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Shruti Muralidhar,2 Keerthan Muthurasa,1 Daniel Nachbaur,1 Taylor H. Newton,1 Max Nolte,1 Aleksandr Ovcharenko,1

Juan Palacios,1 Luis Pastor,9 Rodrigo Perin,2 Rajnish Ranjan,1,2 Imad Riachi,1 José-Rodrigo Rodrı́guez,6,7
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SUMMARY

We present a first-draft digital reconstruction of the
microcircuitry of somatosensory cortex of juvenile
rat. The reconstruction uses cellular and synaptic
organizing principles to algorithmically reconstruct
detailed anatomy and physiology from sparse experi-
mental data. An objective anatomical method defines
a neocortical volume of 0.29 ± 0.01 mm3 containing
�31,000 neurons, and patch-clamp studies identify
55 layer-specific morphological and 207 morpho-
electrical neuron subtypes. When digitally recon-
structed neurons are positioned in the volume and
synapse formation is restricted to biological bouton
densities and numbers of synapses per connection,
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their overlapping arbors form �8 million connections
with �37 million synapses. Simulations reproduce
an array of in vitro and in vivo experiments without
parameter tuning. Additionally, we find a spectrum
ofnetworkstateswithasharp transition fromsynchro-
nous to asynchronous activity, modulated by physio-
logical mechanisms. The spectrum of network states,
dynamically reconfigured around this transition, sup-
ports diverse information processing strategies.

INTRODUCTION

Since Santiago Ramón y Cajal’s seminal work on the neocortex

(DeFelipe and Jones, 1988; Ramón y Cajal, 1909, 1911), a vast

number of studies have attempted to unravel its multiple levels
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of anatomical organization (types of neurons, synaptic connec-

tions, layering, afferent and efferent projections within and be-

tween neocortical regions, etc.) and functional properties

(neuronal response characteristics, synaptic responses and

plasticity, receptive fields, functional neocortical columns, emer-

gent activity maps, interactions between neocortical regions,

etc.). However, there are still large gaps in our knowledge, espe-

cially concerning the anatomical and physiological organization

of the neocortex at the cellular and synaptic levels.

Specifically, while neurons have been classified in terms of

their electrophysiological behaviors (Connors and Gutnick,

1990; Kasper et al., 1994; McCormick et al., 1985), expression

of different calcium-binding proteins and neuropeptides (Celio,

1986; DeFelipe, 1993; Gonchar and Burkhalter, 1997; Kawagu-

chi and Kubota, 1997; Toledo-Rodriguez et al., 2005) and

morphological features (Kisvárday et al., 1985; Larkman,

1991a; Tamás et al., 1998; Wang et al., 2002), there is still no

consensus on an objective and comprehensive classification of

neuron types. Although the distribution of protein and genetic

markers for different neurons (Grange et al., 2014; Hendry

et al., 1989; Kawaguchi and Kubota, 1997; Meyer et al., 2002;

Toledo-Rodriguez et al., 2004) and the relative proportions of

some morphologically and electrically classified neurons (Beau-

lieu and Colonnier, 1983; Cauli et al., 1997; Hendry et al., 1984;

Meyer et al., 2010a; Rudy et al., 2011) have been described,

we lack a comprehensive view of the number of each type of

neuron in each layer. Since the advent of paired recording tech-

niques, several studies have characterized the anatomical and

physiological properties of synaptic connections between

some types of neurons (Cobb et al., 1997; Feldmeyer et al.,

1999; Frick et al., 2008; Gupta et al., 2000; Mason et al., 1991;

Reyes et al., 1998; Thomson et al., 1993), but a large proportion

have yet to be studied. Although labeling with retrograde and

anterograde tracers and trans-synaptic viral vectors, imaging

with array tomography, and saturated reconstruction with elec-

tron microscopy have made it possible to begin mapping pre-

and postsynaptic neurons for individual neocortical neurons

(Boyd and Matsubara, 1991; Callaway, 2008; Glenn et al.,

1982; Kasthuri et al., 2015; Killackey et al., 1983; Micheva and

Smith, 2007; Micheva et al., 2010; Wickersham et al., 2007),

we know neither the numbers and types of the pre- and postsyn-

aptic neurons associated with any specific neuron type nor the

numbers and locations of the synapses that they form with their

immediate neighbors.

At a functional level, there have been many investigations of

emergent behavior in neocortical slices (Cunningham et al.,

2004; Mao et al., 2001; McCormick et al., 2003; Sanchez-Vives

and McCormick, 2000; Yuste et al., 1997), correlated activity

(Hasenstaub et al., 2005; Livingstone, 1996; Salinas and Sej-

nowski, 2001; Shu et al., 2003; Silberberg et al., 2004; Singer,

1993), and the functional impact of individual neurons across

cortical layers (Sakata and Harris, 2009; Schroeder and Foxe,

2002; Silva et al., 1991; Steriade et al., 1993), as well as in vivo

activity in somatosensory and other cortical areas (Chen et al.,

2015; Klausberger et al., 2003; Leinekugel et al., 2002; Luczak

et al., 2007; Reyes-Puerta et al., 2015; Wilson et al., 2012), How-

ever, we still lack an understanding of the cellular and synaptic

mechanisms and the role of the different layers in the simplest
of behaviors, such as correlated and uncorrelated single-neuron

activity and, more generally, synchronous and asynchronous

population activity. For example, it is known that different types

of neurons are connected through synapses with different dy-

namics and strengths, strategically positioned at different loca-

tions on the neurons’ dendrites, somata, and axons, but the

functional significance of this organization remains unclear.

Computational approaches that abstract away this level of bio-

logical detail have not been able to explain the functional signif-

icance of such intricate cellular and synaptic organization.

Although future experimental research will undoubtedly

advance our knowledge, it is debatable whether experimental

mapping alone can provide enough data to answer these

questions.

Here, we present a complementary algorithmic approach that

reconstructs neuronal microcircuitry across all layers using avail-

able sparse data and that leverages biological principles and in-

terdependencies between datasets to predict missing biological

data. As a test case, we digitally reconstructed a small volume of

tissue from layers 1 to 6 of the hind-limb somatosensory cortex

of 2-week-old Wistar (Han) rat. This model system was chosen

not only because it is one of the most comprehensively charac-

terized in the neocortex, but also because experimental data on

its cellular and synaptic organization are readily available and

validation experiments are relatively easy to perform. In brief,

we recorded and digitally reconstructed neurons from in vitro

brain slices and classified the neurons in terms of well-estab-

lished morphological types (m-types; Figure 1A), positioned

the neurons in a digital volume of objectively defined dimensions

according to experimentally based estimates of their layer spe-

cific densities (Figure 1B), and reconstructed the connectivity

between the neurons (Figure 1C). Neurons were then classified

into electrical types (e-types), using an extended version of the

classification proposed in the Petilla convention (Ascoli et al.,

2008), and models were produced that captured the character-

istic electrical behavior of each type. (Figure 1D); similarly, syn-

apses were modeled to capture the characteristic synaptic dy-

namics and kinetics of particular synapse types (s-types;

Figure 1E). Finally, we constructed a virtual slice and recon-

structed thalamic input using experimental data (Figure 1F;

Meyer et al., 2010b).

This approach yielded a first-draft digital reconstruction of

the microcircuitry, which was validated against a multitude of

experimental datasets not used in the reconstruction. The results

suggest that it is possible to obtain dense maps of neural micro-

circuitry without measuring every conceivable biological param-

eter and point to minimal datasets required, i.e., strategic data.

Integrating complementary, albeit sparse, datasets also makes

it possible to reconcile discrepancies in the literature, at least

partially addressing the problem of data quality and reproduc-

ibility. Simulations exploring some of the emergent behaviors

of the reconstructed microcircuitry reproduce a number of

previous in vitro and in vivo findings and provide insights into

the design and functioning of neocortical microcircuitry. The

experimental data, the digital reconstruction, and the simulation

results are available at the Neocortical Microcircuit Collaboration

Portal (NMC Portal; https://bbp.epfl.ch/nmc-portal; see Ram-

aswamy et al., 2015).
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Morphological diversity of neurons:
(a) m-types, (b) cloning

Microcircuit anatomy: (a) Microcircuit dimensions,
(b) m-type distribution, and morphology selection

Reconstructing
microcircuit connectivity

Electrical diversity of neurons:
e-types

Synaptic diversity:
s-types

Reconstructing virtual tissue volumes for
in silico  experimentation
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Figure 1. Workflow for Data-Driven Reconstruction of Neocortical Microcircuitry

(A) Morphological diversity of neurons. (a) Identify the morphological diversity in the neocortical microcircuit (m-types). (b) Repair and then clone the various m-

types with statistical variations to enrich the number of exemplars.

(B) Microcircuit anatomy. (a) Define the spatial dimensions of a unitary microcircuit. (b) Assemble individual neurons in 3D space according to the frequency of

occurrence of each m-type per layer, selecting the appropriate m-type instance that satisfies laminar constraints on the axonal and dendritic distribution.

(C) Reconstructing microcircuit connectivity. Derive the number and location of synaptic contacts formed between all neurons in the microcircuit, based on a

series of synaptic connectivity rules.

(D) Electrical diversity of neurons. Map and model the electrical types (e-types) of each m-type to account for the observed diversity of morpho-electrical

subtypes (me-types).

(E) Synaptic diversity of neurons. Map and model the diversity of synaptic types (s-types) observed between pre-post combinations of me-types, according to

rules derived from synaptic physiology.

(F) Reconstructing virtual tissue volumes. Apply the above strategy to reconstruct defined circuit volumes (microcircuits, slices, mesocircuits) for in silico ex-

periments; insert synapses formed by thalamocortical fibers for stimulation experiments.
RESULTS

Neuron-type Nomenclature
Neurons differ in terms of their location in the brain, morphology,

electrical properties, projections, and the genes and proteins

that they express (for reviews, see Harris and Shepherd, 2015;

Markram et al., 2004). The combination of these properties

implies an immense diversity of neuron types. Given the lack of

sufficient data for other dimensions, the neuronal classification

used for this first-draft digital reconstruction considered only

layer, local morphology, and electrophysiology. Naming of

morphological types was based on the most common names

used over the past century (Connors and Gutnick, 1990; DeFe-

lipe, 1993; DeFelipe et al., 2013; Douglas and Martin, 2004;
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Fairén et al., 1984; Hestrin and Armstrong, 1996; Kawaguchi

and Kubota, 1997; Kisvárday et al., 1985; Oberlaender et al.,

2012; Somogyi et al., 1982, 1998; Svoboda et al., 1997; Szaba-

dics et al., 2006), extended with a layer prefix (e.g., Layer_Mor-

phology, L5_MC for layer 5 Martinotti cells). Electrical types,

based on the Petilla convention (Ascoli et al., 2008), were treated

as subtypes, (e.g., L5_MC_NAC for the non-accommodating

subtype; see Experimental Procedures). When whole-brain

axonal tracing data for a sufficient number of projecting neurons

becomes available (e.g., L5_TTPC_CP and L5_TTPC_CT to

represent cortico-pontine and cortico-tectal subtypes; Hallman

et al., 1988; Wang andMcCormick, 1993; for a review, see Ram-

aswamy andMarkram, 2015), the proposed classification can be

extended to include projection subtypes. Similarly, when there



Figure 2. Table of Neocortical Neuronal Morphologies

Exemplar 3D reconstructions of 55m-types. Morphologies in L2 and L3 are not separated. Axon in blue, dendrites in red. Full morphologies are not always shown.

See also Figure S1 for average arbor densities of eachm-type and Figure S2 for objective classification of m-types and details of themorphology cloning process.

See also Movie S1A.
are sufficient single-cell gene and protein expression data to

systematically identify cells, it can be extended to includemolec-

ular subtypes. The abbreviations used for each m-type are

provided in Figure 2. A mapping between the nomenclature

used in this study and alternative names present in the literature

is provided in Table 1.

Morphological Diversity of Neocortical Neurons
We recorded and labeled >14,000 neurons from all six layers in

the somatosensory cortex of P14 male Wistar (Han) rats, using

patch-clamp electrodes in in vitro slices. Of these neurons,

2,052 were sufficiently well stained to allow expert classification

into m-types, based on well-established characteristic features

of their dendritic and axonal arbors, a procedure initiated by early

neuroanatomists and still in use today (Fairén et al., 1984; Kara-

giannis et al., 2009; Karube et al., 2004; Kawaguchi and Kubota,

1997; Kisvárday et al., 1985; Larkman, 1991a; Perrenoud et al.,

2013; Peters and Kaiserman-Abramof, 1970; Ramón y Cajal,

1909, 1911; Somogyi et al., 1982, 1998;Wang et al., 2004; Yuste,

2005). We were able to digitally reconstruct a subset of 1,009 of

these neurons. This allowed validation of the expert classifica-

tion using an objective method (see below) based on clustering

of characteristic features and provided the initial pool of digital

neuron models needed to reconstruct the microcircuitry. In a

few cases, we had no morphological reconstructions for rare

m-types known to be present in the microcircuitry (L5_BP,

L5_ChC, L6_NGC; Oláh et al., 2007; Szabadics et al., 2006).

These were represented using exemplars of the same mor-

phology from neighboring layers. Although L6 horizontal and
sub-plate pyramidal cells (L6_HPC and L6_SPC) were present

in the dataset and have also been reported in the literature

(Ghosh and Shatz, 1993; Hevner et al., 2001), the quality of the

stains was not sufficient for reliable reconstruction. These mor-

phologies are not represented in the first draft.

Aggregating morphological reconstructions and reports in the

literature, we distinguished 55 m-types (65 if layers 2/3 are

considered separately and 67 if L6_HPC and L6_SPC are also

considered; Figure 2). Inhibitory types are mostly distinguished

by axonal features and excitatory types by dendritic features

(for reviews, see Markram et al., 2004; Ramaswamy and Mark-

ram, 2015; Spruston, 2008). Figure S1 shows overlays ofmultiple

exemplars of each of the 55major m-types, and Figures S2A and

S2B illustrate the objective classification. While in some cases,

it might have been possible to introduce a finer separation be-

tween m-types, this would have limited the size of the samples

for individual types, reducing the reliability of the classification.

The same inhibitory types were present in all layers except

layer 1, which contained a unique set of inhibitory neuron types.

Pyramidal cell morphologies varied across layers (Figure 2, right)

and also with depth within layer, as illustrated by the diversity of

L23_PCs (Figure 2, upper-right). The number of pyramidal cell

types, as defined by their local morphology, increased from

upper to lower layers. Several types of interneurons (e.g., LBC

and DBC) had axonal arbors that tended to descend to deeper

layers when they were in upper layers and to ascend to upper

layers when they were in deeper layers. Consistent with this

trend, one type of pyramidal cell (L6_IPC) also had inverted

axonal arbors.
Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc. 459



Ta e 1. Relation of Interneuron Classes to Classification Schemes Found in the Literature

Mo hological

Ty

Neurogliaform

Cell (NGC)

Small Basket

Cell (SBC)

Double Bouquet

Cell (DBC) Bipolar Cell (BP) Martinotti Cell (MC) Bitufted Cell (BTC)

Large Basket

Cell (LBC)

Nest Basket

Cell (NBC)

Chandelier

Cell (ChC)

Ot

mo hological

cla ifications

Dwarf cell,

button-type cell

Clutch cell Bitufted cell/

interneuron,

horse-tail cell

Bitufted cell/

interneuron

Bitufted cell/

interneuron

Bitufted

interneuron

Common

basket cell,

typical

basket cell

Willow cell,

arcade cell,

shaft-biased

cell, atypical

basket cell

Axo-axonic cell

Pr minantly

ex ssed

Ca binding

pr ins

an eptides

CB (�),

PV (�),

CR (�)

NPY (+),

VIP (�),

SOM (�)

CB (++),

PV (�),

CR (�)

NPY (+),

VIP (+++),

SOM (++)

CB (+),

PV (�),

CR (+)

NPY (�),

VIP (+++),

SOM (++)

CB (�),

PV (�),

CR (++)

NPY (�),

VIP (+++),

SOM (++)

CB (++),

PV (�),

CR (�)

NPY (++),

VIP (�),

SOM (+++)

CB (++),

PV (�),

CR (++)

NPY (+),

VIP (+),

SOM (++)

CB (++),

PV (+++),

CR (+)

NPY (+

VIP (+)

SOM (

CB (++),

PV (+++),

CR (++)

NPY (+),

VIP (+),

SOM (�)

CB (+),

PV (�),

CR (�)

NPY (�),

VIP (�),

SOM (�)

Ele rical

typ

bNAC (7%),

cNAC (79%),

cSTUT (7%),

cAC (7%)

bNAC (36%),

cAC (36%),

dNAC (29%)

bAC

(9%),

bIR

(37%),

bNAC

(9%),

bSTUT

(9%)

cAC

(9%),

cIR

(18%),

cNAC

(9%)

bAC

(7%),

bIR

(14%),

bNAC

(29%)

cAC

(29%),

cNAC

(14%),

dSTUT

(7%)

bAC

(37%),

bIR

(11%),

bSTUT

(4%),

cAC

(37%)

cNAC

(3%),

cSTUT

(3%),

dNAC

(3%)

bAC

(17%),

cAC

(67%),

cNAC

(17%)

bAC

(6%),

cAC

(12%),

cIR

(6%)

cNAC

(17%),

dNAC

(17%),

dSTUT

(24%)

bAC

(6%),

bIR

(6%),

bSTUT

(13%),

cAC

(20%)

cIR

(7%),

cNAC

(20%),

cSTUT

(20%),

dSTUT

(7%)

cAC

(38%),

cNAC

(38%),

dNAC

(25%)

Ot

ele ical

cla ifications

Non-fast spiking,

late spiking

Fast spiking,

non-

accommodating,

non-adapting

Irregular spiking,

regular spiking

non-pyramidal,

adapting

Late spiking,

regular spiking

non-pyramidal,

adapting

Regular spiking

non-pyramidal,

burst spiking

non-pyramidal,

low threshold

spiking

Regular spiking

non-pyramidal,

adapting,

burst spiking

non-pyramidal

Fast spiking,

non-

accommodating,

non-adapting

Fast

spiking, non-

accommodating,

non-adapting

Fast spiking,

late spiking,

non-adapting

Th erms used in this paper are in the first row, followed by other common names in the literature. Interneurons can be categorized according to whic primary marker they express (calcium-

bin ng proteins: parvalbumin [PV], calbindin [CB], and calretinin [CR]; neuropeptides: somatostatin [SOM], vasoactive intestinal polypeptide [VIP], ne opeptide Y [NPY], and cholecystokinin

[C ]). The mapping to serotonergic receptors (5HT3AR) is not included since this was not assayed in the RT-PCR. We assign several possible electrica pes to each morphological type, based

on e Petilla convention, and show other names frequently used in the literature. See Figure 4 for definitions of electrical types.
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Figure 3. Neuron Densities and Composition and Microcircuit Dimensions.
(A) Neuron densities and numbers. Vertical thicknesses as determined by transitions in neuronal somata size and density in NeuN stained slices (six animals;

mean ± SD). Neuron densities and numbers (six animals; mean ± SD).

(B) Neuron fractions. Confocal block imaging of dual immunohistochemical labeling. DAPI labels all cells (blue). NeuN labels all neurons (green), GABA labels all

GABAergic cells including glia (red), dual GABA andNeuN labels only GABAergic neurons (green). Bars to the right show fractions of excitatory (red) and inhibitory

(blue) neurons in each layer.

(C) m-type composition. Fractions of inhibitory (left) and excitatory (right) m-types per layer (n = 2052).

(D) Dimensions. The horizontal dimension was defined as the smallest circle required to attain maximal dendritic volume at a central minicolumn (brown, top); cut-

off radius, 95% of the plateau volume (r = 210 mm, middle). To allow tiling, the circle was transformed into a hexagon, preserving the area. For m-type acronyms,

see Figure 2.

See also Figure S3 for details on morphology placement and Figure S4 for validation of the composition. See also Movie S1B.
Using multiple exemplars obtained from different animals for

each m-type, we developed a repair process to recover arbors

cut during the slicing process, which was validated using in vivo

reconstructed neurons (see Experimental Procedures; Anwar

et al., 2009). To generate an even larger pool of unique morphol-

ogies, we cloned multiple exemplars of each m-type (Figures

S2C–S2F), jittering branch angles, and section lengths in the

clones (see Experimental Procedures). The morphometric

properties of the resulting population were validated against

distributions of features obtained from reconstructed neurons

(see Experimental Procedures). This approach allowed us to

establish a dataset of neuronal morphologies (see Movie S1A)

that respects biological variability. Software applications for

repairing and cloning in vitro neuron morphologies and for auto-

mated classification of neurons into the 55 m-types are available

through the NMC Portal.

Reconstructing Neuron Densities, Ratios, and
Composition
Reconstruction began by specifying the dimensions of themicro-

circuit, the fractions of excitatory and inhibitory neurons, the

proportions of each m-type, and the number of neurons of each
m-type. The height of the neocortex and heights of each layer

weremeasured experimentally in six animals, yielding an average

overall height of 2,082± 80microns (mean±SD; n = 6; Figure 3A).

Layer thicknesseswere determined experimentally bymeasuring

the location of transitions in cell densities and soma sizes in

NeuN-stained tissueblocks (seeExperimentalProcedures). Frac-

tions of excitatory and inhibitory neurons per layer (E-I fractions)

were established by counting cells stained for DAPI (all cells),

NeuN (all neurons), and GABA (all inhibitory neurons) in tissue

blocks (Figure 3B; see Experimental Procedures). Overall, excit-

atory and inhibitory neurons represented 87% ± 1% and 13% ±

1% of the population, respectively, with a trend toward higher

fractions of excitatory neurons in deeper layers (Figure 3B).

The m-type composition for all excitatory and all inhibitory

neurons in each layer was obtained from the relative frequencies

of each m-type in the experimental dataset of 2,052 classified

neurons mentioned earlier (Figure 3C; see Experimental Proce-

dures). It is not possible to exclude sampling bias in this dataset.

However, since E-I fractions were obtained in an unbiased

manner, any bias is restricted to the proportions of m-types

within the excitatory and inhibitory neurons and does not affect

the overall E-I balance.
Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc. 461



The E-I fractions and m-type composition determined in this

way are broadly consistent with previous reports (DeFelipe

et al., 2002; Lefort et al., 2009). For example, it is well established

that �50% of inhibitory interneurons are basket cells (i.e., LBCs

and NBCs—predominantly parvalbumin-positive cells; SBCs—

predominantly vasoactive intestinal peptide (VIP)-positive cells;

we found �53%, see below), that Martinotti cells (i.e., predomi-

nantly somatostatin-positive cells; we found �22%, see below)

are frequent in all layers except L1, and that bitufted and bipolar

cells (i.e., many of the calbindin and calretinin-positive cells)

and double bouquet cells (i.e., many of the VIP-positive cells)

are both found in layers 2–6. Other inhibitory interneuron types

are also found in L2–L6 but less frequently (Kawaguchi and

Kubota, 1997; Krimer et al., 2005; Meyer et al., 2011; Oláh

et al., 2007; Sancesario et al., 1998; Somogyi et al., 1998; for a

review, see Markram et al., 2004). Previously published neuron

densities could not be used because they varied by a factor of

two (40,000–80,000 neurons/mm3; Beaulieu, 1993; Cragg,

1967; DeFelipe et al., 2002; Keller and Carlson, 1999; Peters,

1987) and are too low to account for the number of synapses

in the microcircuit (see below, ‘‘Digital Reconstruction of

Connectivity’’). We therefore performed new experiments,

counting cells in NeuN-stained tissue blocks. The experiments

yielded a mean cell density of 108,662 ± 2,754 neurons/mm3

(mean ± SEM, n = 6; see Experimental Procedures), comparable

to observations in rat barrel cortex (Meyer et al., 2010a). Neuron

densities were highest in L4 (Figure 3A), consistent with previous

studies (Meyer et al., 2010a).

Since hind-limb somatosensory cortex, unlike barrel cortex,

has no anatomically defined horizontal columnar organization

(Horton and Adams, 2005; Markram, 2008), we chose to define

the radius of the microcircuit by placing reconstructed neurons

in a cylindrical volume and determining the minimal radius where

the density of dendrites saturates at the center (Figure 3D; 95%

of the plateau value obtained at a radius of 210 mm; see Experi-

mental Procedures). We chose dendrites, as opposed to axons,

because they only arborize locally. This convention, which yields

a minimal radius that reflects saturated dendritic density along

the central axis, could allow comparisons between microcircuits

in different brain regions. It yields a radius similar to the horizontal

extent of the dendrites of the largest neuron in the microcircuit

(i.e., the L5_TTPC; for a review, see Ramaswamy and Markram,

2015) and is comparable with the dimensions of the barrels in the

rodent barrel cortex (Meyer et al., 2010b; Wimmer et al., 2010).

To allow tiling of multiple microcircuits while minimizing edge ef-

fects, the volume of the microcircuit was defined as a hexagonal

prism (Figure 3D, bottom) with a cross-sectional area equal to

that of the circle with the radius defined above and a height

determined by the combined height of the layers.

With these densities, m-type composition, and circuit dimen-

sions, we calculated the number of each m-type in each layer

and in the whole microcircuit. To approximate inter-individual

variation in layer dimensions and neuronal densities, we digitally

reconstructed separate microcircuits corresponding to layer

heights and densities measured in five animals (Bio1–Bio5).

The five reconstructions had an average of 31,375 ± 2,251 neu-

rons (mean ± SD, n = 5), with the number of neurons increasing in

each layer from L1 to L6. We then constructed an additional
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microcircuit using the averaged data (BioM). To assess the vari-

ation introduced by the digital reconstruction process (stochas-

tic variations in m-type composition, selection and positioning

of model neurons, and synaptic connectivity [see below]), we

reconstructed seven instances of each microcircuit (i.e., seven

reconstructions each from Bio1–Bio5 and seven from BioM; 42

in total).

Positioning Morphologically Reconstructed Neurons
After establishing the dimensions of the microcircuit and the

number of neurons belonging to each m-type in each layer, it

was necessary to position each neuron in the digital reconstruc-

tion. Consistent with reports of weak minicolumnar organization

in rodents, (Mountcastle, 1998), neurons were arranged in 310

minicolumns at horizontal positions drawn from 2D Gaussians

around the center of each minicolumn, thus relaxing the strict-

ness of the minicolumnar organization (see Experimental Proce-

dures). The positions of the neurons along the vertical axis of the

minicolumn were randomly chosen within each layer, using a

space-filling algorithm to ensure that somata did not overlap

(see Experimental Procedures).

Once the positions of the neurons were established, a second

algorithm randomly selected a suitable morphology for each po-

sition from the top 8% of morphologies, scored by their match to

typical patterns of arborization within and across layers (Fig-

ure S3; see Experimental Procedures). These patterns were

manually annotated on each reconstructed neuron, based on

the depth of the recorded neuron within each layer and cross-

layer arborization patterns described in the literature (see Exper-

imental Procedures and NMC Portal). Figure S4A illustrates the

microcircuit at this stage of reconstruction (see also Movie

S1B). The total lengths of axons and dendrites in the average

microcircuit were 350 ± 4 m and 215 ± 3 m (mean ± SD, n = 7),

respectively.

Biological accuracy at this stage of the reconstruction was

validated against two experimental datasets that had not been

used thus far. The first tissue-level dataset provides in vitro

immunohistochemical staining of 30 mm sections for seven

markers (calcium-binding proteins and neuropeptides) com-

monly used to label inhibitory interneurons (Figure S4B). The

second cellular-level dataset provides estimated probabilities

that the genes for these markers are expressed in specific

m-types (Toledo-Rodriguez et al., 2005; Wang et al., 2002,

2004). We used the second dataset to add the markers to the

model neurons. We then performed in silico immunohistochem-

ical staining of the whole reconstructed tissue for each marker

separately and compared the in silico stains against immunohis-

tochemical stains from the first dataset. Although gene expres-

sion data are noisy and genes do not translate equally to protein

levels, we found a reasonable correspondence between the

numbers of neurons at different depths stained for specific

markers in the in silico and the in vitro stains (regression, r =

0.65; Figure S4C). Furthermore, the layer-dependent pattern of

in silico stained cells was consistent with previous staining ex-

periments in this brain region (Ascoli et al., 2008; Condé et al.,

1994; DeFelipe, 1993; Dumitriu et al., 2007; Gentet et al., 2010,

2012; Gonchar and Burkhalter, 1997; Gonchar et al., 2007;

Kawaguchi and Kondo, 2002; Kawaguchi and Kubota, 1993,
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Figure 4. Table of Morpho-Electrical Neuron Types

(A) e-types. Diverse firing patterns in response to depolarizing step current injections in neocortical neurons. c, continuous; d, delayed; b, bursting. AC,

accommodating; NAC, non-accommodating; STUT, stuttering, IR, irregular; AD, adapting.

(B) An exemplar neuron (L23NBC) with a diversity of e-types. Percentages indicate the relative frequency of e-type occurrence.

(C) Fractions of e-types (11 e-types) recorded experimentally in each of the 55m-types, making up 207me-types. Solid lines indicate layer boundaries. See Table

1 for relation of e-types to other classifications in the literature.
1997; McGarry et al., 2010; O’Connor et al., 2009; Packer and

Yuste, 2011; Santana et al., 2013; see also NMC portal). The

observed correspondence would be unlikely in the presence of

major errors in neuron densities, m-type composition, or posi-

tioning of reconstructed neurons. However, the biological data

are highly variable, and the validation of the inhibitory m-type

composition used only a small proportion of markers reported

in the literature. The reconstruction should thus be considered

as a first draft, to be refined as it is challenged with additional

markers.

Morpho-Electrical Composition
We applied a standardized battery of stimulation protocols

(Le Bé et al., 2007; Wang et al., 2002, 2004) to >3,900 neurons

from all layers, recording and analyzing their responses. The

neurons were classified using quantified features of the neuronal

response to step current pulses, according to the criteria estab-

lished by the Petilla convention (Ascoli et al., 2008; Figure 4A,

top), with the exception of stuttering cells, which were consid-

ered as a separate class (see Druckmann et al., 2013).

Since no significant bursting behavior was observed in excit-

atory m-types from animals of the age used in this study, all

excitatory m-types were classified as continuous adapting

(cAD) neurons (Figure 4A, bottom). Using this feature-based
classification scheme, we identified 11 e-types (10 inhibitory

e-types and 1 excitatory e-type) (Figure 4A; see Experimental

Procedures). Objective clustering of the same features produced

a similar classification, validating the original classification

scheme (Druckmann et al., 2013). The fact that the e-types iden-

tified in this way have characteristic ion channel profiles provides

further evidence for their distinctive identity (Khazen et al., 2012;

Toledo-Rodriguez et al., 2004).

Most inhibitory m-types expressed multiple e-types (Fig-

ure 4B), consistent with previous observations (Ascoli et al.,

2008; Cauli et al., 2000; Nelson, 2002; Toledo-Rodriguez et al.,

2005). Combining m- and e-types yielded 207 morpho-electrical

types (me-types), providing an integrated view of the morpho-

electrical diversity of the microcircuit (Figure 4C). A dataset of

511morphologically and electrically classified inhibitory neurons

was used to determine the relative proportion of e-types for each

inhibitory m-type (in a layer-dependent manner for m-types with

sufficient samples and otherwise in a layer-independent manner;

Figure 4C, color map; see Experimental Procedures). The rela-

tive proportions were combined with neuron densities to calcu-

late the number of neurons for each me-type in each layer. The

resulting diversity and spatial distribution of inhibitory e-types

is illustrated in Figure 5A. This integrated view of the micro-

circuitry reveals that, at this age, the most common inhibitory
Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc. 463



Figure 5. Layer-Dependent Distribution of

Inhibitory e-Types

(A) In silico ‘‘brainbow’’ staining of a random

selection of inhibitory morphologies, colored by

e-type.

(B) Layer-wise distribution of inhibitory e-types

(n = 35 reconstructions; mean ± SD). See Figure 4

for definitions of e-types.
e-type is cAC, followed by cNAC and dNAC, and that stuttering

and irregular e-types (cSTUT, bSTUT, dSTUT, cIR, and bIR) are

relatively rare (Figure 5B). Inhibitory e-types with regular firing

patterns (cAC, bAC, cNAC, bNAC, and dNAC) occur more

frequently in superficial layers, whereas e-types with irregular

firing patterns (cSTUT, bSTUT, dSTUT, cIR, bIR) are more com-

mon in deep layers (Figure 5B).

Digital Reconstruction of Connectivity
We developed an algorithmic approach to reconstruct synaptic

connectivity between neurons in a companion study (Reimann

et al., 2015). The approach is based on five rules of connectivity

described in the Experimental Procedures and validated in Re-

imann et al. (2015). We implemented these rules in four stages

that yield plausible multi-synapse connections, consistent with

the rules and constrained by experimental bouton densities

(Figure 6A).

The algorithm predicts the characteristics of multi-synapse

connections between pairs of neurons that belong to specific

m-types (Figure 6B). We have previously shown that these pre-

dictions faithfully reproduce detailed anatomical data on con-

nectivity between L5 thick-tufted PCs (number of synapses

and locations; Ramaswamy et al., 2012) and for a number of
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other connection types (synapse loca-

tions; Hill et al., 2012). We now show

that they reproduce the connectivity

(numbers and locations) of all connection

types that have been studied experimen-

tally (see NMC Portal). For example, the

anatomy of in silico synaptic connections

between L5 Martinotti cells and L5 thick-

tufted PCs (Figure S5) compares well with

available experimental data (Silberberg

and Markram, 2007). The algorithm pro-

vides detailed anatomical predictions for

connection properties, which it has not

yet been possible to measure experimen-

tally (e.g., numbers of source and target

cells and synapses) (Figure S5). The

reconstruction also allows studies of neu-

rons involved in polysynaptic pathways

(see NMC Portal) forming known motifs

(Honey et al., 2007; Perin et al., 2011;

Silberberg, 2008; Sporns and Kötter,

2004).

The algorithm yields 1,941 biologically

plausible multi-synapse connection types

(out of a theoretical 3,025) that are con-
sistent with the connectivity principles described above. Figure 7

shows the predicted average number of synapses formed by

each potentially viable connection type (Figure 7A) aswell as their

predicted average connection probabilities (Figure 7B). The

predicted number of synapses/connection is 4.5 ± 0.1 (3.6 for

excitatory connections, 13.9 for inhibitory connections; n = 35).

We also predict 27,625 types of connection between neurons

of different me-types (see NMC Portal).

On average, each neuron innervates 255 ± 13 other neurons

belonging to 32% ± 1% of m-types, forming an average of

1,145 ± 75 synapses per neuron present in the microcircuit (Fig-

ure S6A; mean ± SD, across the 35 Bio1-5 reconstructions; all

neurons sampled). As a population, the neurons belonging to a

givenm-type innervate 63% ± 6%of them-types in themicrocir-

cuit. The individual reconstructions (Bio1-5) yield an average of

638 ± 74 million appositions and 36.7 ± 4.2 million synapses

(27.0 ± 2.9 million excitatory and 9.7 ± 1.5 million inhibitory).

Taken together, the neurons of the microcircuit form 8.1 ± 0.9

million connections. Figure 7C and Table S1 provide a first

view of the connectivity between neurons of the neocortical

microcircuit. Analyzing these data, we find that, at this age,

the fraction of excitatory synapses (red) increases from L1 to

L6 (Figure S6B). At later ages, this trend may change as axons



Figure 6. Reconstructing Connectivity

(A) Four-step algorithm to convert putative axo-dendritic appositions into functional synapses. (1) Axonal appositions. For an exemplar L23SBC (left, soma and

dendrites in black, axon in blue), connectivity based on all axo-dendritic appositions (in red) is characterized by an extremely wide distribution of synapses per

connection and almost 100% connection probability (right, pooled data from efferent connections to L23PCs of n = 100 L23SBCs). (Inset) A selected axon

collateral with all appositions. (2) After general pruning. For the same exemplar, L23SBC, randomly removing a fraction of appositions removes the right side of the

distribution of synapses per connection (right). (3) After multi-synapse pruning. Removing connections formed by too few appositions prunes the left side of the

distribution of synapses (right) but leaves short inter-bouton intervals. (4) After plasticity pruning. The last step randomly removes more connections (right),

leading to correct inter-bouton-intervals and connection probabilities.

(B) Examples of in silico multi-synapse connections resulting after the four-step apposition to synapse conversion algorithm. The pre- and postsynaptic m-types

forming the synaptic connection are indicated. The presynaptic neuron is shown in yellow, postsynaptic neuron in black, and synaptic contacts as red circles.
mature and reach higher layers. Pooling all excitatory and inhib-

itory cells in each layer reveals that recurrent excitation increases

with cortical depth while recurrent inhibition is weak in all layers,

that descending interlaminar projections are stronger than
ascending projections, and that intralaminar inhibition is weakest

in layer 4 (Figure S6C).

The seven statistical instantiations of the mean microcircuit

(BioM) yield 636 ± 10 million appositions and 36.5 ± 0.5 million
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Figure 7. Predicted Synapse Numbers and Connection Probabilities

(A) Synapses per connection. Amatrix of the average synapses per connection for multi-synapse connections formed between the 55m-types (1,941 biologically

viable connection types).

(B) Connection probabilities. A matrix of average connection probabilities within 100 mm.

(C) The connectome of the reconstructed microcircuit grouped by m-type (i.e., 1,941 m-type pathways). Colors group m-types by layer. Thickness of ribbon

proportional to the number of synapses; inner ring segments, outputs (axons); outer ring segments, inputs (dendrites).

See also Figure S5 for anatomical details of an exemplary pathway; Figure S6 and Table S1 for more details of synaptic innervation strength; and Figure S20 for a

comparison of the predicted connectome to a recent EM study. See also Movie S1C.
synapses (25.8 ± 0.4 million excitatory and 10.6 ± 0.2 million

inhibitory; n = 7; Table S1 and Movie S1C). The lower variability

of the statistical instantiations compared to the individual recon-

structions (Bio1–Bio5; Table S1) indicates that the variation

across digital reconstructions falls well within the bounds of bio-

logical variability.

From the space remaining on dendrites after accounting for

predicted intrinsic connectivity (assuming 1.1 synapses/mm;

Datwani et al., 2002; Kawaguchi et al., 2006; Larkman,

1991b), we predict that afferent fibers from beyond the

microcircuit (extrinsic synapses) form a further 147 ± 4 million

synapses (mean ± SD; n = 35) (Figures S6D and S6E). The total
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predicted number of synapses in the microcircuit is thus 184 ±

6 million (mean ± SD; n = 35), of which only 20% ± 2% of

synapses are formed by neurons belonging to the microcircuit

(i.e., intrinsic synapses), consistent with previous estimates

in neocortex (Stepanyants et al., 2009). In a parallel electron mi-

croscopy study in which we determined average synapse den-

sity (0.63 ± 0.1/mm3; mean ± SD; n = 25) and calculated the

number of synapses in a comparable volume of the neocortex,

we obtained 182 ± 6 million synapses. On the assumption that

the average number of synapses/connection is the same for

afferent fibers as for excitatory connections within the microcir-

cuit (3.6 ± 0.04 synapses/connection; n = 35), we predict that



the microcircuit contains �41 million mostly en passant afferent

fibers.

The reconstructed microcircuitry reproduces numerous other

experimental findings that were not used in the reconstruction

process, described in a companion paper (Reimann et al.,

2015). Nevertheless, it is clear that the predicted connectivity

is a first draft that will be challenged and refined as experi-

mental studies discover exceptions to the connectivity rules

used here.

Reconstructing Neuronal Physiology
A series of algorithms and an automated workflow were devel-

oped to configure NEURON models to reproduce the electro-

physiology of each me-type, (Druckmann et al., 2007, 2011;

Hay et al., 2011) (see Experimental Procedures). In brief, we

selected a morphologically reconstructed neuron and distrib-

uted Hodgkin-Huxley (HH)-type models of 13 known classes of

ion channels (Figure S7) along the neuronal arbors (Figure 8A).

Salient features were extracted from electrophysiological traces

of e-type responses to step current pulses and data on back-

propagating action potentials (Figure 8B; Larkum et al., 2001;

Nevian et al., 2007). A multi-objective optimization algorithm

(Druckmann et al., 2007) computed the vector of ion channel

conductance densities that best reproduced features such as

spike amplitudes and widths, spike frequency, and changes in

frequency, and the resulting vector was transplanted into all neu-

rons belonging to the m-type. Neurons in the resulting pool of

models were challenged with a separate battery of stimuli not

used to fit the vector of ion channel conductances. We then

selected those that fell within observed distributions of features

(�40% of models accepted; Figure 8C). This workflow provided

a generic high-throughput method for modeling the electrical

behavior of a potentially unlimited number of neurons of any

e-type (Figure 8D). We automated the workflow to model all

207 me-types (Figure 8E), generating a pool of 121,231 unique

neuron models. Exemplars can be downloaded from the NMC

portal together with NEURON models of each m-type with all

of their intrinsic synapses (see Movie S2). Morpho-electrical

variation in the ensemble of model neurons was comparable to

the biological variation observed experimentally. The quality of

the final selection was quantified by comparing model and bio-

logical neurons in terms of their median z-scores for all electrical

features (Figure 8E; see Experimental Procedures).

The generalization power of these models has been demon-

strated previously (Druckmann et al., 2011). As a further test,

we compared dendritic attenuation of synaptic potentials in the

models against past experiments (Berger et al., 2001; Nevian

et al., 2007). While attenuation along basal dendrites (Figure S8;

space constant, 40.0 ± 0.1 mm) was consistent with these results

(Nevian et al., 2007), the reconstruction displayed stronger atten-

uation along apical dendrites (Figure S8; 174.3 ± 0.4 mm) than

previously reported (273 mm; Berger et al., 2001). However, the

data in the literature were obtained from adult animals whose

apical dendrites have larger diameters (Zhu, 2000) than those

of the animals used in this study. In a subset of model neurons

whose apical dendrites had similar diameters to those of adult

animals (Zhu, 2000), attenuation was similar (Figure S8, B2,

dark blue).
In most cases, transplantation of the vector of conductances

to variants within the same inhibitory m-type preserved target

physiology (�80% of models accepted), which was often main-

tained, even when conductances were transplanted to other

inhibitory m-types (�60% of models accepted). This suggests

that, in animals of the age used in the experiments, electrical

behavior is relatively independent of the specific neuron

morphologies.

Reconstructing Synaptic Physiology
To predict the physiology of the �36 million synapses in the

reconstruction, we integrated published paired-recording data

and reported synaptic properties (conductances, postsynaptic

potentials [EPSPs/IPSPs], latencies, rise and decay times, fail-

ures, release probabilities, etc.; see Experimental Procedures

and NMC portal).

Neocortical synapses display known forms of short-term dy-

namics, which we used to classify synaptic connections as facil-

itating (E1 and I1), depressing (E2 and I2), or pseudo-linear (E3

and I3) s-types (Figures 9A and 9B) (Beierlein et al., 2003; Reyes

and Sakmann, 1999; Reyes et al., 1998; Thomson and Lamy,

2007; Thomson et al., 1996; Wang et al., 2006). The s-types of

specific connections were determined from the combination of

their pre- and postsynaptic me-types (Ali et al., 2007; Bannister

and Thomson, 2007; Beierlein and Connors, 2002; Feldmeyer

et al., 2002; Frick et al., 2007; Gupta et al., 2000; Markram

et al., 1998; Reyes et al., 1998; Somogyi et al., 1998; Thomson

et al., 1993). Based on the available experimental data, we iden-

tified five rules to predict s-types for broad classes of connec-

tions: (1) pyramidal-to-pyramidal connections are always

depressing (E2) (Feldmeyer et al., 1999; Frick et al., 2007,

2008; Gupta et al., 2000; Maffei et al., 2004; Markram et al.,

1998; Mason et al., 1991; Mercer et al., 2005; Reyes et al.,

1998; Thomson and Bannister, 1998; Thomson et al., 1993), (2)

pyramidal-to-interneuron connections are also depressing (E2)

(Angulo et al., 1999; Blatow et al., 2003; Holmgren et al., 2003;

Markram et al., 1998; Reyes et al., 1998; Silberberg and Mark-

ram, 2007; Thomson and Deuchars, 1997; Wang et al., 2002),

except for connections onto Martinotti, bitufted and other inter-

neuron types displaying spike frequency accommodation, which

are facilitating (E1) (Kapfer et al., 2007; Markram et al., 1998;

Reyes et al., 1998; Rozov et al., 2001; Silberberg and Markram,

2007), (3) facilitation from inhibitory neurons is around two times

stronger than from excitatory neurons (Gupta et al., 2000; Silber-

berg and Markram, 2007), (4) synaptic dynamics are preserved

across layers for all me-type-specific connections, and (5) any

remaining connections belong to the most common s-type

(type 2; E2 or I2).

Since physiological characterization of all 27,625 unique me-

type-to-me-type connections is not feasible, s-types in which

experimental data were missing were specified using the rules

above. Parameters for the synaptic dynamics of individual

synapses were drawn from experimental distributions. In this

manner, we generated a complete, albeit sparsely character-

ized, map of synaptic dynamics (Figure 9C). Stochasticity of

synaptic transmission was modeled by extending a previously

reported model (Fuhrmann et al., 2002). As an independent vali-

dation of the modeled synaptic dynamics, we compared the
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Figure 8. Workflow for High-Throughput Reconstruction of Morpho-Electrical Behaviors

(A) Morphology and ion channel models. Selection of exemplar morphology, ion channel models, and their distribution on soma, dendrites, and axon.

(B) Feature extraction. Selection of experimental traces from a population of recorded cells as targets for fitting. Extraction of voltage and spiking features from

experiments.

(C) Quality assurance.Multi-objective optimization of the vector of ion channel conductance densities tomatch the statistics of the extracted biological features in

the model. Screen out models with electrical features that do not match the statistics for equivalent features in biological recordings.

(D) Models of e-types. Shows the 11 e-types modeled.

(E) Generalization and model quality. Generalization of the vector of ion channel conductance densities to other exemplars of the same m-type; application of a

standardized set of measurement protocols to each model neuron to determine generalization; quality scores for accepted models (median z-score).

See also Figure S7 for properties of modeled ion channels and Figure S8 for dendritic properties.
coefficient of variation (c.v.) of first PSPs against reported exper-

imental data (r = 0.8; Figure 9D; Gupta et al., 2000; Markram

et al., 1998; Wang et al., 2006).

We then applied unitary synaptic conductances obtained in

previous experiments that also measured somatic postsynaptic

potentials (PSP) between specific pairs of m-types and

compared the resulting in silico PSPs with the corresponding
468 Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc.
in vitro PSPs (Figure 10A). The in silico PSPs were systematically

lower. Since the neuron models and the numbers and locations

of synapses between pairs of m-types had been validated, we

hypothesized that the reported synaptic conductances had

been underestimated, because of inadequate compensation

for space-clamp errors (Feldmeyer et al., 2002; Gupta et al.,

2000; Rinaldi et al., 2008). To quantify the underestimate,
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Figure 9. Reconstructing Dynamic Synaptic Transmission.

(A) In silico synaptic connection. Experimental protocol recreated in silico to obtain the frequency dependence of synaptic transmission between pairs of neurons.

A presynaptic L4NBC (black pipette) was stimulatedwith a 30Hz pulse train to evoke eight APs + 1 ‘‘recovery’’ AP (bottom trace), resulting in inhibitory depressing

responses (top traces) in the postsynaptic L4SS (blue pipette); 30 individual trials in gray, average in blue. The connection was mediated by 12 synaptic contacts

(blue stars).

(B) Synapse types (s-types). Parameters describing six s-types in the Tsodyks-Markram phenomenological synapse model (see Experimental Procedures).

(C) Map of predicted synaptic dynamics. Previously established mapping rules were used to constrain s-types for connections that have not yet been char-

acterized experimentally (see Figure S8), yielding a complete map for all 1,941 m-type-to-m-type connections in the reconstructed microcircuit.

(D) Validation. Trial-to-trial variability for different s-types in silico compared to in vitro data. Dots and error bars show mean ± SD of the data; dashed line shows

regression fit.
synaptic conductances were adjusted until in silico PSPs

matched experimental levels (Figure 10B and Table S2; Angulo

et al., 1999; Le Bé et al., 2007; Feldmeyer et al., 2006; Feldmeyer

et al., 1999, 2002;Markram et al., 1997; Silberberg andMarkram,
2007). The results suggested that reported conductances are

about 3-fold too low for excitatory connections, and 2-fold too

low for inhibitory connections (Table S2; Gupta et al., 2000; Ri-

naldi et al., 2008). Other recent studies also suggest that
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Figure 10. Reconstructing Quantal Synaptic Conductances.

(A) Unitary synaptic responses. A single APwas evoked in a presynaptic L1HAC (black pipette and trace). The postsynaptic potential was recorded at the soma of

a L23PC (blue pipette; 30 individual trials in gray, average in blue); synaptic conductance was recorded simultaneously in the dendrite (green pipette and trace).

(B) Validation. Comparison of in silico PSP amplitudes to in vitro characterized connections (n = 9; mean ± SD; Table S2), explicitly correcting reported con-

ductances for space-clamp errors (see Experimental Procedures). Dots and error bars show mean ± SD of the data; dashed line shows regression fit.

(C) Validation. As B for connections that lack conductance estimates (n = 10; mean ± SD; Table S4). Conductances were generalized from B for broad classes of

excitatory and inhibitory connections (see Experimental Procedures).

(D) Quantal synaptic conductances. In the absence of experimental data for postsynaptic potentials, synaptic conductances were generalized from data for

similar connections, allowing the prediction of quantal synaptic conductances for all synapses on a neuron. Simultaneous recording of quantal synaptic con-

ductances in a L5TTPC are shown in colored traces (excitatory, red to pink; inhibitory, green to blue).

(E) Predicted map of quantal conductances. Circles indicate connections used in B (black) and C (white) above. Black lines separate excitatory m-types.

See also Figure S9 for examples of in silico synaptic patch and staining experiments and Table S2 for corrected conductances. See also Movie S2.
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previously reported values are underestimated to a similar de-

gree (Sarid et al., 2007; Williams and Mitchell, 2008).

For the vast majority of connection types, no experimental

data for synaptic conductances were available. Therefore, we

computed the average corrected synaptic conductances for

broader classes of synaptic connections (e.g., E-E, E-I, I-I, I-E;

see Experimental Procedures) and applied these conductances

to all specific connections where data were missing. The result-

ing amplitudes of in silico PSPs were validated against experi-

mental data for ten connection types not used in determining

the conductances (regression, r = 0.6; Figure 10C and Table

S2). The derived synaptic dynamics and quantal conductances

compared well with previous reports (Feldmeyer et al., 2002;

Ramaswamy et al., 2012; Silberberg and Markram, 2007; Thom-

son and Deuchars, 1997) (see NMC Portal). Using the same

method, we generated a first prediction of mean synaptic con-

ductances for all 1,941 m-type-to-m-type connections (Fig-

ure 10D). Unique quantal synaptic conductances for individual

synapses were drawn from truncated normal distributions

around these means (Figure 10E; see Experimental Procedures).

We performed in silico paired recordings of all 1,941 m-type-

to-m-type connections in the average microcircuit (BioM) and

found results comparable to previously published paired record-

ings in vitro (see Figures S9A–S9J for an example; see NMC

Portal). Obtaining the anatomical and physiological properties

of all the intrinsic synapses formed onto and by any neuron

has long been an experimental challenge (Crick, 1979). The

reconstruction now allows in silico retrograde staining experi-

ments for any neuron in the microcircuit, providing a detailed

view of its presynaptic neurons and their synapses (Figure S9K).

In silico anterograde staining for postsynaptic neurons is also

possible. Figure S9L illustrates predicted locations of afferent

synapses formed onto a L23_PC. Figure S9M shows the mean

number of presynaptic (red) and postsynaptic (blue) neurons

for excitatory (top) and inhibitory (bottom) m-types. Predicted

input-output synapses for all 31,346 neurons in the BioM

microcircuit and summary statistics for each of the 55 m-types,

11 e-types, and 207 me-types can be downloaded from the

NMC Portal. The portal also provides NEURON models of each

m-type, allowing simulation experiments exploring dendritic

integration of m-type-specific synaptic inputs.

We found that the m-, e-, and s-types of inputs to any partic-

ular neuron were always strikingly different from those of its

outputs (i.e., inputs and outputs were highly asymmetrical; see

NMC Portal). The predicted average total synaptic conductance

for single neurons was �1000 nS (�750 nS excitatory and

�250 nS inhibitory conductance; based on all synapses in

BioM). Predicted average quantal conductance was 0.85 ±

0.44 nS for excitatory synapses (corresponding to �150 AMPA

and �20 NMDA receptors; Yoshimura et al., 1999) and 0.84 ±

0.29 nS for inhibitory synapses (corresponding to �40 GABAA

receptors; Ling and Benardo, 1999). The average failure rate

across all 1,941 m-type-to-m-type connections was 11.1% ±

14.1%.

Simulating Spontaneous Activity

To simulate reconstructed microcircuits at the level of detail

described above, the NEURON simulator was extended to run

on supercomputers (Figure S10; Carnevale and Hines, 2006;
Hines and Carnevale, 1997; Hines et al., 2008a, 2011, 2011; Mi-

gliore et al., 2006), and additional functionality was developed to

support in silico experimentation (see Experimental Procedures).

We then used simulations to investigate the neuronal activity of

the reconstructed microcircuitry (Figure 11A) under different

conditions. We began by simulating spontaneous activity during

tonic depolarization (see Movie S3A), attempting to mimic previ-

ous in vitro experiments (see Experimental Procedures). Under

these conditions, neurons belonging to all m-types were active

and the network exhibited spontaneous slow oscillatory popula-

tion bursts, initiated in L5, spreading down to L6, and then up to

L4 and L2/3 with secondary bursts spreading back to L6 (Fig-

ure 11B). Despite apparent global synchrony, the 55 m-types

generated diverse patterns of spiking (Figures 11C and 11D).

To allow comparison with the in vitro experiments, from which

the physiological data were obtained, we reconstructed a virtual

brain slice (a mesocircuit) that was 230 mm thick and whose

width was equivalent to that of seven microcircuits (containing

a total of 139,834 neurons) (Figure 12A; see Movie S3B and

Experimental Procedures). The virtual slice reproduced the

oscillatory bursts (�1 Hz) found in the previous microcircuit

simulations (Figure 12B), which are comparable to those found

in in vitro experiments (L}orincz et al., 2015; Sanchez-Vives and

McCormick, 2000).

In vitro experiments are typically performed at 2 mM [Ca2+]o,

while the level of [Ca2+]o in vivo is reported to lie in the range

0.9–1.1 mM (Amzica et al., 2002; Jones and Keep, 1988; Massi-

mini and Amzica, 2001; also see Borst, 2010), increasing in

oscillatory cycles to 1.2–1.3 mMduring the transition fromwake-

fulness to sleep (Amzica et al., 2002; Heinemann et al., 1977).

Although it is not possible to fully mimic in-vivo-like conditions,

we nonetheless explored the behavior of the circuit at these

lower Ca2+ levels as an approximation of the in vivo condition.

It is well known that the [Ca2+]o in the extracellular space mod-

ulates the probability of neurotransmitter release (Borst, 2010;

Ohana and Sakmann, 1998; Rozov et al., 2001). We therefore

modified the probability of release, consistent with experimental

data for the specific sensitivities of different s-types to changes

in [Ca2+]o (Gupta et al., 2000; Rozov et al., 2001; Silver et al.,

2003; Tsodyks and Markram, 1997) (Figure S11; see Experi-

mental Procedures). We found that, in the low Ca2+ condition,

slow oscillatory bursting disappeared and the neuronal activity

became asynchronous and irregular (Figure 12C). To validate

this in silico finding, we performed multi-electrode array record-

ings in vitro (Figure 12D) in high and low Ca2+ conditions (see

Experimental Procedures). As predicted by the simulations,

we found that the slow oscillatory bursts present in high Ca2+

(Figure 12E) were replaced by asynchronous and irregular activ-

ity under low Ca2+ conditions (Figure 12F).

We then used the virtual slice to explore the behavior of the

microcircuitry for a wide range of tonic depolarization and Ca2+

levels. We found a spectrum of network states ranging from

one extreme, where neuronal activity was largely synchronous,

to another, where it was largely asynchronous (the synchro-

nous-asynchronous [SA] spectrum; Figure S12). The spectrum

was observed in virtual slices, constructed from all 35 individual

instantiations of the microcircuit (seven for each of Bio1–Bio5)

and all seven instantiations of the average microcircuit (BioM).
Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc. 471



Figure 11. Simulation of the Reconstructed Microcircuit

(A) Simulation of spontaneous activity. Individual neurons at different levels of depolarization in the microcircuit are colored according to a heatmap (blue,

hyperpolarized; red, depolarized; white, spike).

(B) Rastergrams of randomly selected neurons for each m-type during synchronous bursting.

(C) Exemplar voltage traces for each of the 55 m-types during spontaneous activity in the microcircuit (traces truncated at �30 mV).

(D) Inter-spike interval (ISI) distributions of each of the 55 m-types for the activity shown in C.

See also Figure S10 for an overview of the software ecosystem surrounding the simulation of the microcircuit. See also Movie S3A.
This implies that it is a highly reproducible phenomenon, robust

to biological and statistical variations in parameters such as

layer thickness, cell density, and composition; specific synaptic

connectivity; and the specific dimensions of the microcircuit

(see Movie S3C).

We observed that a change in [Ca2+]o of < 1 mM can lead to a

transition from the synchronous to the asynchronous state,

revealing two distinct activity regimes (Figure S12). The level of

[Ca2+]o at the transition varied slightly across the different instan-

tiations of the microcircuit (Bio1–Bio5; Figure S13).

Since the reconstructed microcircuitry displays synaptically

coupled assemblies comparable to those found experimentally

(Perin et al., 2011; Reimann et al., 2015), we also analyzed corre-

lations in neuronal activity within these assemblies. Neuronal

activity was found to be slightly more correlated within assem-
472 Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc.
blies compared to randomly sampled neurons (Figure S14).

Near the transition, a fall in [Ca2+]o of just�0.15 mM (Figure S14)

led to a sharp decrease in correlated spiking, clearly demar-

cating a transition in the SA spectrum.

The mechanism underlying this sharp transition is likely to

involve the differential Ca2+ sensitivities of inhibitory and excit-

atory synapse types. Indeed, we found that changing [Ca2+]o
from 2 mM to 1.3 mM alters the ratio between excitatory and

inhibitory synaptic PSPs by a factor of �3.5, in favor of inhibition

(Figure S11). This suggests the existence of a threshold level of

Ca2+ beyond which inhibition is insufficient to prevent a super-

critical state (see below).

The finding that differential sensitivity of s-types to Ca2+

levels determines the position of the network along the SA

spectrum suggests that other mechanisms that change the



Figure 12. Predicting and Validating Synchronous and Asynchronous States in Spontaneous Activity

(A) A spontaneously active virtual slice formed from seven unitary microcircuits (230.9 3 2800 3 2082 mm).

(B) Rastergram of a random selection of neurons during in silico spontaneous activity under in-vitro-like conditions (somatic depolarization to �90% threshold,

([Ca2+]o = 2.0 mM). Number of neurons displayed per layer is proportional to the total number of neurons per layer.

(C) Rastergram of a random selection of neurons during in silico spontaneous activity under in-vivo-like conditions (somatic depolarization to �90% threshold,

([Ca2+]o = 1.0 mM).

(D) To assess network activity, 300-mm-thick cortical slices weremounted on a 3Dmulti-electrode array (MEA) (reconstruction of a layer 5 pyramidal cell overlaid).

(E) Experimentally observed spontaneous multi-unit activity under in vitro [Ca2+]o.

(F) Experimentally observed spontaneous multi-unit activity under in vivo-like [Ca2+]o.

See also Figure S11 for [Ca2+]o sensitivity of synapse types; Figures S12 and S13 for activity along the full spectrum of [Ca2+]o concentrations and its biological

variability; Figure S14 for synchrony in synaptically clustered neurons along the spectrum; Figure S15 for the effect of selective knockouts onmicrocircuit activity.

See Movie S3B for a visualization of B and Movie S3C for C.
excitatory-inhibitory balance may have similar effects. We there-

fore performed in silico knockout experiments to understand the

roles of the different layers, neurons, and connections in control-
ling the position of the microcircuit on the spectrum (Figure S15).

We found that blocking activity in the upper layers tended to shift

the network toward the synchronous state, while blocking the
Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc. 473



deeper layers had the opposite effect (Figure S15A). Similarly,

blocking soma-targeting basket cells produced a stronger shift

toward the synchronous state than blocking other interneurons,

while blocking pyramidal cells caused a shift toward the asyn-

chronous state (Figure S15B). Corresponding differential effects

were found when blocking associated inhibitory and excitatory

connections (Figure S15C). These effects were observed both

at high and low [Ca2+]o. It follows that differential regulation of

layers, neurons, and connections plays an important role in con-

trolling the position of the microcircuit along the SA spectrum,

independently of [Ca2+]o.

Simulating Thalamic Activation of the Microcircuit

To examine spatio-temporal patterns of evoked activity, we

constructed a mesocircuit consisting of a central microcircuit

surrounded by six additional microcircuits. Connectivity was

established for the mesocircuit as a whole, with no anatomical

borders between microcircuits. An algorithm was developed to

approximate input from the thalamus to the central microcircuit

in such a way as to satisfy experimental constraints. We used

data for the number of incoming fibers, bouton density profiles,

and the numbers of synapses per connection (to layer 4) for

the ventral posteromedial (VPM) thalamic input to the barrel re-

gion of somatosensory cortex (Constantinople and Bruno,

2013; Gil et al., 1999; Meyer et al., 2010b). To represent the num-

ber of fibers, we instantiated one fiber centered in each minicol-

umnwith a horizontal spread (Meyer et al., 2010b). We then used

the layer-by-layer bouton density profiles (Meyer et al., 2010b)

(Figure 13A, left), experimental measurements of the mean num-

ber of synapses per thalamic connection in layer 4 (Amitai, 2001;

Gil et al., 1999), and the multi-synapse principle (see above and

Experimental Procedures) to predict the synapses that each

thalamic fiber forms onto different m-types (Figure 13A, right).

The reconstruction reproduced the number of synapses formed

on L4PCs (Figure 13B) (Amitai, 2001; Gil et al., 1999) and pre-

dicted, for example, an average of �12 synapses on L5 pyrami-

dal neurons (Figure 13B), more than for L4PCs. Overall, we pre-

dicted that each thalamic fiber innervates 903 ± 66 neurons

(mean ± SD; n = 100 fibers; Figure 13C; 775 ± 57 excitatory

and 83 ± 11 inhibitory neurons) with an average of 8.1 ± 4.2 syn-

apses/connection. In total, we found that thalamic fibers form�2

million synapses in the central microcircuit (�1% of synapses

across all layers; see Meyer et al., 2010b).

Thalamocortical synaptic transmission was modeled using

in vitro data on synaptic dynamics (Figure 13D, left; Amitai,

2001; Gil et al., 1999) and the generalized excitatory-to-excit-

atory conductances derived above (i.e., similar to L4_EXC, E2

s-type; see Experimental Procedures). Ca2+ dependency was

modeled as for other excitatory connections. The resulting syn-

aptic transmission was validated by comparing in silico PSPs in

L4 and L5 PCs in low-Ca2+ conditions against previous in vivo re-

ports (Bruno and Sakmann, 2006; Constantinople and Bruno,

2013; Figure 13E). Distributions of PSPs in L4 and L5 PCs in

high-Ca2+ conditions were also predicted (Figure 13D, right).

With [Ca2+]o at 1.25 mM and moderate depolarization (in-vivo-

like conditions), the main response to stimulation of thalamic

fibers was in L4 to L6 (Figure S16A). Examination of the

spiking activity of a random selection of neurons, covering all

55 m-types, showed that most m-types in these layers re-
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sponded to the stimulus (Figure S16B). To investigate the effects

of a graded stimulus, we used a single synchronous spike to

activate a progressively increasing number of fibers innervating

the center of the mesocircuit. With [Ca2+]o at 2.0 mM and zero

depolarization (in-vitro-like conditions), activating four or more

fibers evoked a stereotypical high-amplitude PSTH response

(>80 Hz, Figure 14A), similar to previous in vitro observations

(Beierlein et al., 2002). In contrast, stimulation under in-vivo-

like conditions produced graded responses, with 20–30Hz oscil-

lations emerging in the lower layers, particularly in L6, when

higher numbers of fibers were stimulated (Figure 14B). While

under in-vitro-like conditions, stimulating as few as four thalamic

fibers produced all-or-none behavior, indicative of a regenera-

tive state that spread across the whole mesocircuit (Figure 14C),

under in-vivo-like conditions, the activity remained localized

(Figure 14D).

With increasing Ca2+ levels, the stimulus response curves

measured during the first 10 ms of thalamic stimulation shifted

from a linear to a sharp sigmoidal shape (Figure 14E). Analysis

of the velocity of spread revealed a qualitative difference be-

tween the synchronous and asynchronous regimes. In the syn-

chronous regime, the spread of activity accelerated over time,

while in the asynchronous regime, it was constant until the ampli-

tude of the activity fell to zero (Figure 14F). This suggests that,

in the synchronous regime, inhibition cannot act fast enough to

curb the excitation and prevent uncontrolled spreading activity.

Correlated activity is maximal in the regenerative regime and

minimal in the non-regenerative regime (Figure S14), suggesting

a dynamic range for correlations to emerge during information

processing under in-vivo-like conditions. Taken together, the

simulations predict that, at the average [Ca2+]o reported in the

awake state (Jones and Keep, 1988; Massimini and Amzica,

2001; Westerink et al., 1988), the neocortex will exhibit graded

and spatially restricted activation, a prerequisite for the emer-

gence of functional maps with high spatial resolution.

At a level of tonicdepolarizationwhere thenetwork is spontane-

ously active in both the regenerative and non-regenerative

regimes, we observed a spectrum of oscillations with lower fre-

quencies (�1 Hz) in the regenerative regime and higher fre-

quencies in the non-regenerative regime (�10–20 Hz; data not

shown).Maximumpowerwasobserved in layers 5–6 in the regen-

erative regime and in layers 2–3 in the non-regenerative regime

(data not shown). This suggests that shifts along the SA spectrum

contribute to the spectra of oscillatory frequencies observed

in spontaneously active neocortex (see also Tan et al., 2014).

To establish a more complete demarcation between different

activity regimes, we performed a series of simulations system-

atically exploring network state at varying levels of [Ca2+]o and

depolarization. An analysis of average firing rates demarcated

the boundary between evoked and spontaneous activity (Fig-

ure 15A). The boundary between spontaneous regenerative

and non-regenerative regimes was demarcated by the pres-

ence or absence of spontaneous bursting activity (Figure 15B).

The transition between the evoked regenerative and non-

regenerative regimes was determined by an analysis of the

amplitude of the response to stimuli at the edge of the meso-

circuit (Figure 15C). The combination of these activity maps

demarcates four distinct activity regimes: evoked regenerative
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Figure 13. Reconstructing Thalamocortical Input

(A) Bouton and synapse profiles. (Left) The distribution of boutons across the depth of the microcircuit (orange line, Meyer et al., 2010b) assuming one afferent

fiber from ventral posteromedial (VPM) thalamic nucleus per minicolumn, overlaid on randomly chosen neurons. (Right) The resulting synapses formed (green)

with synapses formed by a single fiber (red).

(B) Distribution of the number of synapses per connection formed by the population of thalamic fibers onto L4 and L5 excitatory neurons. L4 distribution is

compared against in vitro data (dashed red line; Gil et al., 1999). Horizontal bar: mean ± SD.

(C) Postsynaptic neurons. Distribution of the number of postsynaptic neurons innervated by individual thalamic fibers.

(D) In-vitro-like conditions. (Left) Synaptic dynamics of thalamocortical connections to L4 excitatory cells (gray, 30 trials; blue, average; [Ca2+]o = 2.0 mM). (Right)

Distribution of PSP amplitudes of thalamocortical connections to L4 and L5 excitatory cells ([Ca2+]o = 2.0 mM, horizontal bar, mean ± SD).

(E) In vivo-like conditions. (Left) Synaptic dynamics of thalamocortical connections to L4 excitatory cells (gray, 30 trials; blue, average; [Ca2+]o = 1.3 mM). (Right)

Distribution of PSP amplitudes of thalamocortical connections to L4 and L5 excitatory cells ([Ca2+]o = 1.3 mM, horizontal bar, mean ± SD). L4 and L5 distributions

are compared against in vivo data (L4, dashed red line, left; Bruno and Sakmann, 2006; L5, star dashed red line; Constantinople and Bruno, 2011).

See also Figure S11 for [Ca2+]o sensitivity of synapse types.
(ER), spontaneous regenerative (SR), evoked non-regenerative

(EN), and spontaneous non-regenerative (SN) (Figure 15D).

Reproducibility of Emergent Properties
The reconstructed microcircuitry is based on biological data

from a large number of different animals and, in some cases,
from different neocortical regions that together provide statis-

tical distributions for layer heights, neuron densities, cellular

composition, and morphological and electrophysiological diver-

sity within and across types of neuron and reflect the diversity

of synaptic anatomy and physiology observed in biological

experiments. The reconstruction process stochastically creates
Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc. 475
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Figure 14. Activity Evoked by Thalamic Input

(A) In-vitro-like stimulus-dependent evoked activ-

ity. Raster plots (top) and PSTHs (bottom) of the

response to stimulation of varying number of

thalamic fibers under in vitro-like conditions (so-

matic depolarization to �60% threshold, [Ca2+]o =

2.0 mM).

(B) In-vivo-like stimulus-dependent evoked activ-

ity. Same as in A for in-vivo-like conditions (somatic

depolarization to �100% threshold, [Ca2+]o =

1.25 mM). Stimulation times and number of fibers

stimulated are shown below.

(C) In-vitro-like activity propagation. A mesocircuit

under in vitro-like conditions (no somatic depolar-

ization, [Ca2+]o = 2.0 mM) stimulated with single

synchronous spikes to each of 16 thalamic

fibers at the center of the central microcircuit. The

mesocircuit at L4 is depicted from above at

different times after stimulation. Neuronal somata

are rendered with a heat color map indicating level

of depolarization.

(D) In-vivo-like activity propagation. Same as in

D but under in vivo-like conditions (somatic depo-

larization to �100% threshold, [Ca2+]o = 1.25 mM).

(E) Stimulus response curves for various levels

of Ca2+ and somatic depolarization to �85%

threshold. Response amplitude determined as the

peak response for the central ten minicolumns in

the first 10 ms of the response.

(F) Propagation of the wave front with time in

response to thalamic stimulation (at t = 0),

measured as the half-maximum of a one-sided

Gaussian fit to the wave front. Exponential fit for

the regenerative activity and linear fit for non-

regenerative activity (conditions as in C and D,

respectively). In the non-regenerative regime, the

amplitude of the wave front was zero at 25 ms.

See also Figure S16 for stimulus responses of

individual m-types.
instantiations of the digital microcircuit that respect these distri-

butions. We have previously shown that detailed synaptic phys-

iology is largely invariant across different instantiations of the

digital microcircuit (Ramaswamy et al., 2012) and that emergent

parameters such as the distributions of the locations of synapses

formed by different presynaptic neurons are also largely invariant

(Hill et al., 2012).

To further assess the reproducibility of the reconstruction as a

whole, we measured the variance of a range of its emergent

anatomical and physiological properties (i.e., properties not

directly specified by the data). The anatomical properties

measured from seven instantiations of each microcircuit (seven

instantiations of BioM and seven each for Bio1–Bio5) included

total number of appositions and synapses, convergence and

divergence of connectivity for each m-type, numbers of excit-

atory and inhibitory synapses and connections, mean numbers

and types of presynaptic neurons innervating neurons belonging
476 Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc.
to different m-types, and numbers of

intra-and inter-laminar synapses and

connections. In each case, we found low

variance compared to the mean (see Fig-
ure S17 for a sample; see Table S1 for selected values; see also

NMC Portal).

To gain a deeper understanding of the physiological variability

of the digital reconstruction, we examined trial-to-trial variability

in the spiking activity of individual neurons and variability across

neurons of the same type, as well as variability across layers and

across digital reconstructions individualized with data from five

different animals (Bio1–Bio5). Cell responses to a single thalamic

stimulation, roughly comparable to a single whisker deflection

(stimulation of a cluster of 60 minicolumns), displayed varying

degrees of trial-to-trial variability (Figure 16A). Since the digital

reconstruction implements biologically grounded stochastic

mechanisms for synaptic transmission, spontaneous release,

and some ion channels, this was expected. However, each

cell-type also displayed a characteristic delay to first spike

response. In some cases, the distribution of single-neuron re-

sponses was similar to that of the population (Figure 16B, left),
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Figure 15. The Regime Map

Characterization of spontaneous and evoked activity under different levels of

depolarization and [Ca2+]o.

(A) Average spontaneous firing rates. White line indicates interpolated transi-

tion between evoked and spontaneous regimes.

(B) Presence of spontaneous bursting activity. White line indicates transition

between spontaneous regenerative (SR) and non-regenerative (NR) activity.

(C) Map of evoked regenerative (ER) and non-regenerative activity determined

by the amplitude of the response to stimuli at the edge of the mesocircuit in

relation to the initial response at the center. White line indicates the transition

between the ER and NR regimes. Blue-green region is extrapolated to be NR.

(D) Schematic map of showing the four activity regimes. Evoked regenerative,

ER; spontaneous regenerative, SR; evoked non-regenerative, EN; sponta-

neous non-regenerative, SN.
while in others it was markedly different (Figure 16B, right). For

both excitatory and inhibitory neurons, variance in response

times decreased with cortical depth (Figure 16C). In all layers,

trial-to-trial variability was lower than the variability between indi-

vidual neurons of the same type in single trials.

Responses from neurons of the same m-type, in digital recon-

structions based on data from individual animals (Bio1–Bio5),

displayed higher variability across reconstructions than in

different instantiations of the average microcircuit (BioM) (for

an example, see Figure 16D, left). To isolate the source of this

inter-individual variability, we began by re-examining the SA

spectra for the reconstructions at different levels of Ca2+. We

found that they all displayed the spectrum but that the precise

level of Ca2+ at the transition between the synchronous and

asynchronous state was slightly different for each reconstruc-

tion, ranging from 1.23 to 1.31 mM [Ca2+]o (Figure S13). We

therefore repeated the simulations, setting the Ca2+ level such

that each reconstruction was shifted to the same point along

the spectrum relative to the transition. Under these normalized

conditions, the variance in the responses of specific m-types

across reconstructions decreased strikingly (Figure 16D, right).

Figure 16E summarizes the different sources of variability for

all neurons in L4 and L5.

Taken together, these results demonstrate the ability of the

digital reconstruction to accommodate physiological variability

while maintaining reproducibility and are evidence of its potential

to generate useful biological insights. To further test this poten-

tial, we attempted to replicate results from an array of recent

in vivo studies.

Reproducing In Vivo Findings
The digital reconstructions described above aimed to recreate

the anatomy and physiology of an isolated slice of neocortical

tissue, but not specifically to replicate any particular in vivo

experiment. Nonetheless, we tested the ability of the digital

reconstruction to replicate such experiments. We selected a

set of recent in vivo studies in which a reasonable replication

of the stimulation and analysis protocols was technically

feasible. We then selected an arbitrary instantiation of BioM

and used this model for all tests. In each case, we maintained

the model’s original parameters, without introducing modifica-

tions to fit previously reported results—a ‘‘zero tweak’’ strategy.

All simulations were performed near the transition from the syn-

chronous to the asynchronous state.
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Figure 16. Reliability of Microcircuit Re-

sponses

(A) Raster plot of the spiking activity of an exem-

plary L23PC (top) and an exemplary L4PC (bottom)

in response to simulated thalamocortical stimula-

tion with 60 fibers. The first spike after the stimulus

in each of 200 trials is indicated in red, other spikes

in black. The blue line indicates the probability that

the neuron fires a spike in a 5 ms bin.

(B) Histograms of the response delay (delay of the

first spike after stimulus presentation) for L23PCs

(left) and L4PCs (right). (Black) For 200 trials of 25

randomly chosen neurons of the indicated type.

(Red) For 200 trials of the neurons indicated in A.

(C) Standard deviation of the response delay of

neurons in different layers across trials. Red line

indicates the median of neurons, blue boxes the

25th and 75th percentiles, and whiskers the full data

spread. (Top) Excitatory neurons; (bottom) inhibi-

tory neurons.

(D) Standard deviation of the response delay

across trials of neurons when placed in microcir-

cuits constructed from different biological data-

sets (Bio1–Bio5). (Top) Of five L4SPs. (Bottom) Of

five L6SBCs. (Left) Under simulated extracellular

Ca2+ concentration of 1.25 mM. (Right) When the

calcium concentration was set to a value on the

border between regenerative and non-regenera-

tive activity for that particular microcircuit. Boxes

and whiskers as in C.

(E) Comparison of the different sources of vari-

ability. (Left to right) Inter-trial variability (same

neuron in samemicrocircuit across trials); neuronal

variability (same trial in same microcircuit across

neurons of a given m-type); inter-circuit variability

(same neuron in different microcircuit); inter-circuit

variability under normalized Ca2+ concentrations.

(Top) In layer IV; (bottom) in layer V. Boxes and

whiskers as in C.

See also Figure S17 for the anatomical variability of

microcircuits.
Neuronal Responses to Single-Whisker Deflection

Many in vivo studies of evoked neuronal activity have reported

that basal activity is sparse in all cell types, that the response

characteristics of individually recorded neurons display cell-

type-specific diversity, and that response latencies are cell

type and layer specific (Constantinople and Bruno, 2013;

Reyes-Puerta et al., 2015). To test the ability of the reconstruc-

tion to reproduce these findings, we attempted to replicate

some of the experiments reported in a recent study by Reyes-

Puerta et al. (2015), in which the authors recorded and analyzed

neuronal responses to a single-whisker deflection in the

barrel cortex of anaesthetized adult rats. We approximated the

stimulus as a single pulse in 60 reconstructed thalamic fibers

projecting to the center of the digital microcircuit. As shown in

Figure 17A1, the response to the stimulation displays cell-type-

specific diversity that compares reasonably well with the results

reported in Figure 3A of the Reyes-Puerta et al. study (Reyes-

Puerta et al., 2015), with the exception of the OFF response,

which is not as prominent. The general distribution of responses

for excitatory and inhibitory cells is also comparable (Figure 17A2

in silico versus Figure 3B in vivo), though again with fewer OFF
478 Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc.
responses. As in Reyes-Puerta et al. (Reyes-Puerta et al.,

2015), most responses occurred within 10–20 ms of the stimulus

and were generally led by inhibitory cells and, more specifically,

by inhibitory cells in L4 and L5 (Figure 17A3 in silico versus Fig-

ure 4B1 in vivo).

Anti-correlated Inhibitory Activity Cancels Out Highly

Correlated Excitatory Activity

Many previous studies have struggled to explain the uncorre-

lated neuronal spiking activity that is often observed in vivo

(Celikel et al., 2004; Mazurek and Shadlen, 2002), with some

suggesting that it is the result of poorly correlated excitatory

activity (as expected if excitatory neurons generate a rate

code), while others argue that correlations in excitatory activity

are cancelled out by anti-correlated inhibition (Beierlein et al.,

2000; Okun and Lampl, 2008). A model developed to address

this issue by Renart et al. (2010) shows that it is indeed theoret-

ically feasible for anti-correlated inhibitory activity to cancel out

highly correlated excitatory activity (see their Figure 3). To test

this hypothesis, we therefore analyzed whether this phenome-

non was evident during spontaneous activity in the digital recon-

struction. Although the digital reconstruction was not specifically
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Figure 17. Cell-Type Responses In Vivo and E-I Balance

(A1) Cellular response types to simulated single-whisker deflection. Each subplot represents the activity of an individual cell, containing the raster plot aligned

to simulated whisker deflection and the PSTH. Upon simulated whisker deflection, neurons increased their firing rate (ON cells), showed no change in firing rate

(NR cells), or decreased their firing rate (OFF cells). (A2) Comparison of mean firing rates before and after whisker deflection plotted in logarithmic scale (2630

excitatory and 550 inhibitory neurons). Empty symbols represent neurons showing no significantly different activity in both periods (NR cells), and filled symbols

represent neurons showing significantly different (p < 0.05) activity (ON and OFF cells). (A3) Mean first-spike latencies of inhibitory (INH) and excitatory (EXC)

neurons to simulated whisker deflection, defined by first spike occurrence within 30 ms after stimulation, mean over 200 trials, for all 31,346 neurons in the

stimulated column. Each box plot represents median, interquartile, and range of latencies; crosses represent outliers (2.5 times interquartile range).

(B1) Raster (top) of the spontaneous spiking activity of 500 excitatory (red) and inhibitory (blue) neurons under in-vivo-like conditions (100% depolarization and

[Ca2+]o = 1.25 mM). Bottom curves show tracking of instantaneous population-averaged activities (transformed to z-scores, bin size 3ms). Average firing rates of

E and I cells were 1.09 ± 1.0 Hz and 6.00 ± 8.95 Hz, respectively (n = 1,000; mean ± SD). (B2) Histogram of spike-spike correlations (black, count window 50 ms)

and of jittered spike trains (gray, jitter ± 500 ms). (B3) Population-averaged cross-correlograms of the somatic membrane current, when cells are held at the

reversal potential of inhibition (blue) or of excitation (red) in both cells, or at one potential for one cell and at the other potential for the other cell (magenta). The

black curve is for pairs at resting potential.

See also Figure S18 for details of E-I balance.
designed to produce this phenomenon, it nonetheless generated

excitatory conductances in single neurons that were highly

correlated but effectively cancelled out by anti-correlated inhib-

itory conductances (Figure 17B).

Deeper investigation revealed that spiking is correlated with

momentary imbalances between excitatory and inhibitory con-

ductances lasting <10 ms and that the timing of spikes can

be predicted from the difference in the E and I conductances

(Figure 17B). We also found that the precision with which

these imbalances drive spiking falls dramatically as the network

state shifts away from the transition in either direction. When it
shifts toward the synchronous state, the correlation is strong

but broad, resulting in a temporally imprecise increase in

spiking more suitable for a rate code. When it shifts toward

the asynchronous regime, the correlation is sharp but too

weak to effectively drive spiking, a regime more suitable for a

population code based on a high degree of correlated activity

(Figure S18).

Temporally Sequential Structure during Spontaneous

Activity of L5 Neurons

The search for precise temporal structures in brain activity, such

as synfire chains, motifs, repeated spike patterns, etc., has a
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Figure 18. Triplet Structure and Diverse Population Coupling

Precisely repeating triplet structures can be predicted from individual neural latencies under synchronous stimulation (20 thalamic fibers, [Ca2+]o = 1.25 mM; cf.

Luczak et al., 2007, Figure 5).

(A1) Schematic depicting the structure of a spike triplet for a triad of neurons. (A2) Count matrix for a representative neuron triad. Black box indicates region

containing precisely repeating triplets. White square signifies mode. (A3) Correlation between neural latency differences and triplet structures. (A4) Precisely

repeating triplet probability peaks shortly after onset of activated state. This peak is significant when compared with two null hypotheses (independent Poisson

model, blue curve; common excitability model, red curve). Dashed lines show standard deviation.

(B1) Time course of population firing rate just below the transition to the synchronous regime (microcircuit ‘‘Bio5,’’ [Ca2+]o = 1.27 mM). (B2) (Top) Spike-triggered

average of population activity (stPR) for four representative neurons in layers V and VI. (Bottom) Same as above but after shuffling (see Okun et al., 2015; cf.

Figures 1E and 1G). (Inset) Distribution of the population-coupling coefficient before and after shuffling (seeOkun et al., 2015). (B3) Relative fractions of m-types of

soloists (population coupling < 0.5) and choristers (> 2.0).

See also Figure S19 for results under lower [Ca2+]o.
long history. These patterns are thought to reflect ‘‘stereotypical

organized sequential spread of activation through local cortical

networks,’’ as demonstrated recently (Luczak et al., 2007). Luc-

zak et al. (2007) found a temporally sequential structure during

spontaneous activity of L5 neurons in vivo in the somatosensory

cortex (Luczak et al., 2007). In particular, they found that, after

the onset of an UP state, trios of neurons generated spike motifs

(triplets) with a precisely defined temporal relationship between

spikes that could not be explained by random correlations during

high-frequency spiking (see their Figure 5). A similar analysis of

the evoked response to thalamic stimulation of L5 neurons in

the digital reconstruction found the same repeating triplet struc-

tures as observed in vivo (Figure 18A). A second in silico exper-

iment further into the asynchronous regime (i.e., at lower Ca2+

levels; 1.0 mM) showed no evidence of triplet structures (Figures

S19A–S19C), supporting our prediction that, in the highly asyn-

chronous regime, it is difficult for single neurons to track fine

temporal structure in network activity unless the population of
480 Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc.
presynaptic neurons becomes highly synchronized, for example,

by external input.

Soloists versus Choristers

A recent study showed that some neurons in a network display

spiking activity that is tightly correlated with the average activity

of the population of neurons in the network (choristers), while

others display a diversity of spiking patterns whose correlation

with that of the population is smaller than expected by chance

(soloists), suggesting that they actively avoid correlating with

the rest of the population (Okun et al., 2015). We simulated the

spontaneous activity of a single microcircuit in the asynchronous

state but close to the transition to synchronous state for 800 s

(Figure 18B1; see also Figure S19D) and analyzed the spiking

activity of every individual neuron in L5 and L6 with respect to

the spiking of all others. Replication of the analysis in Okun

et al. (2015) yielded comparable results, although the proportion

of choristers appears to be somewhat higher in the digital recon-

struction (Figure 18B2 in silico versus Figures 1E and 1G in vivo).



We found that soloists are predominantly interneurons, while

choristers are mainly pyramidal neurons (Figure 18B3). Pyrami-

dal cells can be found on both extremes; they tend to be soloists

when their spontaneous firing rate is high, the ratio of excitatory

to inhibitory synaptic innervation is high, and most of the inner-

vating synapses are close to their somata (data not shown).

Shifting the network further into the synchronous regime leads

to an increase in the number of choristers, consistent with gen-

eral recruitment of all neurons and a rate-based response. On

the other hand, shifting the network further into the asynchro-

nous regime results in a loss of both choristers and soloists dur-

ing spontaneous activity (data not shown). This finding supports

our prediction that, when the network is far into the asynchro-

nous regime, single neurons cannot easily sense and respond

to fine temporal structure in network activity.

Functional Implications
These replications of in vivo studies suggest that the digital

reconstruction can yield physiologically relevant insights. We

therefore went on to address two issues that it has not been

possible to address experimentally, either in vitro or in vivo.

In a first experiment, we investigated the ability of single L5

pyramidal neurons to discriminate between spatially segregated

inputs. As previously, we used stimuli that approximated a

whisker deflection (Figure 19A). To measure how far apart the

stimuli needed to be for single neurons of the microcircuit to

discriminate between them, we progressively increased the

spatial separation between the stimuli and measured the

response of L5 pyramidal cells in terms of rate (represented by

the number of spikes emitted) and timing (represented by the

latency to first response). Analysis of the difference between re-

sponses yielded a measure of latency- and rate-based discrim-

ination. Figure 19B1 shows the responses of a single, arbitrarily

selected neuron to stimuli applied at locations separated by

150 mm. In this case, latency- and rate-based discrimination

are both significant (Figures 19B2 and 19B3). Exploration of

the discriminatory power of L5 pyramidal neurons with different

separations between the stimuli and at different levels of Ca2+

(Figures 19C1 and 19D1) showed that many neurons discrimi-

nate between inputs separated by 150 mm or more and that a

few can discriminate between stimuli with separations as small

as 50 mm (i.e., approximately two minicolumns apart). In general,

timing-based discrimination is much stronger than rate-based

discrimination (Figures 19C2 and 19D2). Interestingly, at all sep-

arations, discrimination is strongest at Ca2+ levels close to the

transition between the synchronous and asynchronous regimes

(Figure 19D).

Unexpectedly, we noticed a spatial asymmetry in the discrim-

inatory power of the neurons (Figures 19C1 and 19C2, shaded

background). To test the reproducibility of the phenomenon,

we repeated the simulation using instantiations of Bio1–Bio5

that we already knew to be highly variable (see Figure S17 and

Table S1). All reconstructions showed asymmetry, but the spe-

cific degree and pattern of asymmetry was different in each

case (Figure 19E1, four instantiations shown). We therefore

hypothesized that the asymmetry reflects local variations in con-

nectivity arising from the statistical instantiation of the digital

microcircuit, amplified by edge effects. To test this hypothesis,
we repeated the discrimination experiment with a mesocircuit

constructed as previously described ([Ca2+]o 1.25 mM, separa-

tion 150 mm, see shaded background in Figures 19C1 and

19C2), taking the same microcircuit used in the previous ex-

periment (Figures 19C1 and 19C2) as its central microcircuit

(Figure 19E2, white hexagon). Under these conditions, the asym-

metry was markedly reduced. We also found strong variation in

overall discrimination power across the different instantiations

(Figure 19E1).

In the final series of simulations, we explored the relationship

between the size of the network and its emergent properties,

the emergence of the transition between the synchronous

and asynchronous states, and the emergence of spontaneous

spatio-temporal patterns for different sized networks (10–

1,000 minicolumns). In reconstructions smaller than the

anatomically defined microcircuit, the transition occurred at

high levels of Ca2+ and fell sharply with increasing size of the

reconstruction, reaching a plateau in reconstructions larger

than�300 minicolumns (i.e., the size of the anatomically defined

microcircuit; Figures 20A and 20B). Even in reconstructions

as large as 1,000 minicolumns, the spectrum of states did not

exhibit any further qualitative change (Figure 20B). Figures 20C

and 20D show the emergence of spontaneous clustered activity

as the network increases in size. We found that, in smaller recon-

structions, the time course of spontaneous firing rates in different

clusters of �10 minicolumns was very similar and became pro-

gressively dissimilar as the reconstructions increased in size (Fig-

ure 20D). The between-cluster correlation coefficient decreased

exponentially with increasing distance between clusters, also

plateauing at distances comparable to the diameter of the

anatomically defined microcircuit (�202 mm; Figure 20E). As a

related measure, we also examined the trend in correlated activ-

ity within a central set of �50 minicolumns as the surrounding

network increased in size. We found that, in larger networks,

the correlation fell exponentially, bottoming out in microcircuits

of �300 minicolumns and larger (r = �0.4; Figure 20F).

DISCUSSION

This paper presents a first-draft digital reconstruction of neocor-

tical microcircuitry that integrates experimental measurements

of neuronal morphologies, layer heights, neuronal densities,

ratios of excitatory to inhibitory neurons, morphological and

electro-morphological composition, and electrophysiology, as

well as synaptic anatomy and physiology (see ‘‘Reconstruction

Data’’ and Table S3). It has been validated against a spectrum

of separate anatomical and physiological measurements not

used in the reconstruction (see ‘‘Validation Data’’ and Table

S3). The reconstruction provides predictions of a wide range of

anatomical and physiological properties of the neocortical

microcircuitry (Box 1). Simulation of the reconstruction shows

a spectrum of emergent network activity states with a sharp

transition from synchronous to asynchronous states. At this

particular point along the spectrum, digital reconstructions

reproduce a number of findings from in vivo studies, allowing

deeper investigation of their underlying cellular and synaptic

mechanisms. They also enable experiments that have not so

far been possible either in vitro or in vivo. Investigation of the
Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc. 481



D

A B1 B2 B3

C1 C2

E1 E2

Figure 19. Spatial Resolution

(A) The ability of L5PCs in the microcircuit to discriminate between inputs given by bundles of ten thalamic fibers was examined. The stimuli were centered on

locations offset from the center of the circuit to the left or right. (Top) Spatial extent of the synapses activated by ten thalamic fibers in the microcircuit.

(B1) Raster plot of spiking activity of a neuron in response to ten repetitions of spatially constrained stimuli at different locations (1 s of pulses at 20 Hz). Black

arrows on top indicate individual pulses. (B2) Histogram of the delay to the first spike after the start of stimulus presentation of the neurons in B1. The difference in

delay is statistically significant (p < 0.001, Wilcoxon rank sum test). (B3) Histogram of the number of spikes during stimulus presentation (gray window in B1).

Differences in spike counts were statistically significant.

(C1) Mean discrimination strength. �log10 of the p value as in B2 of L5PCs at different locations is indicated as color coded. Red and blue stars indicate the

centers of the two stimuli to discriminate. Black dots indicate locations of individual L5PCs with a discrimination strength >2 (p < 0.01). Each row indicates a

different extracellular Ca2+ concentration. (C2) Same, for the discrimination power based on spike count as in B3.

(D) Fraction of L5PCs with a discrimination power >2 (light red) and >3 (dark red) for different conditions shown in C. Asterisks indicate instances in which the

number of neurons with separation strength >2 is larger than can be explained as false positives (*p < 0.05; ***p < 0.001).

(E1) Discrimination power for a stimulus separation of 150 mm at 1.25 mM [Ca2+]o for four microcircuits based on biological datasets Bio2–Bio5. (E2) Discrimi-

nation based on response delay and spike count when the same microcircuit was embedded in six surrounding microcircuits.
size of network required to reproduce key functional properties

of the microcircuit shows that it is roughly equivalent to the vol-

ume of neocortical tissue used as the basis for the reconstruc-

tion. This is evidence that a network of this size is the minimum

functional unit required for neocortical information processing.

Validity of the Digital Reconstruction
The reconstruction certainly includes errors due to mistakes and

gaps in experimental datasets and incomplete understanding of
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biological principles. For instance, additional cell type markers

would improve the accuracy of the morphological composition,

saturated EM reconstructions could be used to further validate

the derived connectivity, more experiments reporting combined

voltage and current measurements for synaptic responses will

strengthen conclusions on quantal conductances and connec-

tion-specific synaptic dynamics, and further characterization

of the sensitivity of different synapses to [Ca2+]o may allow

more accurate demarcation of the transitions between different
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Figure 20. Emergence

(A) Transition between regenerative and non-

regenerative regimes as a function of circuit size

and calcium concentration. Panels of raster plots

(top) and PSTHs (bottom) of spontaneous activity

are shown for a selection of circuit sizes and cal-

cium concentrations (100% depolarization).

(B) Overview of a broad range of circuit sizes and

calcium concentrations as in A. Red crosses and

green dots indicate regenerative and non-regen-

erative circuit behavior, respectively, as assessed

by visual inspection. Black curve depicts interpo-

lated transition between regenerative and non-

regenerative regimes.

(C) Spatial profile of instantaneous firing rates for

circuits of increasing size. Mean instantaneous

firing rates were estimated for contiguous group-

ings (clusters) of approximately ten minicolumns

using a K-means algorithm. Six spatial firing rate

profiles are shown, generated by interpolating

these rate estimates (see Experimental Pro-

cedures) at two selected times for three circuit

sizes. Colored circles show five exemplary cluster

centers.

(D) Time traces of firing rates for selected clusters.

Firing rate time courses are shown for the clusters

in C in corresponding color for all three circuit sizes.

Dashed boxes indicate the times, t1 and t2, at

which spatial profiles are compared in C.

(E) Pairwise cross-correlation coefficients of cluster

firing rate time courses for all cluster combinations

versus inter-cluster separation for varying circuit

sizes (50 to 1,000 minicolumns). Pair-wise corre-

lation decays exponentially with distance (blue

dashed line shows exponential fit to 1,000 mini-

columncircuit dataset, space constant l=202mm).

(F) Mean pairwise cluster correlation coefficients

versus circuit size for each circuit’s centermost

five clusters (red circles) and for all clusters (blue

circles). Error bars indicate SD. Dashed curves

indicate exponential fits to respective data.
activity states and may allow a more precise determination of

the role played by each neuron and synapse type in maintaining

and shifting regimes. For example, a recent EM study found

evidence for a higher number of synapses per connection than

predicted by a naive interpretation of Peters’ rule (Kasthuri

et al., 2015). Applying the same analysis to the digital reconstruc-

tion produced comparable findings (Figure S20 in silico versus

Figures 7D, 7F, and S6B in Kasthuri et al., 2015). These proper-

ties emerge in the digital reconstruction as a consequence of

preferential pruning of connections with low numbers of synap-

ses (Reimann et al., 2015).

The validation tests conducted at multiple stages of the recon-

struction process reduce the risk that errors could lead to major

inaccuracies in the reconstruction or in simulations of its emer-

gent behavior. For example, validation of electrical neuron

models against independent data insulates the emergent

behavior of the network from the impact of our limited knowledge

of ion channel kinetics and distributions. More generally,

the reconstruction passed multiple tests broadly validating
its underlying anatomy and physiology. For instance, major

errors in cell morphology, densities, composition, and con-

nectivity would make it difficult to reproduce the types of

neuronal assemblies discovered in 12-patch experiments, the

numbers of GABAergic synapses on pyramidal somata, protein

staining patterns, layer-wise synapse densities, connection

probabilities, bouton densities, and distributions, etc. (see

Table S3). These properties lie well within experimentally re-

ported ranges. The reproducibility of observations and pre-

dictions in multiple reconstructions using data from different

animals and incorporating statistical variations provide evidence

that they are robust.

Although the reconstruction is, to our knowledge, the most

detailed to date, it omits many important details of microcircuit

structure and function, such as gap junctions, receptors, glia,

vasculature, neuromodulation, plasticity, and homeostasis.

Furthermore, it represents a snapshot of just one brain region,

in one strain of male rat, at a young age. This limits the gener-

ality of the conclusions that can be drawn. For instance, in
Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc. 483



Box 1. Microcircuit Predictions

1. The cellular composition of the microcircuit

2. Total lengths of dendrites and local axons

3. Increase in neuronal diversity with cortical depth

4. Total number of appositions and synapses

5. Total number of connections and connection types

6. Number of connections and synapses per connection between different neuron types

7. Number of connections and synapses formed by incoming fibers

8. Increase in the E-I neuronal fraction with cortical depth

9. All input and output synapses for all neuron types

10. Quantal synaptic conductances for all intrinsic synapses

11. Total excitatory and inhibitory conductances for all neuron types

12. Number and combination of pre- and postsynaptic neurons for all neuron types

13. Detailed synaptic physiology for connections between all neuron pairs

14. E-I ratios within and across layers

15. A spectrum of network states ranging from synchronous to asynchronous activity

16. Extracellular calcium regulates the network state through differential effects on synaptic dynamics

17. Role of layers, neuron, and connection types in modulating network states

18. The in vivo phenomena examined only emerge near the transition between synchronous and asynchronous states
animals of the age used for the study, dendritic morphologies

have already matured to adult levels (Larkman, 1991a; Romand

et al., 2011), but the ascending axons may not be fully repre-

sented and are certainly not completely mature (Romand

et al., 2011). However, studies at a greater level of biological

detail (e.g., including glia, receptors, and signaling pathways)

and investigations of different brain regions in animals of

different ages, gender, and species, as well as in disease

models can use the reconstruction as a reference point. Find-

ings consistent with the reconstruction would indicate the

sufficiency of the principles of organization used in the recon-

struction process; discrepancies may point to new principles.

For example, if application of the connectivity algorithm to

another brain region or to animals at a different age or belong-

ing to a different species failed to yield results consistent with

experimental findings, this would point to specific variations

in the connectivity rules.

Failure in validation could also indicate errors in experi-

mental data. For instance, the reconstruction indicated that

cell densities from a dozen previous studies were all too low

to account for spine and synapse densities, suggesting new

experiments, which verified this prediction. The reconstruction

also revealed that many experiments underestimate synaptic

conductances and suggests that in vitro experiments that do

not account for calcium level in the bath may misinterpret

the relevance of their findings for in vivo conditions. These ex-

amples illustrate how the reconstruction process does not take

experimental data at face value but uses complementary,

related datasets to constrain the use as parameters, wherever

possible.

Functional Implications
Simulations of the spontaneous and evoked activity that ac-

counted for the differential sensitivity to Ca2+ of different types

of synapses and that explored changes in Ca2+ levels revealed
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a spectrum of activity states ranging from synchronous to asyn-

chronous behavior. Varying the Ca2+ level profoundly changes

the overall E-I balance and hence the position of the network

along the spectrum, leading to a sharp transition between activ-

ity regimes. These in silico predictions were verified by new

in vitro experiments.

Further simulations showed that the level of Ca2+, where the

transition occurred, varies across digital reconstructions that

use data from different animals and that this accounts for a

significant proportion of the variance in neuronal spiking and

the spatial resolution of the network. We also found that a

small adjustment in Ca2+ levels (�0.05 mM) in individual recon-

structions significantly reduces their physiological variability.

These simulations provide an example of how variations in in-

dividual neuroanatomy may lead to functional differences.

Inspired by this finding, we performed further simulations,

which demonstrated that activating or inhibiting specific layers,

neurons, and synaptic connections also shifts the network

along the spectrum. While it is well known from previous

theoretical findings that changing E-I balance changes the state

of the network (Brunel, 2000; van Vreeswijk and Sompolinsky,

1996), the simulations further suggest that any mechanism

that differentially changes the synaptic dynamics of different

types of synapses (e.g., through neuromodulation; for reviews,

see Lee and Dan, 2012; Zagha and McCormick, 2014) could

alter the boundaries between activity regimes in complex

ways. We speculate that other emergent properties, such as

UP and DOWN states with two meta-stable fixed points,

as observed in vivo (Steriade et al., 1993), which are not

reproduced by the digital reconstruction, may require thalamo-

cortical interactions (Hughes et al., 2002), cortico-cortical inter-

actions (Timofeev et al., 2000), intrinsic oscillators (L}orincz

et al., 2015; Sanchez-Vives and McCormick, 2000), or neuro-

modulation (Constantinople and Bruno, 2011; L}orincz et al.,

2015; Sigalas et al., 2015). Modulation of cellular or synaptic



physiology may therefore serve as mechanisms to dynamically

reconfigure the network to satisfy different computational

requirements.

Reproducing In Vivo Findings
Although the digital reconstruction was largely based on in vitro

dataandwasnotdesigned to reproduceanyparticular experiment

or tocapturecomplex invivoconditions, it yielded results thatwere

qualitatively comparable to a number of major in vivo findings and

madepredictionsbeyondwhatwaspossible in theseexperiments,

without tweaking any of the model parameters.

For example, the digital reconstruction made it possible to

address a long-standing question concerning the mechanisms

underlying the uncorrelated activity frequently observed in

in vivo experiments (Haider et al., 2006). Previous theoretical

work has shown that uncorrelated activity could be the result

of tightly correlated excitatory conductances that are effec-

tively cancelled out by anti-correlated inhibitory conductances

(Renart et al., 2010; van Vreeswijk and Sompolinsky, 1996).

Our simulations, using a model not specifically designed to

address this question, confirm this effect as an emergent prop-

erty of the network. The simulations further suggest that

cortical activity in vivo approaches a critical transition along

the synchronous asynchronous spectrum, beyond which

regenerative activity leads to neuronal avalanches (see also

Beggs and Plenz, 2003). Around this transition, spiking activity

is highly correlated with fine temporal structure in synaptic

input, reflected in brief moments of imbalance between excit-

atory and inhibitory conductances. Maximal discrimination

between spatially segregated inputs, the generation of fine

temporal structures such as triplets, and soloist-like and

chorister-like behavior all emerge close to the transition. A

recent study has experimentally characterized the plasticity

mechanisms for maintaining the network close to this transition

(Delattre et al., 2015).

Reproducing these in vivo findings was surprising because

the digital reconstruction was based on data and architectural

principles obtained from the immature rat somatosensory

cortex, while many of the in vivo findings came from different

neocortical regions in adult animals, sometimes belonging

to other species. The fact that the reconstruction reproduces

these phenomena suggests that they arise from fundamental

properties of the neocortical microcircuit.

Concluding Remarks
This study demonstrates that it is possible, in principle, to recon-

struct an integrated view of the structure and function of neocor-

tical microcircuitry, using sparse, complementary datasets to

predict biological parameters that have not been measured

experimentally. Although the current digital reconstruction can

already be used to gain insights into the way the microcircuitry

operates, it is only a first step. To facilitate integration of new

experimental data and challenges to the principles on which

it is based, we have created a public web resource, which

provides access to experimental data, models, and tools used

in the reconstruction (The Neocortical Microcircuit Collabora-

tion [NMC] Portal, https://bbp.epfl.ch/nmc-portal; Ramaswamy

et al., 2015). This will allow the community to integrate their
own data, perform their own analyses, and test their own

hypotheses.

EXPERIMENTAL PROCEDURES

A detailed description is available in the Supplemental Experimental

Procedures.

Data Acquisition

Neuron Morphology

Neuron morphologies were obtained from digital 3D reconstructions of

biocytin-stained neurons from juvenile rat hind-limb somatosensory cortex,

following whole-cell patch-clamp recordings in 300-mm-thick brain slices

(Markram et al., 1997). In some of the reconstructed neurons, bouton locations

were annotated on the axon (Wang et al., 2002). Reconstruction used the Neu-

rolucida system (MicroBrightField).

Neuron Electrophysiology

Neurons were stimulated with a set of previously described protocols (Le Bé

et al., 2007; Wang et al., 2002, 2004). A subset of these stimuli was used

to generate neuron models; a different subset was used to validate the

models.

Synaptic Anatomy

Data on the anatomy of synaptic connections were collected from previous

studies in which synaptically coupled neurons were digitally reconstructed,

and putative synapses were identified using criteria identifiable in light micro-

scopy and validated using EM. In brief, putative synapses were identified at

appositions between arbors, where a bouton was also present on the axon

of the presynaptic neuron (Markram et al., 1997).

Synaptic Physiology

Presynaptic neurons were stimulated with a set of previously described proto-

cols (Gupta et al., 2000; Markram et al., 1998; Tsodyks and Markram, 1997;

Wang et al., 2002, 2006). The synaptic parameters required to model

the synapses were obtained by fitting the responses against the Tsodyks-

Markram model for dynamic synaptic transmission (Fuhrmann et al., 2002;

Tsodyks and Markram, 1997).

Tissue Immunohistochemistry

Standard immunohistochemical methods were used to label markers of cell

types (Lefort et al., 2009). Stained cells were counted under light microscopy.

Layer boundaries and densities per layer were computed on slices using opti-

cal dissectors on NeuN-stained tissue (West and Gundersen, 1990; Williams

and Rakic, 1988) and Stereo Investigator software (StereoInvestigator 7.0,

MicroBright Field). Data for each cortical layer (I, II, III, IV, Va, Vb, VI) were

collected from different animals (n = 5). Final values for neuronal densities

and layer thicknesses were corrected for shrinkage. E/I ratios were determined

by soma counting in confocal microscopy imaging of dual NeuN- and GABA-

stained tissue.

Electron Microscopy

Serial EM stacks were obtained for blocks of neocortical tissue, as previously

described (Denk and Horstmann, 2004).

Multi-electrode Array Experiments

A 3D multi-electrode array with 60 pyramidal platinum electrodes (Qwane

Bioscience SA) was used to obtain extracellular recordings from neurons in

slices, as previously described (Delattre et al., 2015; Rinaldi et al., 2008).

Experimental data analysis was performed in Matlab (The MathWorks) with

custom scripts. Extra-cellular spikes were detected when the recorded signal

crossed a dynamic threshold.

Manipulating [Ca2+]o
Extracellular Ca2+ concentration ([Ca2+]o) was changed by bath perfusion with

artificial extracellular fluid containing a modified [Ca2+]o. Bath changing times

were minimized by employing a pipette to remove the recording chamber

solution prior to changing the subsequent solution.

Reconstruction Process

Digital Neuron Morphologies

Following 3D reconstruction, the cut ends of neuronal morphologies were

restored using a repair algorithm (Anwar et al., 2009). Neuronal arbors
Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc. 485
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were digitally unraveled to compensate for tortuosity caused by shrinkage,

and neuron morphologies were cloned (see Supplemental Experimental

Procedures).

Electrical Neuron Models

Multicompartmental conductance-based models of neurons were generated

using up to 13 active ion channel types and a model of intracellular Ca2+ dy-

namics. Axon initial segments (AIS), somata, basal dendrites, and apical

dendrites were separated. Interneurons contained only one dendritic region.

Each region received a separate set of channels (see NMC portal, https://

bbp.epfl.ch/nmc-portal; Ramaswamy et al., 2015). Of the axon, only the AIS

was simulated. Each AIS was represented by two fixed-length sections,

each with a length of 30 mm. AIS diameters were obtained from the recon-

structed morphology used for model fitting. Action potentials detected in the

AIS were sent to the postsynaptic synapses with a delay corresponding to

the axonal length, assuming an axonal velocity of 0.3 m/s. Neuron models

were fitted using a feature-based multi-objective optimization method, as

previously described (Druckmann et al., 2007).

The Microcircuit Volume

Layer thicknesses and the diameter of the microcircuit were used to construct

a virtual hexagonal prism (see main text). A virtual slice was generated from a

1 3 7 mosaic of microcircuits as a sheet (230.9 3 2800 mm). A meso-circuit

was also generated. The meso-circuit consisted of a single microcircuit

surrounded by additional microcircuits on all faces.

Cellular Composition

Cell density measurements and experimentally determined fractions of m- and

me-types were used to generate the position of each cell in the volume of

tissue, using E:I ratios to correct for sampling bias. Each cell was assigned

the optimal morphology for its location in the volume (see Supplemental Exper-

imental Procedures).

Synaptic Anatomy

Locations of synapses were derived using an algorithm described in the com-

panion article (Reimann et al., 2015). The algorithm eliminates appositions that

do not comply with the multi-synapse and plasticity reserve rules and ensures

compatibility with observed biological bouton densities.

Synaptic Physiology

Excitatory synaptic transmission was modeled using both AMPA and NMDA

receptor kinetics (Fuhrmann et al., 2002; Häusser and Roth, 1997; Markram

et al., 1998; Ramaswamy et al., 2012; Tsodyks and Markram, 1997). Inhibitory

synaptic transmission was modeled with a combination of GABAA and GABAB

receptor kinetics (Gupta et al., 2000; Khazipov et al., 1995; De Koninck and

Mody, 1997; Mott et al., 1999). Stochastic synaptic transmission was imple-

mented as a two-state Markov model of dynamic synaptic release, a stochas-

tic implementation of the Tsodyks-Markram dynamic synapse model (Fuhr-

mann et al., 2002; Tsodyks and Markram, 1997). Biological parameter

ranges for the four model parameters were taken from experimental values

for synaptic connections between specificm- andme-types or between larger

categories of pre- and postsynaptic neurons (see Figure 9). Spontaneous

miniature PSCs were modeled by implementing an independent Poisson

process for each individual synapse that triggered release at rates (lspont)

determined by the experimental data (Ling and Benardo, 1999; Simkus and

Stricker, 2002).

Thalamic Innervation

Thalamic input was reconstructed using experimental data for ventro-poste-

rior medial (VPM) axon bouton density profiles in rat barrel cortex (Meyer

et al., 2010b), synapses per connection, and approximate numbers of

incoming fibers. Synapse locations were determined using a variant of the

connectome algorithm (Reimann et al., 2015; see Supplemental Experimental

Procedures). Synapses were assigned to incoming fibers based on a Gaussian

probability centered around each fiber.

Simulation

Microcircuit Simulation

The reconstructed microcircuit was simulated using the NEURON simulation

package, augmented for execution on the supercomputer (Hines and Carne-

vale, 1997; Hines et al., 2008a, 2008b), together with additional custom tools

to handle the setup and configuration of the microcircuit and the output of

results.
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In Silico Experiments

Depolarization was achieved by simulating current injection at the neuron

soma. Currents were expressed as percent of first spike threshold for each

neuron. Changes in [Ca2+]o were simulated by changing the use parameter

of synaptic transmission according to three curves for specific m-types (see

Figure S15). Neuronal in silico knockout experiments were performed by

hyperpolarizing the target population with somatic current injection (�100%

threshold). Thalamic fiber stimulations were performed on circular clusters of

minicolumns. The methods used to replicate previous in vivo experiments

are described in the Supplemental Experimental Procedures.

Data Analysis

Anatomical and physiological data analysis were performed using a custom

suite of Python-based tools operating on a Linux cluster (Supplemental Exper-

imental Procedures). The same analysis as described in Kasthuri et al. (2015)

was applied to compare results between a saturated EM reconstruction and

the digital reconstruction that we generated (see Figure S20). PSPs were

measured at the somata or dendrites of randomly selected pairs of neurons

(30 trials). PSTHs were computed from all neurons in the circuit and were

normalized by neuron number and time bin to express the average instanta-

neous firing rate. Mean spike-spike correlations were calculated as the histo-

gram of intervals between all spike times of two different cells (bin size 1 ms).

Evoked regenerative activity was defined as activity in which peak activity

(PSTH) within 100 ms after stimulus of the outermost 20 minicolumns ex-

ceeded 30 Hz and 70% of the activity of the 20 central minicolumns in the

10 ms after stimulus. Spike rasters show spike events at the locations within

the layers where they occurred (for clarity, only a fraction of spikes are plotted).

Supercomputing

Reconstruction and simulation workflows, such as neuronmodel optimization,

circuit reconstruction, and network simulation, were executed on super-

computers. The systems used included an IBM Blue Gene/L (until 2009), a

CADMOS 4-rack IBM Blue Gene/P (until 2013), a CADMOS 1-rack IBM Blue

Gene/Q (until 2014), and the Blue Brain IV operated by the Swiss National

Supercomputing Center (CSCS) on behalf of the Blue Brain Project, ranked

the 100th most powerful supercomputing system (Top500, June 2015). Blue

Brain IV includes a 4-rack IBM Blue Gene/Q, IBM Blue Gene Active Storage,

and a 40-node Linux cluster for post-processing, analysis, and visualization,

fully interconnected using Infiniband technology and a GPFS file system with

4.2 Petabyte raw storage (Schürmann et al., 2014).

Visualization

Large circuits and simulations in high resolution were visualized using a

custom-developed tool, RTNeuron (Hernando et al., 2012). High-quality, static

images of small neural circuits, individual neurons, and synaptic spines

and boutons were created using Maya 3D animation software (Autodesk,

San Rafael, California, USA).

Software Development

Data integration and post processing as well as reconstruction, simulation,

analysis, and visualization of neuronal network models used >30 software

applications, integrated into automated and semi-automated workflows.

Development was supported by a comprehensive development environment

based on best practices for version control (git), code review (gerrit), and

continuous building, testing, packaging, and deployment (Jenkins).
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H. (2012). Intrinsic morphological diversity of thick-tufted layer 5 pyramidal

neurons ensures robust and invariant properties of in silico synaptic connec-

tions. J. Physiol. 590, 737–752.

Ramaswamy, S., Courcol, J.-D., Abdellah, M., Adaszewski, S., Antille, N., Ars-

ever, S., Guy Antoine, A.K., Bilgili, A., Brukau, Y., Chalimourda, A., et al. (2015).

The neocortical Microcircuit collaboration portal: A resource for rat somato-

sensory cortex. Front. Neural Circuits 9, 44.

Ramón y Cajal, S. (1909, 1911). Histologie du Systeme Nerveux de l’Homme

et des Vertebres. L. Azoulay, trans. Maloine, Paris.

Reimann, M.W., Muller, E.B., Ramaswamy, S., and Markram, H. (2015).

An algorithm to predict the connectome of neural microcircuits. Front. Com-

put. Neurosci. 9, 28.

Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., and

Harris, K.D. (2010). The asynchronous state in cortical circuits. Science 327,

587–590.

Reyes, A., and Sakmann, B. (1999). Developmental switch in the short-term

modification of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neu-

rons of rat neocortex. J. Neurosci. 19, 3827–3835.

Reyes, A., Lujan, R., Rozov, A., Burnashev, N., Somogyi, P., and Sakmann, B.

(1998). Target-cell-specific facilitation and depression in neocortical circuits.

Nat. Neurosci. 1, 279–285.

Reyes-Puerta, V., Sun, J.-J., Kim, S., Kilb, W., and Luhmann, H.J. (2015).

Laminar and Columnar Structure of Sensory-Evoked Multineuronal Spike Se-

quences in Adult Rat Barrel Cortex In Vivo. Cereb. Cortex 25, 2001–2021.

Rinaldi, T., Silberberg, G., and Markram, H. (2008). Hyperconnectivity of local

neocortical microcircuitry induced by prenatal exposure to valproic acid.

Cereb. Cortex 18, 763–770.

Romand, S., Wang, Y., Toledo-Rodriguez, M., and Markram, H. (2011).

Morphological development of thick-tufted layer v pyramidal cells in the rat so-

matosensory cortex. Front. Neuroanat. 5, 5.

Rozov, A., Burnashev, N., Sakmann, B., and Neher, E. (2001). Transmitter

release modulation by intracellular Ca2+ buffers in facilitating and depressing

nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates

a target cell-specific difference in presynaptic calcium dynamics. J. Physiol.

531, 807–826.

Rudy, B., Fishell, G., Lee, S., and Hjerling-Leffler, J. (2011). Three groups of in-

terneurons account for nearly 100% of neocortical GABAergic neurons. Dev.

Neurobiol. 71, 45–61.

Sakata, S., and Harris, K.D. (2009). Laminar structure of spontaneous and sen-

sory-evoked population activity in auditory cortex. Neuron 64, 404–418.

Salinas, E., and Sejnowski, T.J. (2001). Correlated neuronal activity and the

flow of neural information. Nat. Rev. Neurosci. 2, 539–550.

Sancesario, G., Pisani, A., D’Angelo, V., Calabresi, P., and Bernardi, G. (1998).

Morphological and functional study of dwarf neurons in the rat striatum. Eur. J.

Neurosci. 10, 3575–3583.

Sanchez-Vives, M.V., and McCormick, D.A. (2000). Cellular and network

mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3,

1027–1034.

Santana, R., McGarry, L.M., Bielza, C., Larrañaga, P., and Yuste, R. (2013).
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Schürmann, F., Delalondre, F., Kumbhar, P.S., Biddiscombe, J., Gila, M.,

Tacchella, D., Curioni, A., Metzler, B., Morjan, P., Fenkes, J., et al. (2014).

Rebasing I/O for Scientific Computing: Leveraging Storage Class Memory in

an IBM BlueGene/Q Supercomputer (Leipzig, Germany: Springer International

Publishing Switzerland), pp. 331–347.

Shu, Y., Hasenstaub, A., and McCormick, D.A. (2003). Turning on and off

recurrent balanced cortical activity. Nature 423, 288–293.

Sigalas, C., Rigas, P., Tsakanikas, P., and Skaliora, I. (2015). High-Affinity

Nicotinic Receptors Modulate Spontaneous Cortical Up States In Vitro.

J. Neurosci. 35, 11196–11208.

Silberberg, G. (2008). Polysynaptic subcircuits in the neocortex: spatial and

temporal diversity. Curr. Opin. Neurobiol. 18, 332–337.

Silberberg, G., and Markram, H. (2007). Disynaptic inhibition between neocor-

tical pyramidal cells mediated by Martinotti cells. Neuron 53, 735–746.

Silberberg, G., Wu, C., and Markram, H. (2004). Synaptic dynamics control the

timing of neuronal excitation in the activated neocortical microcircuit.

J. Physiol. 556, 19–27.

Silva, L.R., Amitai, Y., and Connors, B.W. (1991). Intrinsic oscillations of

neocortex generated by layer 5 pyramidal neurons. Science 251, 432–435.

Silver, R.A., Lubke, J., Sakmann, B., and Feldmeyer, D. (2003). High-probabil-

ity uniquantal transmission at excitatory synapses in barrel cortex. Science

302, 1981–1984.

Simkus, C.R.L., and Stricker, C. (2002). Properties of mEPSCs recorded in

layer II neurones of rat barrel cortex. J. Physiol. 545, 509–520.

Singer, W. (1993). Synchronization of cortical activity and its putative role in

information processing and learning. Annu. Rev. Physiol. 55, 349–374.

Somogyi, P., Freund, T.F., and Cowey, A. (1982). The axo-axonic interneuron

in the cerebral cortex of the rat, cat and monkey. Neuroscience 7, 2577–2607.

Somogyi, P., Tamás, G., Lujan, R., and Buhl, E.H. (1998). Salient features of

synaptic organisation in the cerebral cortex. Brain Res. Brain Res. Rev. 26,

113–135.

Sporns, O., and Kötter, R. (2004). Motifs in brain networks. PLoS Biol. 2, e369.

Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic inte-

gration. Nat. Rev. Neurosci. 9, 206–221.

Stepanyants, A., Martinez, L.M., Ferecskó, A.S., and Kisvárday, Z.F. (2009).
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