r, ,,¢, ,) to (r,,t,) is then given by

n
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t}Y
SOmn-1)— SOmn-1)-< | dt(ﬂ)A,
c dt

Ly

This integral can be written as
t’l rl1
< dt(ﬂ]-Azf [a-ar,
cs \dt c,

where dr is the differential line element along the path segment.

Now we consider the Aharonov-Bohm (AB) effect. This effect can be usually explained in
terms of the gauge transformation. Here instead we discuss the effect using the Feynman’s path
integral. In the best known version, electrons are aimed so as to pass through two regions that are
free of electromagnetic field, but which are separated from each other by a long cylindrical
solenoid (which contains magnetic field line), arriving at a detector screen behind. At no stage
do the electrons encounter any non-zero field B.
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Fig.

Aharonov—Bohm etfect

A

ectron be

Y
A

fH Screen

Solenoid | /J/

Schematic diagram of the Aharonov-Bohm experiment. Electron beams are split into two
paths that go to either a collection of lines of magnetic flux (achieved by means of a long
solenoid). The beams are brought together at a screen, and the resulting quantum
interference pattern depends upon the magnetic flux strength- despite the fact that the
electrons only encounter a zero magnetic field. Path denoted by red (counterclockwise).
Path denoted by blue (clockwise)
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Reflector

Incident Electron bea,

out of page

Reflector

Fig. Schematic diagram of the Aharonov-Bohm experiment. Incident electron beams go into
the two narrow slits (one beam denoted by blue arrow, and the other beam denoted by red
arrow). The diffraction pattern is observed on the screen. The reflector plays a role of
mirror for the optical experiment. The pathl: slit-1 — C1 — S. The path 2: slit-2 — C2 — S.

Let y,, be the wave function when only slit 1 is open.

Vs =gl [ dr-Aw)], ()

The line integral runs from the source through slit 1 to r (screen) through C,. Similarly, for the
wave function when only slit 2 is open, we have

Va0 =V (Dexpl=C [, dr- A, @)

Path2

The line integral runs from the source through slit 2 to r (screen) through C,. Superimposing
Egs.(1) and (2), we obtain

dr - AT+, (P expl—s [ dr- AP,

wy(r) =y, o(r)eXP[——I ch

Pathl
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The relative phase of the two terms is
'[Pathldr . A(r) B J.Pachdr ' A(r) - §dl" ) A(l") = I(v X A) ‘ da )

by using the Stokes’ theorem, where the closed path consists of pathl and path2 along the same
direction. The relative phase now can be expressed in terms of the flux of the magnetic field
through the closed path,

AO=5 A~dr=ij(va).da=ijB~da=iq>.
ch ch ch ch

where the magnetic field B is given by
B=VxA.

The final form is obtained as

dr - ANy, ,(r)exp(—iA0) + y, (r)],

ie
WB (r) - eXp[_%J‘Pach
and @ is the magnetic flux inside the loop. It is required that
AO=2nr.

Then we get the quantization of the magnetic flux,

O =n27rch ’
e

where 7 is a positive integer, n = 0, 1,2,..... Note that

27ch
e

=4.1356675x 107" Gauss cm”.

which is equal to 2®,,, where @, is the magnetic quantum flux,

_ 2mch

2e

@, =2.067833758(46) x 10”7 Gauss cm”.  (NIST)

19. Example-1: Feynman path integral

We consider the Gaussian position-space wave packet at # = 0, which is given by
2

1
<x| w(t= 0)> = Tino exp(— fo‘z) (Gaussian wave packet at ¢ = 0).
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The Gaussian position-space wave packet evolves in time as

(x| () = [ ey K (e, 15,00 (x, | (0))

1 m x,. im(x—x,)’
= dx eXp|— 0 + 0 1
«/27ra\/27ziht'[ 0 €XPL=7 3 T M
1 1 x*
= — exp[————]
N2z | o iht 2(az+’hmt)

m

where

i _ 2
K(x,6x,,t, = 0) = (——)""2 exp[M

free propagator 2
Y Yy ] (free propagator) (2)

(Note) You need to show all the procedures to get the final form of <x|1//(t> .
(a) Prove the expression for <x| l//(t> given by Eq.(1).

(b) Evaluate the probability given by ‘<x|l//(t>‘2 for finding the wave packet at the position x

and time ¢.

(a)

The Gaussian wave packet:

2
X

<x| w(t= 0)> = \/%0' exp(— = ). (Gaussian)

The free propagator:

] 2
K(x’t;xo’to:O):(l,)mexp[M

2 7iht 2ht I

Then we have

(x| w (€)= [ oK (x,5,,0)(x, | (0))

1 m "’ X, im(x—x,)’
= _— dx, exp[———+ 70
\/2ﬂ0(2721'ht} I o expl 207 2ht |

Here we have
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B X, N im(x—x,)’ __ X, N im(x* = 2x,x+x,)

20° 2ht 20° 2ht
. 2
im imx zmx
—)x,’ (——) Xo +
2ht 2ht
2
=ax, +bx,+c
b, b*—4ac
=a(x, +—) —
(% 2a) 4a
where
1 im imx imx*
=——+_—), b=——-, c= .
200 2nt fit 2ht

Then we get the integral

®© ) 2
Idxo explax,” +bx, +c]= jdxo expla(x, + i) +c— L
i i 2a 4a

b* 7 b
= exp(c — E)_-[deo expla(x, + Z)z
2
T expe- by
—-a 4a

Note that when Re(a) =-—

j dix, expla(xy + j dyexp(~ )= r

with the replacement of variable as y =+/—a(x, + ;) and dy =dx,N—a . Thus we have
a

1 m T b?
(elwte) = —ma\/—zm-mxg exple =)

p. .

= ex +
«/27[\/27n'ht T imo Pon T m
2 2nt 20° 2ht

or
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_imxY
mrm imx? fit ]

1
X )= €X +
< |W( > N2 .1 imo? l 2nt 1 im
27iht(= — ) (G 5-7.)
2 2nht 200 2nt
)
1 m eXp[imx2 ht
= " - - B

o’ht

2
mx
mx” ( ht )
+

2ht o + it

]

2im m
( o’ht

or

Finally we get

1 1 x’

(elyte) = e
V2w it e
m m
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It is clear that at 1 = 0, <x|l//(t> is the original Gaussian wave packet.

(b)
(el ) =gl (o7 -
7 \/02+lm 2o + tz) "
m m
iiht )
| 1 2,2 o
- exp[ Jexp[ = ]
N2 iht n’e e
o’ m 200" +75) 20" +=7)
ht
__1 xp| X le™ exp[ - ]
=—F 1/4 242 s
" [0'4+ Zt;j 2(0'4+h2) 2(‘74+ht2)
where
. 35 2.2
o2 +lh_t = |lo* + h tz e’ with ¢ = arctan(%)-
” m m-o
Then we have
] 1 1 O_2x2
(x|w @) = = ——==expl-——55"]
272. 2.2 h t
ot 4 h tz (o' + )
m

1

B S
2 . hztz'
o + 2
m
2.2
The width is ac=L ot O
(o} m

20. Example-2: Feynman path integral
Suppose that the Gaussian wave packet is given by

The height of [(x|y (/)| is
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2

<x| w(t= 0)> = \/%G exp(ik,x —;7) . (Gaussian)

Here we discuss how such a Gaussian wave packet propagates along the x axis as the time
changes.

The free propagator:

/ _ 2
K(x,t; %ty = 0) = (—)'"? exp[M

2 ikt 2ht I

Then we have

<x | y/(t> = IdeK(x, X, ,0)<x0 | 1//(0)>

1 m )" x,. im(x—x,)?
:«/27ra(27zihtj IdeeXp[_zcof2+ ]

Here we have

B x,’ +im(x—x0)2 X, _i_im(x2 —2x,X+X,")

+ik,x, =— +ik,x
202 2ht 0 g2 2ht o
1 im. . . mx imx*
=(- +—)x, +i(ky——)x, +
( 202 2ht) o Filky ht) " 2nt
=ax,” +bx, +c
b, b*—4ac
=a(x, +—) ———
(% Za) 4a
where
. . 2
S LR N =
20° 2ht ht 2ht

Then we get the integral

76



®© 0 2
J.dxo explax,” +bx, +c]= Idxo expla(x, + —) +c— L
. 2a 4a

b* 7 b
=exp(c— E) J‘dxo expla(x, + 5)2
2
T expe- 2y
—a 4a

Note that when Re(a) =

Idxo expla(x, + Idy exp(—y°) = \/7

with the replacement of variable as y =+/—a(x, + 23) and dy =dx,v—a . Thus we have
a

(elp () =— | |7 expe =20
14 N2mo \ 27ht \ —a P 4a
. 2
. mmx
mx’ (Zko_ ht)
_l’_

T 1
= €X
w/Zﬂ'\/Zﬂiht 1 _imo’ P L _)]
2 oht 20° 2Nt

or
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or

where

, iht N h*t?

o’ +—=,lc'+—

e’ with ¢ = arctan(——).
m m m-o

Then we have
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Tkt

x\y(t)| = ——F—=0cxp[-——— 51
2 242 h
“ ot +h t2 (o* + mtz )

m

This means the center of the Gaussian wave packet moves along the x axis at the constant

velocity.
T
2 . hztz'
o + 3
m
i)  The width is PR I SR
(i1) 2
O m

(iii)  The Group velocity is v, =—-.

()  The height of |(x|y () is

21. Summary: Feynman path integral
The probability amplitude associated with the transition from the point (x,,7,) to (x,,z,)is

1

the sum over all paths with the action as a phase angle, namely,

Amplitude = 3 exp(=S),
All ; h
paths

where S is the action associated with each path. So we can write down
K(xf’tf;xi’ti) = <xf,tf ‘xi’t[>

l- t
= — | dtL
A,%eXp( htj )
paths

i
= Ft, = t)exp(e-Sy)

where S is the classical action associated with each path.
If the Lagrangian is given by the simple form

L(x,%,t) = a(t)x* + b(t)xx + c()x”,

then F(z,,,) can be expressed by
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F(t,,t)=K(x,=0,t,;x=0,).
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APPENDIX-I

Mathematical formula-1

© 2
jdx exp(—ax’ +bx +¢) = |~ exp(b— +c)
B a 4a

for Re[a] >0

APPENDIX-IT Action in the classical mechanics
We start to discuss the calculus of variations with an action given by the form

Ly
S = jL[x,x]dz,
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. dx . . . .
where X = = The problem is to find has a stationary function x_,(x) so as to minimize the

value of the action S. The minimization process can be accomplished by introducing a
parameter ¢&.

A

X

AV

et

Fig.
x(t)=x, x(t,)=x,,
x, (1) =x,(t) + en(r),
where ¢1s a real number and
x () =%, xy(t,)=x,,

n)=0, n,)=0,
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X = (8_xj de =n(t)de,
88 =0

Ly
SIx, 1= [ LCx, (0) + &n(2), %, (6) + &)t ,
t
has a minimum at &= 0.

Slx,o1= [ L (0

{Mj -0, 51=6_L|g:0dg,
o ). os
oS|

x,] _t’ oL oL .
= j o)+

oL oL . 'td oer
—n@®)dt +—n@®)} [ —|—(=)n(t)dt
Iaxﬂ() ax??( s tjdz(ax)n()

“oL d oL
= |[———(=)In@)dt
![ax GO

(1)

The Taylor expansion:
ty
SIx, 1= [ LCx, (0) + &n(2), %, (6) + en(0)dt
l;

((Fundamental lemma))
If

f M@©n(t)dt =0
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for all arbitrary function 7(f) continuous through the second derivative, then M(f) must

identically vanish in the interval ¢, <7 <t7,.

From this fundamental lemma of variational and Eq.(1), we have Lagrange equation

oL d oL
= _ L& =o. 2
o dr'a) @

L can have a stationary value only if the Lagrange equation is valid.

In summary,

S:Tunmm,

X

6S=O®6—L—i(a—L.):0.
ox dt ox
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