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Biologically formed nanoparticles of the strongly magnetic min-
eral, magnetite, were first detected in the human brain over 20 y
ago [Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992)
Proc Natl Acad Sci USA 89(16):7683–7687]. Magnetite can have
potentially large impacts on the brain due to its unique combina-
tion of redox activity, surface charge, and strongly magnetic be-
havior. We used magnetic analyses and electron microscopy to
identify the abundant presence in the brain of magnetite nano-
particles that are consistent with high-temperature formation,
suggesting, therefore, an external, not internal, source. Compris-
ing a separate nanoparticle population from the euhedral particles
ascribed to endogenous sources, these brain magnetites are often
found with other transition metal nanoparticles, and they display
rounded crystal morphologies and fused surface textures, reflect-
ing crystallization upon cooling from an initially heated, iron-bear-
ing source material. Such high-temperature magnetite nanospheres
are ubiquitous and abundant in airborne particulate matter pollu-
tion. They arise as combustion-derived, iron-rich particles, often as-
sociated with other transition metal particles, which condense and/
or oxidize upon airborne release. Those magnetite pollutant parti-
cles which are<∼200 nm in diameter can enter the brain directly via
the olfactory bulb. Their presence proves that externally sourced
iron-bearing nanoparticles, rather than their soluble compounds,
can be transported directly into the brain, where they may pose
hazard to human health.
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Magnetic analyses of human brain samples have identified the
presence of nanoparticles of magnetite, a strongly magnetic

(ferrimagnetic) mixed Fe2+/Fe3+ iron oxide (1–3). Based on their
nanoscale dimensions and euhedral (cubo-octahedral or pris-
matic) crystal shapes, these magnetite nanoparticles are thought to
have formed by biological processes (1, 4), via in situ crystalliza-
tion, possibly within the 8-nm-diameter cores of the iron storage
protein, ferritin (e.g., ref. 5).
The specific presence of magnetite in the brain is important

because it has been causally linked with potential cellular re-
sponses to external magnetic fields (e.g., in magnetic resonance
imaging studies) (1), aging (6), and with neurodegenerative disease
(e.g., refs. 2, 3, and 7). Previous work has shown a correlation
between the amount of brain magnetite and the incidence of
Alzheimer’s disease (AD) (2, 3). Neuropathological changes as-
sociated with AD include the formation of senile plaques, con-
taining β-amyloid fibrils (e.g., refs. 8, and 9). When associated with
redox-active transition metal ions, such as Fe2+ ions, β-amyloid can
generate damaging reactive oxygen species, directly contributing to
oxidative brain damage, a key early feature of AD (e.g., refs. 8–10).
Magnetite nanoparticles have been found directly associated with
AD plaques and tangles (e.g., refs. 11–13). In vitro experimental
data show that magnetite acts synergistically to enhance the tox-
icity of β-amyloid (7).

We used magnetometry, high-resolution transmission electron
microscopy (HRTEM), electron energy loss spectroscopy (EELS),
and energy dispersive X-ray (EDX) analysis to examine the min-
eralogy, morphology, and composition of magnetic nanoparticles
in and from the frontal cortex of 37 human brain samples,
obtained from subjects who lived in Mexico City (14) (29 cases;
ages 3 to 85 y; two females) and in Manchester, UK (8 cases; ages
62 to 92 y; five females; Tables S1 and S2). These brain magnetites
display compelling similarity with the magnetite nanospheres
formed by combustion, which are ubiquitous and prolific in urban,
airborne particulate matter (PM) (15–19). We report here iden-
tification of the presence in human brain tissue of magnetite
nanoparticles with an external, rather than an endogenous, source.

Results
To quantify brain magnetic content, a cryogenic magnetometer
was used to measure, at room and low temperature (77 K), the
saturation magnetic remanence (SIRM) of frontal tissue samples,
initially fresh-frozen and subsequently freeze-dried. The SIRM
77 K captures the magnetic contribution of ferrimagnetic grains
that are so small (<∼20 nm) as to be magnetically unstable
(superparamagnetic) at room temperature. The magnetic brain
particles were then examined directly, by HRTEM and EDX
analyses both of ultrathin tissue sections and of magnetically
extracted particles, after tissue digestion with the proteolytic
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enzyme, papain. Every analytical step was designed and monitored
to preclude any possible magnetic contamination.
The brain magnetic analyses identify the presence in all of the

samples of strongly magnetic, easily magnetized nanoparticles,
with concentrations ranging from 0.2 to 12 μg/g dry tissue (Fig.
S1). The sample magnetic properties are dominated by behavior
characteristic of interacting clusters of ferrimagnetic magnetite or
maghemite (Fig. S2). Although highest brain magnetite concen-
trations (>10 μg/g dry tissue) are seen in many of the oldest cases,
several of the much younger Mexico City cases, some exposed to
high ambient concentrations of fine-grained (<2.5 μm aero-
dynamic diameter) airborne PM, also display high ferrimagnetic
concentrations. Indeed, the highest brain magnetite content is
found in a 32-y-old Mexico City resident (Fig. S1).
HRTEM and EELS analyses of the tissue sections identify the

presence within frontal cells of magnetite, occurring as two distinct
types of nanoparticle (Fig. 1 and Figs. S3 and S4). The majority of
particles display rounded, even spherical morphologies (Fig. 1A,
with higher magnification in Fig. 1B, and Fig. 1F), with diameters
between 10 and 150 nm (Fig. S5). The additional presence in the
brain cells of other transition metal nanoparticles, containing Pt,
Ni, and Co (and possibly Cu), is identified by EELS (Fig. S6)
and EDX (Figs. S7 and S8). These rounded magnetites contrast
strongly with the angular, cubo-octahedral magnetite crystals also
observed (relatively very rarely) within the brain tissue samples
(Fig. 1C, and with higher magnification in Fig. 1D).

Crystallographic analysis of the particles within the tissue sec-
tions is difficult (due to rapid carbon buildup under the micro-
scope electron beam). We therefore examined magnetically
extracted (20) brain particles, to more fully characterize their
mineralogy, surface textures, and particle size distribution. In ac-
cord with the observations on the untreated tissue samples, many
of the extracted particles display rounded to spherical morphol-
ogies (Fig. 2 and Figs. S7–S10). In particular, some have fused
surface crystallites (Fig. 2H) that would be very difficult to rec-
oncile with low-temperature growth or dissolution formation pro-
cesses. Indexing of the lattice fringes of the HRTEM of these
particles is consistent with the magnetite crystal structure (Fig. 2 C,
E, andG). Some surface oxidation toward its oxidized counterpart,

maghemite, is evident (Fig. 2I). The particle size distribution of the
rounded brain magnetite particles is notably broad, with a median
(longest) diameter of 18 nm and maximum diameter of ∼150 nm
(Fig. S5). Such dimensions greatly exceed those of nanoparticles
formed within the 8-nm diameter of ferritin cores (5).

Discussion
The geometric, angular particles resemble the in situ, biogenic
magnetite previously reported (1, 4); we thus ascribe these euhedral
magnetite particles to endogenous formation. The rounded mag-
netite nanoparticles (up to ∼150-nm diameter, with distinctive
surface textures, and cooccurring with other PM-associated metals,
including Pt) have not been identified previously in brain tissue
sections. Apparently similar spherical structures, with diameters of 8
to 50 nm, have been found recently within amyloid plaque cores
isolated from human brain (13) but were attributed to a biological
rather than an external pollution-derived source. However, the
surface textures, size, and size distribution of the spherical magne-
tites identified in our study, and the cooccurrence of PM-associated
transition metal nanoparticles, are all inconsistent with the charac-
teristics of biogenically formed magnetite (1, 4, 12). They bear
compelling resemblance, instead, to the rounded/spherical magne-
tite nanoparticles (nanospheres) that are both ubiquitous and pro-
lific within airborne, high-temperature (combustion-derived) PM
(15–19, 21). The rounded shapes of these airborne, PM-derived
magnetites (Fig. 3 and Fig. S11), and fusing of interlocking, surface
crystallites (Fig. 3 C and D), reflect their high-temperature sources,
and their subsequent crystallization, upon rapid cooling and/or ox-
idation, as Fe-rich nanospheres. Depending on PM source(s) (ve-
hicular, subway, industrial, indoor), other transition metals are often
coassociated with magnetite and other pollution nanoparticles (15–
17, 19). Pt release, for instance, is associated with increasing ve-
hicular use of catalytic converters (e.g., ref. 22). Frictional heating,
e.g., of brake pads, can also produce high-temperature magnetite
nanoparticles (21). Magnetite can arise from combustion of many
types of organic matter, depending on heating temperature and
atmosphere, and source Fe content (23–25).
Although PM mass has conventionally been used for setting of

legislative airborne PM concentration limits, it is possible that
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Fig. 1. Transmission electron micrographs of brain thin sections, identifying two distinct types of magnetite morphologies within frontal cells: (A and F)
rounded particles (A shown at higher magnification in B); and (C) angular, euhedral particles, which we attribute to endogenous formation (particles from C
shown at higher magnification in D). (E) EELS spectra (in blue) for the rounded particle shown in F and for standard iron oxide species. The position of the Fe−
L3 edge absorption peak, the broad feature of the Fe−L2 (compared with the sharp edges, arrowed, of the fully oxidized Fe3+ phases), and the integrated
areas of the L3/L2 (5.5) and the Fe/O (0.56) are all consistent with magnetite (also see Figs. S3 and S4).
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ultrafine particle size and number are of greater significance in
terms of mortality (26) and health impacts (e.g., ref. 27). Our
magnetic measurements of roadside airborne PM [in Lancaster,
United Kingdom (28)] indicate magnetite particle numbers
equivalent to ∼2.01 × 108 m−3 of roadside air, for ∼50-nm-sized
magnetite particles, for an ambient PM10 concentration of
∼40 μg·m−3 (compared, for example, with the annual mean
PM10 for Mexico City of between ∼30 and 70 μg·m−3).
The abundant combustion-derived magnetite particles found in

airborne PM can range widely in size, from less than 5 nm to more
than 1 μm (15–17, 19). Those particles of nanoscale dimensions,
requiring analysis by transmission rather than scanning electron
microscopy, have, until recently, received less attention than the
larger, often more heterogenous spherules. Magnetite nano-
spheres up to ≾ 200 nm can have a direct entry route to the brain
through the axons of the olfactory nerve, as suggested by experi-
mental studies on carbon (29) and TiO2 nanoparticles (30), and
the reported presence of NPs in the olfactory bulb of some Mexico
City cases (14, 31–33).
Although many of the highly magnetic brain samples come from

the older Manchester cases (>65 y at death), especially those with
severe to moderate AD, equivalent or higher magnetite concen-
trations are also displayed by young (<40 y at death) Mexico City
residents, especially those exposed to high PM2.5 levels (annual
mean J25 μg·m−3). Increased metals content and AD neuro-
pathological hallmarks have been found in young human brains
exposed to high airborne PM2.5 concentrations in Mexico City (14,
33). However, it was not previously known if the presence of
metals in AD brains was due to transport to the brain of nano-
particles themselves or of their solubilized compounds. Our
HRTEM results provide compelling evidence for the presence of
externally sourced magnetite, and other metal-bearing nano-
particles in the frontal cortex of both the Mexico City and Man-
chester cases. It is notable that less than 5% of AD cases are
directly inherited, indicating that nongenetic (environmental)
factors, and/or gene/environment interactions, are likely playing
a major role in initiating and/or promoting the disease. Jung
et al. (34) found a 138% risk of increase of AD per increase of

4.34 μg·m−3 in PM2.5 over a 9-y follow-up period in 95,690 indi-
viduals in Taiwan. It is not yet understood which PM properties
(e.g., size, number, mineralogy, and associated chemical species)
contribute most to toxic effects (e.g., ref. 35). Our preliminary
magnetic results regarding both PM exposure and AD are thus
both intriguing and warrant more intensive study. Because of their
combination of ultrafine size, specific brain toxicity, and ubiquity
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Fig. 2. Transmission electron micrographs of rounded parti-
cles magnetically extracted from human brain samples: (A, D,
F, and H) Mexico City cases; (B) Manchester case. (H) A large
(∼150-nm diameter) spherical particle with fused, interlocking
magnetite/maghemite surface crystallites. (C, E, and G) Index-
ing of the lattice fringes of the brain particles is consistent with
the (400) reflection of magnetite and (I) mixed magnetite and
maghemite of selected areas 1–5 in H.
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Fig. 3. TEM/scanning EM micrographs of anthropogenic (combustion-derived),
magnetically extracted airborne particles. (A, shown at higher magnification
in B) Magnetite nanoparticles from airborne PM (<10 μm), from Cable Street,
Lancaster, United Kingdom (March 2009), sampled with a cascade impactor.
Many particles display rounded profiles; some are fused together. (C and D)
Spherical magnetite particles, Didcot power station, comprising fused
magnetite particles (note the variable lattice orientations in C and the fused
surface crystallites in D).
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within airborne PM, pollution-derived magnetite nanoparticles
might require consideration as a possible AD risk factor. In ad-
dition to occupational settings [including, for example, exposure to
printer toner powders (36)], higher concentrations of magnetite
pollution nanoparticles are likely to arise in the indoor environ-
ment from open fires (25) or poorly sealed stoves used for cooking
and/or heating, and in the outdoor environment from vehicle
(especially diesel) and/or industrial PM sources.

Materials and Methods
Brain Samples. Fresh, frozen brain tissues were obtained from 38 individuals
(Tables S1 and S2), 9 from the Manchester Brain Bank (ethical review and ap-
proval by the Manchester Brain Bank Management Committee and the New-
castle and North Tyneside I Regional Ethics Committee) and 29 fromMexico City,
from forensic cases (fatal accidents) with no identifiable personal data, not
meeting the regulatory definition of human subject research (University of
Montana Institutional Review Board). A block (∼25 g) of tissue was cut from the
frontal lobes; subsamples were cut using nonmagnetic [polytetrafluoroethylene
(PTFE)] instruments. The Manchester samples were dissected into gray (nine
samples) and white (eight samples) matter.

Topreclude any contamination, oroperator bias, sampleswerehandledwith
nonmagnetic instruments in a laminar flow clean bench environment and
measured blind to diagnostics, and sample holder remanences were removed.
The tissue samples were freeze-dried and placed in polystyrene sample holders
(10 cc) for magnetic measurements.

Magnetic Analyses. Magnetic measurements were made at the Centre for
Environmental Magnetism and Paleomagnetism, Lancaster University, using
superconducting quantum interference device magnetometry. Room-tem-
perature isothermal remanentmagnetizations (IRMs) (Fig. S2A) weremeasured
with a GM400 Cryogenic Magnetometer (mean background noise level 5.9
×10−11 A2; Cryogenic Consultants Ltd.); Low-temperature IRMs were measured
(Fig. S2B) at temperatures between 293 and 77 K (±0.5 K) on a single-axis
magnetic property measurement system XL magnetometer (QuantumDesign).
To identify magnetic grain sizes and/or magnetic interactions (37), anhysteretic
remanence (ARM) was induced in a decaying (100 mT, peak) alternating mag-
netic field (af), with a small superimposed direct current (DC) field (0.08 mT),
and subsequently af-demagnetized (Fig. S2C). Stepwise remanence acquisi-
tion was measured with incremental application of DC fields of 10, 20, 30, 50,
75, 100, and 300 mT and 1 T. The samples were cooled to 77 K and subjected to
an applied DC field, 1 T, and their remanence was measured as they warmed
to room temperature.

Tissue Sections.
Magnetically extracted particles. A subset of samples (six tissue samples, and one
blank without any tissue) was subjected to a magnetic extraction procedure,
designed tomaximize removal of submicrometer ferrimagnets (20). All reagents
were prepared from ultrapurity Milli-Q water and prefiltered (<0.1 μm PTFE
membrane filter) to preclude any particulate contamination; all instruments
and sample holders were nonmagnetic (PTFE and polystyrene, respectively).

Papain frompapaya latex (twice-crystallized; Sigma)was solubilized in 50mM
sodium acetate (prefiltered and magnetically measured multiple times to de-
monstrably precludemagnetic contamination). The tissue sampleswere digested
overnight in papain at 65 °C and at fixed pH 7.0 ± 0.02, in a strictly oxygen-free
environment inside a particulate-clean laboratory. The resultant suspension was
circulated continuously (2 to 3 d, with a peristaltic pump) past a magnetized
probe, producing a high field gradient at its tip (maximum field ∼40 mT). The
magnetically extracted particles were mounted on holey carbon films on car-
bon-coated copper grids for transmission electron microscopy (TEM).
HRTEM, EELS, and EDX. Electron microscopy was conducted on two instruments,
a JEOLARM200cF and an FEI Tecnai F20, operated at 200 kV. A Gatan Quantum
spectrometer was used for EELS in scanning TEM (STEM) mode. Due to rapid
carbon buildup under the electron beam, only point acquisition spectra were
collected; each spectrum typically summed from several spectra from each
nanoparticle and from multiple nanoparticles. This procedure also minimized
the electron dose experienced by individual nanoparticles and ensured that
their chemical reduction was avoided. Time-dependent observations did not
reveal any obvious structural or spectroscopic changes to the nanoparticles
within the acquisition time (but were observed under prolonged exposure),
and we conclude that the EELS data presented are representative of the
nanoparticles’ as-formed chemistry. EELS data were processed in Python using
Hyperspy package. To determine dominant lattice spacings, fast Fourier
transforms (FFTs) of high-resolution micrographs were compared with a sim-
ulated diffraction pattern of face-centered cubic magnetite (space group
Fd�3m, no. 227, a = 8.3941 Å), and maghemite (space group P4332, no. 212, a =
8.3457 Å). Sample sensitivity under STEM imaging precluded elemental map-
ping by EDX.
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