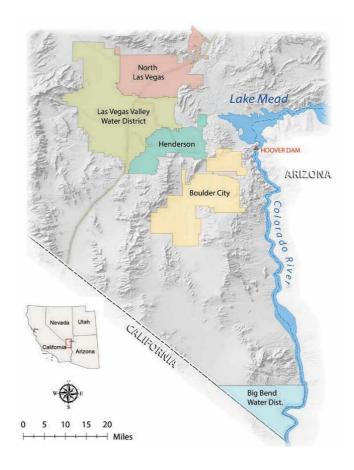


Outline

- Background
- Enterprise Risk Management
- Climate risks
- Goals and objectives
- Approach
- Business function areas
- Results



Background

- Formed in 1991
- Seven member agencies serve2.2 million people
- Colorado River 90% of supply

- Serves 1.4 million people
- 6,500 miles of pipe, 102 wells,
 54 pump stations, 79 distribution storage reservoirs

Operationalizing Climate Information

Enterprise - Wide Risk Assessment

- Survey staff
- Compile results

Narrow Scope

- Review climate projections
- Identify and prioritize climate sensitive risks
- Identify business functions responsible for mitigating climate sensitive risks

Review Existing Practices

- Document existing actions with business function groups
- Review existing procedures

Develop implementation plan

- Assign business function area points of contact
- Prioritize recommendations

Analyze Gaps

- What data is needed?
- Are there processes in place that can be modified?

Feedback

Monitor and Evaluate

• Set regular progress report

• Update actions to mitigate risks

Develop recommendations

• Translate needs into recommendations

Evolution of Enterprise Risk Management

Traditional Risk Management

Historically focused

Ad hoc activity

Accounting, treasury, and internal audit

Fragmentation (Silo Approach)

Financial Risk

Inspect, detect, react

Focus on people

Enterprise Risk Management

Strategic

Continuous activity

All of management

Focused and coordinated (Holistic)

Business Risk

Anticipate, detect, monitor

Focus on processes and people

Enterprise Risk Management – Risk Types

Pure Risks

Hazard Risk

Arises from property, liability, or personnel loss exposures

Property Risk Legal Risk Personnel Risk Consequential Loss

People Risk Management **Oversight**

Operational Risk

Arises from people, processes, systems, or controls

Speculative Risks

Financial Risk

Arises from the effect of market forces on financial assets or liabilities

Market Risk Credit Risk Price Risk Liquidity Risk

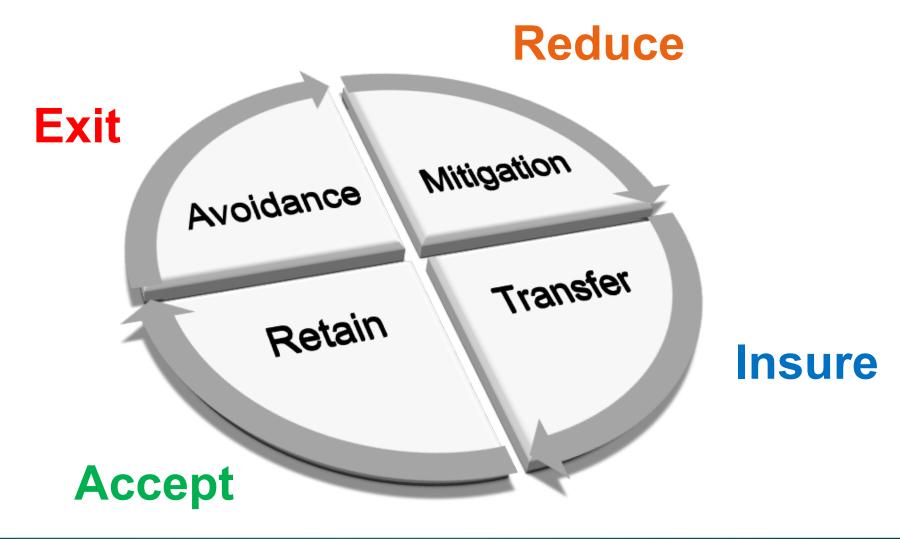
Economic Environment Political Environment Demographics Competition_

IT Risk

Business

Processes

Strategic Risk


Arises from trends in the economy and society

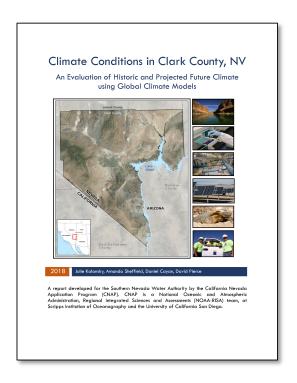
Enterprise Risk Management – Managing Risk

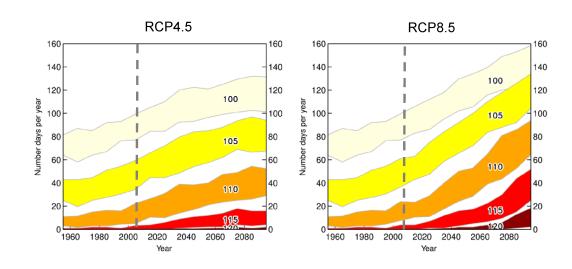
ERM Progress To Date

ERM Committee held 115 meetings and interviewed 181 supervisors, managers, directors and DGMs between February and June 2018

Compiled 928 comments

Based on comments 62 risks were identified





Projected Change in Climate – Clark County

- Mean annual temperature projected to increase 3.8 to 6.5 °F by the 2050s
- Night time lows increase more rapidly than day time highs
- High heat days increase significantly

Objectives

- Characterize and prioritize climate –related risks
- Identify opportunities to incorporate climate change information into existing processes, procedures, and programs
- Identify data and baseline information needs for monitoring and evaluating future impacts
- Develop an implementation plan

Operationalizing Climate Information

Enterprise - Wide Risk Assessment

- Survey staff
- Compile results

Narrow Scope

- Review climate projections
- Identify and prioritize climate sensitive risks
- Identify business functions responsible for mitigating climate sensitive risks

Review Existing Practices

- Document existing actions with business function groups
- Review existing procedures

Develop implementation plan

- Assign business function area points of contact
- Prioritize recommendations

Analyze Gaps

- What data is needed?
- Are there processes in place that can be modified?

Feedback

Monitor and Evaluate

• Set regular progress report

• Update actions to mitigate risks

Develop recommendations

• Translate needs into recommendations

Business Function Areas

- ▶ **62** enterprise-wide potential risks
- ▶ 17 climate sensitive
- Addressed 11 climate-sensitive potential risks
- Managed by 7 Business Function Areas

Water Resources Environmental Health and Safety Capital
Program
Governance

Engineering
Design
Standards

Infrastructure Management Distribution
System
Operations

Water Quality
Treatment and
Monitoring

Results

CLIMATE

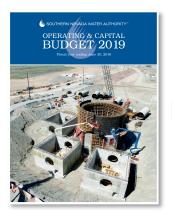
INFORMATION

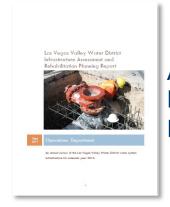
ABSTRACT

This report summarizes opportunities for SNWA and LVVWD to incorporate climate change projection information into existing programs and processes to reduce enterprise wide risks.

Keely Brooks, Alison Adams, Dan Haddock

- ▶ 35 recommendations to help manage increased risk
 - Collect and monitor data
 - Educate and Train
 - Adapt procedures
 - Research and modeling
 - Strategic


Establish a Common "Reference Climate Future"


Water Resource Plan

Budgets

Capital Investment Plan

Asset Management Plan

Establish a Common "Reference Climate Future"

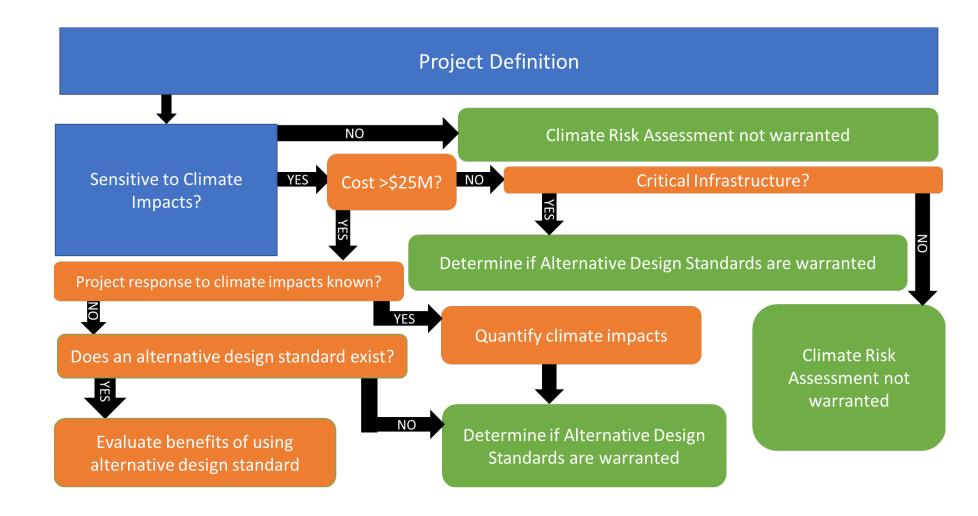
Reference **Climate Future**

	Today	2020s	2050s	2080s
Mean annual temperature	62.7	+1.3 to	+3.8 to	+7.2 to
(°F)	02.7	+3.1	+6.5	+9.7
# of days above 100°F	84	+17	+38	+56
# of days above 105°F	44	+18	+44	+67
# of days above 110°F	12	+11	+33	+60
# of days above 115°F	1	+3	+11	+29
# of days above 120°F	0	+0	+0	+7
# of days below 60°F	236	-13	-32	-53
# of days below 50°F	174	-15	-31	-55
# of days below 32°F	42	-15	-25	-33
Change in Cooling Degree Days (CDD) ^{1,2}	2190	NA	2847 to 3679	NA
Mean annual precipitation ³	4.21	NA	NA	-1.36 to +2.92 in

Environmental Health & Safety

Risk	Actions	Progress
Heat Stress	Training – heat related illness and safety	Complete
	Hydration	Complete
	PPE/Shade	Complete
	Appropriate work/rest cycles	Complete
	Modify work schedules	Planned
Disease Vectors	Zika	Complete
	Monitor local and national health bulletins	Complete
	Enrolled in POD with SNHD	Complete
	Insect Repellant	Complete
	Training & Awareness	Planned
Air quality	Select more efficient generators & vehicles	Complete

- Collect and monitor dataenvironmental
- Collect and monitor dataimpact indicators
- Develop work/rest cycle guidance from CDC/NIOSH
- Calculate cost of heat impacts to organization with and without adaptation

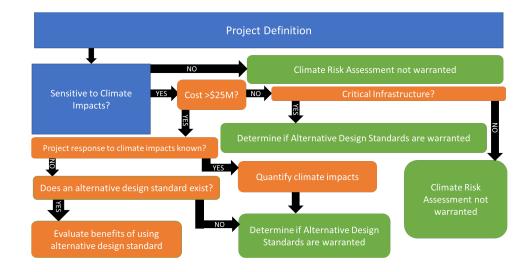


Capital Program Governance

Decision Tree

Future Design Standards Updates

- Materials, coatings
- Requirements for equipment performance monitoring
- Requirements for water quality monitoring
- Building design
- SCADA and communications equipment
- HVAC
- Requirements for auxiliary power
- Well design



Early Wins

- Revised Engineering Design Standards
- Project initiation decision tree & climate conditions guide
- Increased data collection and tracking
- Enhanced education and training for extreme heat

Decision Tree

Key take aways

- Climate change is a threat multiplier
- Start with what you are already doing
- Risk management is a logical home for climate change planning
- Go to the experts let the Business Function Areas offer up solutions
- Opportunities exist to supplement organizational "controls" to address new and increasing risks

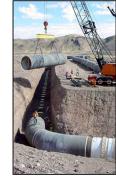
Acknowledgements & Questions

Keely Brooks, Climate Change Policy Analyst

keely.brooks@snwa.com

James Curbeam, Risk Manager

james.curbeam@lvvwd.com



Alison Adams, PhD, PE, Principal Engineer

aadams@intera.com

Dan Haddock, PE, ENV SP, Principal Engineer

dhaddock@intera.com

OPERATIONALIZING CLIMATE INFORMATION

nformation into existing programs and processes to

Keely Brooks, Alison Adams, Dan Haddock

