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Abstract

Knowing where we are, where we have been, and where we are going is critical to many behaviors, including1

navigation and memory. One potential neuronal mechanism underlying this ability is phase precession, in which2

spatially tuned neurons represent sequences of positions by activating at progressively earlier phases of local3

network theta (∼5–10 Hz) oscillations. Phase precession may be a general neural pattern for representing sequential4

events for learning and memory. However, phase precession has never been observed in humans. By recording5

human single-neuron activity during spatial navigation, we show that spatially tuned neurons in the human6

hippocampus and entorhinal cortex exhibit phase precession. Furthermore, beyond the neural representation7

of locations, we show evidence for phase precession related to specific goal-states. Our findings thus extend8

theta phase precession to humans and suggest that this phenomenon has a broad functional role for the neural9

representation of both spatial and non-spatial information.10
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Introduction11

Our brain’s ability to link related experiences is critical to everyday life, and to our memory for past experiences.12

One crucial example is spatial navigation, which requires awareness of individual locations and the association13

between multiple locations, such as those on the same path. Similarly, episodic memory requires the encoding of14

individual events and the association between sequential events. The hippocampal formation is important for both15

spatial cognition and episodic memory1–4. Therefore, neural activity in this region might play a key role in linking16

sequential locations and events.17

Specifically, theories of how the brain represents sequential experiences rely on the idea that the timing of neuronal18

spiking is critical for learning associations5–10. Spike timing, in turn, is thought to be coordinated across networks19

by fluctuations in the large-scale network activity that can be estimated via the local field potential (LFP)11–16. This20

suggests that a coordinated relationship between network oscillations and single-cell spiking may play a mechanistic21

role in complex behaviors or aspects of cognition, such as memory17, 18, that require the association of sequential22

events. A prominent potential mechanism for the binding and compressing of sequential events is hippocampal phase23

precession, extensively observed in rodents, during which active neurons rhythmically spike in coordination with the24

local theta frequency (5–10 Hz) oscillation. Phase precession is readily observable in many hippocampal place cells19
25

and entorhinal grid cells20, 21. Because these neurons spike slightly faster than the theta oscillation as the rodent runs26

through specific locations, phase precession results in sequences of locations being encoded at different phases of27

theta oscillations. As such, phase precession may compress spatial trajectories on the scale of behavior into the brief28

timescale of the theta cycle that is conducive to synaptic plasticity22–24.29

There is evidence that phase precession’s utility for binding and compressing sequential events may be used30

by the brain to represent non-spatial features of experience as well. While phase precession is often described in31

hippocampal place cells or entorhinal grid cells, it has also been observed in a diverse range of brain areas such32

as ventral striatum25, subiculum26, basal forebrain27, and medial prefrontal cortex28. Critically, a slew of recent33

work has directly observed phase precession independent of location within a place or grid field, encoding elapsed34

time during REM sleep29, wheel-running30, jumping31, fixation32, presentation of task-relevant stimuli33–35, and task35

epoch27. The widespread prevalence of phase precession suggests that this phenomenon has a more general role36

beyond representing the current spatial location, and that it could be relevant for building neural representations in37

many regions to support diverse aspects of cognition, learning, and memory.38

Despite its prevalence in rodents, and the many theories suggesting a fundamental role for phase precession39

in neural coding19, 36–38, phase precession has not been observed in humans. To examine this issue, we analyzed40

simultaneous single-neuron and LFP activity from neurosurgical patients as they performed a virtual spatial memory41

task and examined the patterns of spike–LFP interaction. Here, we describe spatial phase precession in humans42

analogous to that observed in navigating rodents. We also describe evidence for phase precession related to the coding43

of non-spatial variables, in which neurons transiently spike faster than the theta oscillation during trajectories to44

specific goals. Overall, our findings extend precession to humans and demonstrate its potential use for encoding both45

spatial and non-spatial features of experience.46

Results47

Spatial phase precession in hippocampus and entorhinal cortex during navigation. We analyzed recordings48

of neuronal spiking from 1,074 neurons in the hippocampus, entorhinal cortex, parahippocampal gyrus, anterior49

cingulate cortex, and amygdala of 13 neurosurgical patients undergoing clinical treatment for drug-resistant epilepsy.50

During recordings, subjects performed a goal-directed navigation task in a 2D virtual environment on a laptop51

computer39, 40 (Supplementary Fig. 1; see Methods). The virtual environment contained six goal stores surrounding52

the perimeter of a square track, with the center of the environment obstructed by buildings. Subjects were able to53

travel around the track in either clockwise or counterclockwise directions (Fig. 1A).54

Given our interest in phase coding, we first characterized the prevalence of theta oscillations in the human55

hippocampus and compared their properties to those seen in rodents, leveraging a publicly-available dataset42.56
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Figure 1: Virtual environment and hippocampal theta oscillations during task. A) Overhead view of task environment. Red squares
denote locations of possible goal locations. B) Examples of raw LFP data from rodent (publicly available dataset41) and human hippocampus.
C) Joint distribution of peak frequency and peak height of LFP power spectral density (PSD) from rodent (blue) and human (red) hippocampus.
Rodent hippocampal recordings exhibit highly stereotyped peaks. Human hippocampal recordings exhibit significantly smaller peak heights,
and peaks are at significantly lower frequencies (p’s< 2 × 10−34, Wilcoxon rank-sum tests).

Compared to rodents, human hippocampal theta spanned a significantly broader range of frequencies (p < 4 × 10−4,57

Levene test), with significantly smaller, lower-frequency peaks in the power spectrum (p’s< 3 × 10−8, Wilcoxon58

rank-sum tests; Figs. 1B-C, S2). Because human theta appears to span both low and high frequencies43, we assessed59

phase precession with respect to oscillations at a broad range of LFP theta frequencies (2–10 Hz) (Fig. 1C). To assess60

phase precession we first identified each neuron whose firing was modulated by the subject’s position in the virtual61

environment. We labelled the clockwise (CW) and counter-clockwise (CCW) movement periods and then used a62

shuffle-corrected ANOVA to identify 292 spatially modulated neurons that fired significantly more when subjects63

moved through particular locations during one or both of these movement conditions44, after correcting for multiple64

comparisons (see Methods). Because phase precession in rodents is most predominant near the place-field center45
65

and on short trajectories46, we tested for phase precession during short trajectories through the field center, defined as66

the peak firing location for each neuron (Fig. 2A).67

We observed that some of the spatially tuned neurons showed spiking at progressively earlier phases of the theta68

oscillation during individual trajectories through their firing field (Supplementary Fig. 3). To assess if this was a69

consistent pattern across trajectories, we leveraged the fact that during phase precession, spikes at later positions in70

the trajectory should occur at earlier phases, manifesting as a negative correlation between spike-phase and position19.71

In this way, spiking at different phases of the LFP would correspond to different relative positions along the path to a72

neuron’s firing field center (Fig. 2B,C). We tested for this pattern by measuring the correlation47 between spike-phase73

and position using circular statistics48 and a shuffle-based permutation procedure (see Methods).74

By performing this procedure across all of the spatially-tuned neurons we identified, we report the first evidence75

of phase precession in humans. Figure 2D shows three examples of single neurons recorded in the hippocampus76

and entorhinal cortex that exhibited significant phase precession during navigation at particular spatial locations (see77

Supplementary Fig. 4 for additional examples). Each of these neurons increased their firing in a specific region of78

the environment (Fig. 2D, left). As a person approached the center of that region, the neuron initially spiked at late79
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Figure 2: Examples of spatial phase precession in human hippocampus and entorhinal cortex. A) Schematic illustrating our method for
selecting spikes near peak firing bin (see Methods). For each spatially modulated cell we analyzed phase precession using spikes that occurred
early (red), at the midpoint (black), and late (blue) in trajectories through the center of the firing field. B) Spike-triggered average (STA) LFP
(reconstructed from phase) for early, midpoint, and late trajectory spikes from one neuron. C) Schematic of spike phase as a function of
distance from center spike during a trajectory through the field, showing phase precession as a negative progression of phase-by-position. D)
Three examples of spatial phase precession. Each row shows an individual neuron. Left: firing rate heat map. Text label indicates average
firing rate in peak firing bin, which is noted with an asterisk. Brighter colors denote higher firing rates. Dotted lines indicate maximum radius
around field in which spiking was assessed. Arrows in the center of the heatmap indicate the movement direction. Middle: spike phase as a
function of location relative to the field center. Spike phases are duplicated vertically to enable visualization of circular-linear regression (red).
Rho indicates circular-linear regression coefficient. Right: statistical assessment of circular-linear regression rho using surrogate distribution
of circular-linear regression rho values generated by permutation of spike phases. Red line indicates value of real data. Dark gray shading
indicates 95th percentile of surrogate distribution.
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Figure 3: Prevalence and characteristics of spatial phase precession in humans. A) Percentage of spatially modulated cells that exhibit
phase precession during trajectories through the firing field (filled bar). Grey bars show control analyses of precession relative to alternative
locations, or as a function of time, not position, during spiking episodes (see Supplementary Fig. 5). Black dotted line denotes chance.
Solid black line indicates 95% binomial confidence interval. Asterisk indicates significant proportion of spatially modulated cells exhibiting
phase precession during trajectories through the firing field (p < 3 × 10−6, binomial test). B) Percentage of spatially modulated cells across
regions. Asterisk indicates significant proportion of cells exhibit phase precession (ps< 0.002, binomial test). C) Distribution of circular-linear
regression slopes identified for neurons exhibiting significant phase precession. Black line indicates mean. D) Distribution of average firing
rate of peak firing bins in which phase precession was observed. E) Prevalence of phase precession across the environment. Colors indicate
percentage of firing fields in each bin that exhibited precession.

phases of the 2–10 Hz LFP, but as they continued their trajectory through the center and past it, spikes occurred at80

progressively earlier phases (Fig. 2D, middle). This change in spike phases between early positions and late positions81

is characterized by significant negative phase–position correlations (Fig. 2D, right).82

After testing the spatially-tuned neurons in our dataset for phase precession with our permutation procedure, we83

found that precession was widespread, with 12% (35/292) of neurons exhibiting this phenomenon, which is well84

above what would be observed by chance (p < 3 × 10−6, binomial test; Fig. 3A). Of these 35 neurons, 22 neurons85

exhibited uni-directional spatial tuning and precession and 10 neurons exhibited bi-directional spatial tuning and86

precession. The remaining 3 neurons exhibited uni-directional precession in one location and bi-directional precession87

in another. Notably, we specifically observed significant proportions of spatially modulated cells exhibiting spatial88

phase precession in the hippocampus and entorhinal cortex (p’s< 0.002, binomial test; Fig. 3B). Phase precessing89

neurons exhibited an average circular–linear correlation coefficient of −0.26 ± 0.09, an average slope of −1.36 ± 0.890

radians/VR-units (Fig. 3C), and an average in-field firing rate of 4.9 ± 1.7 Hz (Fig. 3D). Phase precessing neurons had91

spatial firing fields throughout the environment (Fig. 3E). To test whether spatial phase precession was consistent92

across an entire behavioral session, we separately computed the circular–linear correlation coefficient for the first93

and second halves of the session and found no difference between halves (p = 0.4, paired t-test), with significantly94

negative correlation coefficients in each half (ps< 0.002, one-sample t-test). We found evidence for spatial phase95

precession in 11/12 of the subjects with spatially modulated neurons. These results thus demonstrate the existence96

of phase precession as a neural code for spatial position in humans during virtual navigation. The theta-frequency97

(2–10 Hz) and regions involved (hippocampus, entorhinal cortex) suggest that the phase precession we observed is98

largely analogous to that documented in rodent place and grid cells.99

To be sure that our findings of precession indicated a spatial phase code relative to space, we tested two alternative100

explanations for our results: that precession was equally prevalent at randomly selected spatial locations (in which the101

neuron was sufficiently active), or that precession was actually measuring the advance of spike phase according to102
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Figure 4: Spike-phase spectra reveals precession-like pattern in non-spatially tuned neurons. A) Schematic illustrating analysis of
rhythmic spiking frequency relative to LFP oscillation (see Methods). Left: Autocorrelation of spike times (gray), with dotted lines at 200
ms intervals. Middle: Autocorrelation of unwrapped spike phases. Dotted lines indicate one cycle of ongoing LFP in 2–10 Hz band. Red
arrows indicate peaks in autocorrelation, which occur progressively earlier than cycles of ongoing LFP. Fast Right: Fourier transform (FFT) of
autocorrelation function yields power spectral density(PSD) showing cell spiking frequency relative to ongoing LFP frequency. The modulation
index (MI) is visualized here as the ratio of the spectral peak height to power at all other relative frequencies. This value is compared to a null
distribution of MI values generated by shuffling spike phases in each cycle. B) Left: Spike time autocorrelation showing little evidence of
theta modulation. Right: Spike phase autocorrelation (orange) showing cell oscillating slightly faster than ongoing LFP (cycles of 2–10 Hz
LFP indicated by dotted line). Inset shows spike-phase spectra. C) Modulation index (MI) of spike-phase spectral peaks for significant vs.
non-significant neurons. D) Distribution of relative frequencies for neurons exhibiting significant MI. Values to the right of the black line
indicate that the rhythmic spiking frequency slightly exceeded the LFP frequency. E) Percentage of non-spatial cells that exhibit precession-like
spiking relative to LFP phase, compared to cell’s exhibiting precession relative to time in a spiking episode. Black dotted line denotes chance
level. Solid black line indicates 95% binomial confidence interval. Asterisk indicates significant proportion of cells (p < 7 × 10−18, binomial
test).
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elapsed time (see Methods; Supplementary Fig. 5A, C). Neither alternative model identified significant proportions of103

phase-precessing cells, and these models resulted in the identification of a smaller number of cells as compared to our104

primary analyses (χ2 = 20.6, p < 4 × 10−5, chi-squared test; Fig. 3A; see also Supplementary Fig. 5B, D). These105

results indicate that human phase precession occurs more strongly at locations that show the highest firing rates, and106

that phase precession in spatially tuned neurons is more closely tied to location than elapsed time during movement.107

Evidence for phase precession without spatial coding. While phase precession has been observed most readily108

relative to specific spatial locations, there is also evidence for precession with respect to non-spatial behaviors109

and stimuli27, 29–31, 33, and in regions outside the hippocampal formation25, 28. These findings suggest that phase110

precession could be a more general phenomenon that the brain uses to represent diverse types of consecutive, relevant111

stimuli/states using different phases of an oscillation. To examine this possibility, we used a broader analytical method112

to test whether the non-spatially tuned neurons exhibited phase precession without reference to position. To do this,113

we measured each neuron’s rhythmic frequency of spiking in comparison to the local theta oscillation49, 50. Identifying114

a consistent pattern of faster-than-LFP rhythmic spiking would indicate the presence of a precession-like pattern of115

LFP-coordinated spiking that could bind and compress sequential, non-spatial features of the task — just as spatial116

phase precession is theorized to do for locations24, 51.117

We identified neurons that showed rhythmic spiking at a frequency faster than the theta oscillation by using a118

method that has identified this pattern in animals with very stereotyped, 8 Hz theta such as rats26, 42, 52 and mice53, 54,119

as well as animals with human-like theta that appears at a range of frequencies, such as bats55. In brief, in this method120

we first measured the theta phase estimate for each spike from the concurrent 2–10 Hz LFP and “unwrapped” the121

phase time series so that it increased linearly, like elapsed time. We then measured the spike-phase spectrum, which122

we defined as the power spectral density of the time series of unwrapped spike phases (see Methods). In contrast123

to conventional spectral analysis that measures the frequency of a signal relative to absolute time, the spike–phase124

spectra reflects the relative frequency of rhythmic spiking compared to the frequency of concurrent LFP oscillations.125

If a spike-phase spectra showed a peak at a relative frequency > 1.0 it would indicate that a neuron’s rhythmic spiking126

was faster than the concurrent oscillations in the LFP, and thus this neuron’s spiking exhibited precession relative127

to the LFP (Fig. 4A). This method ensures that a consistent relationship between the spiking frequency and LFP128

frequency can be identified even if the LFP shifts in frequency or amplitude, and even though neuronal spike times129

alone may not show a clear oscillation (Supplementary Fig. 6), as is the case in humans and bats55. We validated this130

method by applying it to data from rodent CA1 and identifying a consistent > 1.0 relative frequency (Supplementary131

Fig. 7), consistent with the spatial phase precession observed in these neurons42.132

To assess whether precession-like rhythmic spiking was evident for non-spatially tuned cells, we applied this133

method to the 744 neurons that were active during the task but did not exhibit significant spatial tuning. Figure 4B134

depicts an example neuron that we identified with this method that showed significant precession. This analysis found135

that the rhythmicity of this cell’s spiking frequency occurred at a frequency that reliably exceeded the frequency of136

the LFP (right panel), although no consistent rhythm is apparent from the spike timing alone (left panel). Using137

this method we found that 12% of non-spatially tuned neurons (90/744) showed a significant relationship between138

neuronal spiking frequency and LFP frequency (Fig. 4C), at a range of relative frequencies > 1.0 (Fig. 4D). The139

number of neurons that showed this phenomenon was significantly more than we expected by chance (p < 7 × 10−18,140

binomial test; Fig. 4E).141

We performed a control analysis (Supplementary Fig. 5C) to rule out the possibility that these effects could be142

explained by the absolute spike timing, though this was unlikely given the relative lack of intrinsic rhythmicity in the143

spike timing (see Supplementary Fig. 6). This analysis confirmed that most of these neurons show phase precession144

only when spiking is measured relative to the instantaneous ongoing oscillation rather than absolute time56 (Fig.145

4E). These results illustrate how the frequency variability of human hippocampal theta43 may diminish traditional146

measures of phase precession, and demonstrate the potential for phase precession in neurons that are not spatially147

tuned. We next sought to test whether this new non-spatial precession pattern might vary behaviorally in relation to148

non-spatial, higher level features of the task, such as prospective goals.149
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Evidence for phase precession during trajectories to specific goals. Having shown that non-spatially tuned150

neurons can exhibit phase precession, we next tested whether this was a tonic pattern50 or, alternatively, one that151

emerged selectively to code for specific stimuli or states. Specifically, recent work has shown that human hippocampal–152

cortical networks represent goals and their intermediate locations57; furthermore we found previously that this task153

elicits distinctive patterns of rate- and phase- coding for goals58. Therefore, we assessed whether phase precession154

emerged selectively during trajectories to specific goals in service of binding those trajectories for learning and155

memory.156

During each trial of this task, the subject was cued to travel to a randomly selected goal location (Fig. 5A). We157

found that some neurons specifically showed phase precession only during travel to particular goals. Figure 5B158

shows an example of a neuron whose spiking shows phase precession during navigation to goal 2, but not the other159

goals. This effect is evident in the spike-phase autocorrelogram for that goal, which shows that during travel to goal 2160

rhythmic spiking occurs at a frequency that is slightly faster than the ongoing 2–10 Hz LFP. To systematically test for161

goal-state phase precession, we measured the spike-phase spectrum during trajectories to each goal and compared162

these spectra between goals, using a permutation procedure and correcting for multiple comparison across goals (Fig.163

5C, see Methods). Figure 5D depicts two example neurons from the hippocampus and amygdala of two different164

subjects (see Supplementary Fig. 8 for additional examples). These neurons exhibited rhythmic spiking at faster165

frequencies than the ongoing LFP while the subjects were en route to specific goals. Critically, this rhythmic spiking166

was goal-specific and did not appear during trajectories to other goals. These patterns were thus examples of phase167

precession for a particular goal-state, similar to phase precession in a place field.168

We applied this method to the 448 non-spatially tuned neurons that were sufficiently active during each goal,169

and found a population of neurons exhibiting a significant pattern of faster-than-LFP rhythmic spiking during at170

least one goal (Fig. 6A), across a range of relative frequencies (Fig. 6B). Overall, 11% of these neurons (49/448)171

exhibited significant goal-state precession. We found at least one neuron exhibiting goal-state phase precession in172

10/13 subjects. Of the neurons exhibiting goal-state precession, almost all did so for only one of the six goals (Fig. 6C).173

This effect was present at significant levels in anterior cingulate, orbitofrontal cortex, amygdala, and hippocampus,174

but not parahippocampal gyrus or entorhinal cortex (p’s< 0.02, binomial test; Fig. 6D).175

We performed a series of control analyses that rules out the possibility that our observation of precession for176

specific goal states was confounded by between-goal differences in LFP power or neuronal firing rate (Fig. 6E).177

Indeed, neither example neuron in Figure 5 exhibited increased firing rates during goals that showed precession,178

suggesting that goal-state precession was independent of goal-specific firing rate increases58. Overall, only 17 of179

the 49 neurons that showed goal-state precession also showed increased goal-specific firing rate increases (ps< 0.05,180

one-way ANOVA), and only 2 of 17 of these neurons showed precession and a firing rate increase for the same goal35
181

(Fig. 6F). Next, we tested whether subject performance on different goals might be responsible for our results, i.e.,182

whether precession might occur when subjects perform more efficient navigation. We measured subject’s performance183

on each goal (see Methods) and found no significant difference in navigational performance between goals that elicited184

precession and those that did not (Supplementary Fig. 9A, B). Because differences in theta power, firing rate, and185

behavior did not account for our results, our findings indicate that non-spatial phase precession selectively occurs186

during trajectories to specific goals and may also support the representation of non-spatial, sequential features of187

behavior.188
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Figure 6: Prevalence and characteristics of goal-state phase precession in neurons that are not spatially tuned. A) Modulation index
(MI) of spike-phase spectral peaks for significant vs. non-significant goals. B) Peak spike-phase PSD frequency for all goals for which a
neuron exhibited a significant MI in the spike-phase spectra. Values to the right of the black line indicate that the neuronal frequency slightly
exceeded the LFP frequency, indicating precession. C) Number of goals per neuron for which precession was observed. Most neurons exhibited
precession during only one goal. D) Percentage of non-spatial cells in each region that exhibited goal-state phase precession. Asterisks indicate
significant proportion of cells (ps< 0.02, binomial test). E) Distribution of Cohen’s d for the difference in 2–10 Hz power (left) and firing rate
(right) between trajectories to goals showing precession vs. those that did not. Black dotted line indicate effect size of ±0.8. F) Analysis of
overlap between goal-state phase precession and rate coding for goals.

Discussion189

The nature of the neural code is a fundamental question in neuroscience. Our findings show the first evidence that190

neurons in the human brain spike in rhythm with local network oscillations to represent spatial position and non-spatial191

events, in addition to the well-established code based on firing rate. Specifically, we demonstrate the existence of192

phase precession in humans during a virtual spatial memory task. We provide evidence for rodent-like spatial phase193

precession in human hippocampus and entorhinal cortex, in which spatially tuned neurons spike at earlier phases of194

theta (2–10 Hz) LFP oscillations as subjects moved through the putative place field center. We also provide evidence195

for the existence of non-spatial, goal-state phase precession which occurs transiently during trajectories to specific196

goals. These findings thus extend phase precession beyond rodents, and beyond spatial location, highlighting its197

potential as a more widespread neuronal mechanism for coordinating spike timing during behavior and cognition.198

The spatial phase precession we observed bears important similarities to phase precession in rodents. We found199

spatial phase precession most predominantly in hippocampus and entorhinal cortex, where place and grid cells,200

respectively, are canonically found2, 59–61. This suggests that the spatial phase precession we observed may be driven201

primarily by place- and grid- cells, as it is in rodents. One potential reason why phase precession has not previously202

been observed in humans is because human theta oscillations often appear at a slower and broader range of frequencies203

compared to those seen in rodents43, 62, 63. We specifically assessed phase precession relative to the broader range of204

theta frequency (2–10 Hz) fluctuations of the LFP, in line with the recent discoveries of phase precession in bats55
205
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and marmosets64 — two animals with similarly heterogeneous theta oscillations. Our findings are also consistent206

with findings from rodents, who continue to show phase precession even when LFP theta power and theta-modulated207

spiking are reduced25, 65, 66. Furthermore, phase coding may not depend on regular, high amplitude rhythmicity in208

neural activity51. Instead, shifting LFP frequency can modulate spike-time intervals for synaptic plasticity without209

affecting the spike-phase51. Recent work in rodents has indeed demonstrated that the theta phase code is robust to210

changes in theta frequency, even as temporal lags between spikes are altered56. It is thus likely that the spatial phase211

precession we observed is analogous to that described in rodents, despite differences in theta range and rhythmicity.212

Phase precession has predominantly been observed during place- or grid- cell spiking67. However, recent work has213

discovered the presence of phase precession relative to sound33, 34, odor34, time in an episode29–31, task progression27,214

and REM sleep29. These findings highlight the potential generalizability of phase precession to non-spatial domains.215

In these instances, phase precession may enable the encoding of any successive stimuli or state, with the progression of216

phases binding a myriad of non-spatial sequences together for learning. By leveraging the idea that any variable may217

be encoded in spike phase if the frequency of spike rhythmicity exceeds the frequency of the local LFP oscillation42, 51,218

we showed that phase precession also occurs with respect to behavioral states other than inhabiting a specific physical219

location—in this case, exclusively during trajectories to specific goals. The fact that this result is so specific, only220

showing up for a subset of goals for each neuron, might suggest an ensemble temporal code responsible for encoding221

all of the goals in the task68, 69.222

The goal-state phase precession we observed was largely independent of rate coding for goals, which has been223

described previously in human studies58, 60, 70. That the presence of rate and phase coding for goals is statistically224

independent is consistent with observations in rodents that showed that phase precession can appear for specific225

behavioral states even in the absence of concurrent firing-rate changes35. These findings support the theory that phase226

precession is used by the brain to signal behavioral states independent of firing-rate changes71, 72. A challenge for227

future work is to understand the specific features of this phenomenon, such as the role of different phases within228

goal-state precession. One hypothesis is that goal-state precession may help track a person’s “episodic” position229

within a goal-seeking event. This would align with work in rodents showing phase-precession in “episode” or “time”230

cells when a rodent runs on a treadmill with a goal30 but not without a goal73, as well as evidence from human imaging231

showing that hippocampal and entorhinal cortex population activity correlates with distance to goal74. Furthermore,232

goal-state phase precession may relate to the phase precession observed in ventral striatum “ramp cells”25, and medial233

prefrontal cortex neurons in rodents28. The former exhibited precession as rodents approached reward locations, and234

the latter exhibited precession that was clearest when rodents approached the decision point in a maze28. Given that235

we found goal-state phase precession across various brain regions, including frontal cortex, these prior works further236

support the hypothesis that precession may represent “episodic” position within top-down behavioral states.237

It is important to understand the prevalence of phase precession due to its likely theoretical relevance as neuronal238

mechanism for binding and compressing sequential events. In brief, phase precession organizes spiking at time239

intervals below the deactivation time constant of NMDA receptors, facilitating synaptic plasticity between neurons that240

encode events at behavioral time-scales7, 10, 24, 75–77. Strengthening associations between consecutively active neurons241

may be a widely useful mechanism for learning associations. Our findings extend phase precession to the human242

brain and demonstrate that precession does not necessarily depend on physiological constraints, such as a stationary243

∼8 Hz theta oscillations25, 51, 55, 65, 66. Furthermore, our results show that a consistent difference between spiking and244

LFP frequency extends beyond place- or grid- field activity and may represent non-spatial mental sequences related to245

a memory task. This consistent spike–LFP frequency difference has been characterized by oscillatory-interference246

models as a function of spatial inputs, such as velocity, but may include non-spatial inputs if they increase spiking247

frequency above the network oscillation78, 79. Therefore, our findings demonstrate the potential utility for phase248

precession in humans, across diverse brain regions, as a general, domain-free mechanism for temporal compression of249

specific experiences.250

In summary, we have provided evidence for spatial phase precession in the human hippocampus and entorhinal251

cortex during virtual navigation and shown that it exhibits features similar to those seen in rodents. Further, we also252

demonstrated the existence of phase precession that is specific to trajectories to particular goals. These findings suggest253

that phase precession is a general mechanism for temporal coding in the human brain, despite the heterogeneity in254
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theta rhythmicity in human MTL. Furthermore, the discovery of goal-state phase precession extends the potential for255

phase coding to be physiologically relevant for an array of experiential features, even when the neurons do not show256

concurrent firing rate changes for those features. Overall, our results suggest that phase precession is an important257

neural code across species and brain regions, not only for spatial cognition and memory but also for non-spatial258

features of experience.259
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Methods260

Data recording and participants. The thirteen participants in our study were epilepsy patients who had Behnke–Fried261

microelectrodes80 (Ad-Tech Medical) surgically implanted in the course of clinical seizure mapping at the University262

of California, Los Angeles. The Medical Institutional Review Board at the University of California-Los Angeles263

approved this study (IRB 10–000973), and patients provided informed consent to participate in research. Microwire264

signals were recorded at 28–32 kHz, and we used Combinato for spike detection and sorting81. Manual sorting265

identified single- versus multi-unit activity versus noise on the basis of previously determined criteria82, 83. The local266

field potential for each neuron was recorded from the local microelectrodes and was downsampled to 250 Hz for267

spectral analysis. For comparison with rodent data we used a publicly available dataset (CRCNS hc-2, hc-3)41, 42, 84.268

Task. This behavioral task is described in several previous studies39, 40, 58, 85. Subjects first learned the navigational269

controls during a 4-delivery training session in a large, wide-open arena. After the practice session, subjects performed270

the main task, in which they were instructed to drive passengers to one of 6 goal stores in the virtual environment.271

Upon arrival, on-screen text displayed the name of the next randomly selected destination store. The task was272

self-paced in order to accommodate patient testing needs and therefore subjects performed at ceiling. The size of273

the virtual environment was 10 × 10 VR units, the width of the road was 2.5 VR units, and the obstructed area in274

the center of the road was 5 × 5 VR units. During navigation, subjects had a 60◦ field of view, a maximum forward275

speed of 1.25 VR units/s, a maximum backward speed was 0.5 VR units/s, and maximum angular velocity of 40◦/s.276

To encourage subjects to take the shortest route to each destination, subjects received 50 points for each successful277

delivery and had one point deducted for each second that they spent navigating. Points were constantly displayed278

on-screen. Patients performed an average of 73 ± 11 deliveries in each session. To assess performance on this task,279

we measured subjects’ excess path length (EPL) on each trajectory, defined as ratio of the actual path length to the280

ideal path length. We computed ideal path length on each trial using the A-star search algorithm to identify the most281

computationally efficient path between goals in the environment86.282

Statistical analysis and software. All statistical analyses were carried out in Python, primarily using the SciPy87
283

and statsmodels88 libraries. For comparisons between two groups, we primarily utilized the Wilcoxon rank-sum test284

unless otherwise specified. For omnibus testing, we used ANOVAs, determining the p-value by comparing the real285

test-statistic to those from empirically derived null distributions generated by shuffling the true data. All figures were286

made using the Matplotlib89 and Seaborn libraries.287

Characterizing place-cell activity. To assess how neurnal activity related to the subject’s virtual spatial location,288

first, we binned the environment into a 10 × 10 spatial grid. We computed the firing rate map for each neuron by289

dividing the number of spikes by the amount of time spent in each spatial bin. We then used an ANOVA to assess290

whether the interaction of X and Y spatial bin (and thus 2D position) significantly modulated firing rate. To assess the291

significance of the ANOVA we circularly shuffled the firing rate and generated 500 surrogate test-statistics, and used292

this null distribution to determine the shuffle-corrected p-value of the ANOVA using the real data. These p-values293

were then FDR-corrected for multiple comparisons between the three movement types (CW, CCW, bi-directional).294

Only neurons with critical statistics exceeding 99% of the shuffled data (p < 0.01) were considered to be spatially295

modulated. We considered spatially-modulated neurons to be analogous to place- and grid- cells, because the firing296

rate in at least one spatial bin deviated significantly from the others. We identified the spatial bin with the highest297

firing rate (analogous to the center of a place- or grid- field). We only included a spatial bin if the person passed298

through it at least 3 times, and occuped it for at least 4 seconds.299

Spectral analysis of LFP and spike time. To assess the prevalence and frequency of theta oscillations in the human300

and rodent LFP, we computed the continuous Morlet wavelet transform (wave number 6) at 20 logarithmically spaced301

frequencies between 1 and 32 Hz. Then, to identify theta-like oscillations, we utilized an iterative algorithm to subtract302
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the aperiodic background and fit a Gaussian to putative peaks90. For this fitting procedure, we restricted the maximum303

number of peaks to 2, and the maximum peak width to 4 Hz. We only assessed the peak height (parameterized as the304

height of the Gaussian’s peak relative to the aperiodic background) and the peak frequency (parameterized as the305

center frequency at which the Gaussian reaches its peak) for the largest peak in the PSD. To assess the prevalence and306

frequency of theta oscillations in human and rodent spiking, we computed the autocorrelation of spike times, and307

performed a fast Fourier transform (FFT), yielding the PSD of the spike train.308

Phase estimation. We estimated the instantaneous phase of LFPs in the theta frequency range. Theta oscillations309

in human hippocampal formation are often bursty and non-stationary, and vary from low (2–5 Hz) to high (5–310

10 Hz) frequencies43, 62, 63 - similar patterns are observed in bats91 and non-human primates92, 93. In order to analyze311

fluctuations in the LFP analogous to rodent theta, we estimated 2–10 Hz phase by identifying peaks, troughs, and312

midpoints in the lowpass-filtered LFP, and linearly interpolated between these points. This phase-interpolation method313

has been used previously to effectively estimate theta phase in bats55, as well as in rodents94,95. To ensure that phase314

estimates were not based on an unreliable low amplitude signal, we computed the instantaneous power of the LFP315

and discarded those time-points in which the power fell below a 25th percentile threshold55.316

Spatial phase precession. To identify phase precession in this dataset, for each spatially modulated cell we first317

identified every trajectory through the cell’s peak firing location. Following the methods used in some recent studies318

for measuring phase precession55, 96, 97, first for each such trajectory, we identified the spike closest to the center of319

the bin as the center spike (our reference point for the center of the bin on each trajectory)55, 96, 97. We limited our320

analysis to spikes in close spatial proximity to the center of the peak firing bin. To do so, we only analyzed the 11321

closest spikes to the center of the peak firing bin. To ensure that these 11 spikes did not occur too distant from the322

peak firing bin, we set a diameter threshold of 40% of the environmental width, meaning that we did not analyze323

spikes that occurred further than 2 VR-units from the center of the peak firing bin. We re-ran our analyses while324

varying the inclusion criterion for the number of spikes (9, 11, & 13) and the radius (40% & 60%) and found that the325

parameters we selected did not significantly affect the proportion of cells exhibiting spatial phase precession (χ2 =326

5.25, p = 0.5, chi-squared test).327

We next tested for phase precession using circular statistics. Specifically, for each cell we measured the relation328

between spike phase and the subject’s position by computing the circular–linear correlation coefficient47. To assess329

statistical significance, we used a shuffling procedure. For each cell we computed a surrogate distribution for this330

correlation coefficient by assigning random phases to each spike from the distribution of all the spike phases for that331

neuron, and re-computing the correlation 500 times. This null distribution effectively scrambled the relationship332

between spike position and spike phase and controlled for any effect of spurious phase estimates. A circular-linear333

correlation was considered significant only if it exceeded the 95th percentile of this surrogate distribution.334

Control analyses for spatial phase precession. We performed two control analyses for alternative explanations335

for the spatial phase precession we observed. The first analysis tested whether the peak firing bin, our analogue to the336

place-field center, was important to observing precession. To do so, we selected control locations for each cell and337

assessed the strength and prevalence in these control bins. Control bins were chosen as to not overlap with the peak338

firing bin (at least 30 % of the map width away) and also had to be traversed a minimum of 3 times with a minimum339

firing rate of 0.5 Hz. Furthermore, because we only analyzed the 11 spikes in the immediate vicinity of the peak firing340

bin, control bins matched the peak firing bin in sample size of spikes per trajectory, ensuring that effects were not341

confounded by firing rate differences.342

Another possible alternative explanation for our findings is that the phase precession we observed here is actually343

encoding time to peak firing, independent of spatial position, with particular spike phases occurring at specific344

time-intervals within any epoch of elevated firing rate98. To control for this possibility, we identified epochs of345

elevated firing rate in the time domain without any information about position, which we refer to as “firing rate346

motifs”98. We identified the spike that occurred closest in time to the peak firing of each motif field, and used the 11347
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spikes in the immediate temporal vicinity (within 2 seconds before or after) to compute a circular-linear correlation348

between spike phase and spike time relative to the motif field peak, matching our spatial phase precession analysis.349

Non-spatial phase precession To measure non-spatial phase precession without reference to place fields, we350

compared the spiking frequency of each neuron to the frequency of the local LFP, with relatively faster rhythmic351

spiking classified as phase precession42, 49. However, detecting oscillations in spike times alone is difficult in humans352

(Supplementary Fig. 6) and bats55, potentially due to the transient, non-stationary nature of theta observed in these353

species55, 63. Instead, we applied a method introduced by Mizuseki et al.42 which measures spiking frequency relative354

to the ongoing LFP. This is a particularly useful method when the ongoing LFP is non-stationary but may still be355

an important reference “clock” for neuronal spiking. To perform this procedure, we computed the autocorrelation356

histogram of each neuron based on the timescale determined by the phase of the reference LFP, rather than the357

conventional method of using absolute time. We computed this autocorrelation using 60
◦

-bins with window-length358

of 4 cycles55. We then computed the Fourier transform of the autocorrelation histogram to yield the power spectral359

density (PSD) of the frequency of spiking relative to the LFP. Here, a peak relative frequency greater than 1.0 indicates360

that the cell is oscillating at a faster frequency than the reference LFP. We excluded neurons that exhibited both a361

peak near 1.0 as and significant phase-locking (p < 0.05, Rayleigh test) to ensure that we did not mistakenly identify362

phase-locked neurons85 as exhibiting phase precession. To measure the strength of this effect we measured the363

amplitude of the PSD, normalized by the total amplitude across all other relative frequencies26, which we refer to as364

the “modulation index” (MI) (Fig. 4A).365

In order to ensure that our results did not arise from poor phase estimates due to low LFP amplitude, we discarded366

spikes that occurred during the lowest 25th percentile of LFP power in the oscillation of interest26, 55. In order to367

ensure that low spike counts did not confound our estimates we only analyzed cells with more than 100 valid spike-368

phase estimates for the autocorrelogram. We compared the modulation index to the null distribution of modulation369

indices for the peak frequency generated by circularly-shuffling the phases within each cycle of theta. This rigorous,370

within-cell shuffling ensured that cross-cycle dynamics (such as precession) were disrupted while maintaining slower371

and more rapid spiking dynamics26, 55. The modulation index was considered significant if it exceeded the 95th
372

percentile of this surrogate distribution. Finally, we excluded cells that exhibited significant phase-locking during the373

entire session (Rayleigh test) in order to ensure that peaks close to 1.0 did not result from phase-locked spiking.374

Goal-state phase precession To measure goal-state phase precession, we separately applied our analysis of non-375

spatial precession to spiking during each of the six goal trials. We only included neurons for which we observed at376

least 100 spikes per goal, to allow us to analyze non-spatial precession for each goal. We established two tests to377

characterize significant goal-state phase precession. First, just as we did with session-wide non-spatial precession,378

the magnitude of detected phase precession (as indicated by a peak in the spike-phase spectra exceeding 1.0) had379

to be greater than the 95th percentile of the shuffled distribution. Because we conducted this test for all six goals380

separately, we used the False Discovery Rate procedure99 to correct the resulting p-values for multiple corrections381

across goals. If a goal exhibited significant non-spatial precession, we then compared the goal-specific modulation382

index to a surrogate distribution of modulation indices generated by selecting 500 random spike-trains from across383

the entire session. Each null spike-train was generated to match the number of spikes recorded during the significant384

goal to ensure that firing rate differences did not account for our results. A significant p-value indicated goal-state385

precession that was significantly stronger for the goal in question than for the session as a whole.386

Acknowledgements387

We are grateful to the patients for participating in our study. This work was supported by the National Institute388

of Mental Health (R01-MH104606) and the National Science Foundation (to J.J.), and NSF Graduate Research389

Fellowship DGE 16-44869 (to S.E.Q.). We thank Kamran Diba, Sam McKenzie, Jonathan Miller, Andrew Watrous,390

and Melina Tsitsiklis for helpful comments and suggestions.391

16

https://doi.org/10.1101/2020.09.06.285320
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author Contributions392

Conceptualization, J.J. and S.E.Q.; Methodology, J.J. and S.E.Q.; Investigation, I.F. and J.J.; Software, S.E.Q.;393

Formal Analysis, S.E.Q.; Writing – Original Draft, S.E.Q.; Writing – Review Editing, S.E.Q., J.J., and I.F.; Funding394

Acquisition, I.F., J.J., and S.E.Q.; Resources, I.F. and J.J..; Visualization, S.E.Q. and J.J.; Supervision, J.J.395

Declaration of Interests396

The authors declare no competing interests.397

17

https://doi.org/10.1101/2020.09.06.285320
http://creativecommons.org/licenses/by-nc-nd/4.0/


References398

[1] Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology,399

Neurosurgreery, and Psychiatry 20, 11–21 (1957).400

[2] O’Keefe, J. A review of hippocampal place cells. Prog Neurobiol 13, 419–439 (1979).401

[3] Morris, R. G., Garrud, P., Rawlins, J. N. & O’Keefe, J. Place navigation impaired in rats with hippocampal402

lesions. Nature 297, 681–3 (1982).403

[4] Burgess, N., Maguire, E. & O’Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 35,404

625–641 (2002).405

[5] Hebb, D. O. Organization of Behavior (New York: Wiley, 1949).406

[6] MacKay, D. M. & McCulloch, W. S. The limiting information capacity of a neuronal link. The bulletin of407

mathematical biophysics 14, 127–135 (1952). URL https://doi.org/10.1007/BF02477711.408

[7] Greenstein, Y. J., Pavlides, C. & Winson, J. Long-term potentiation in the dentate gyrus is preferentially induced409

at theta rhythm periodicity. Brain Res 438, 331–4 (1988).410

[8] Hopfield, J. J. Pattern recognition computation using action potential timing for stimulus representation. Nature411

376, 33–6 (1995).412
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[65] Royer, S., Sirota, A., Patel, J. & Buzsáki, G. Distinct representations and theta dynamics in dorsal and ventral529

hippocampus. The Journal of neuroscience 30, 1777–1787 (2010).530

[66] Schlesiger, M. I. et al. The medial entorhinal cortex is necessary for temporal organization of hippocampal531

neuronal activity. Nat Neurosci 18, 1123–32 (2015).532

[67] Moser, E., Kropff, E. & Moser, M. Place cells, grid cells, and the brain’s spatial representation system. Annu533

Rev Neurosci 31, 69–89 (2008).534

[68] Wikenheiser, A. M. & Redish, A. D. Hippocampal theta sequences reflect current goals. Nat Neurosci 18,535

289–94 (2015).536

[69] Meshulam, L., Gauthier, J. L., Brody, C. D., Tank, D. W. & Bialek, W. Collective behavior of place and537

non-place neurons in the hippocampal network. Neuron 96, 1178–1191.e4 (2017).538

[70] Qasim, S. E. et al. Memory retrieval modulates spatial tuning of single neurons in the human entorhinal cortex.539

Nat Neurosci 22, 2078–2086 (2019).540

[71] Huxter, J., Burgess, N. & O’Keefe, J. Independent rate and temporal coding in hippocampal pyramidal cells.541

Nature 425, 828–832 (2003).542

[72] O’Keefe, J. & Burgess, N. Dual phase and rate coding in hippocampal place cells: theoretical significance and543

relationship to entorhinal grid cells. Hippocampus 15, 853–866 (2005).544
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Supplemental Figure 1: Behavioral performance in the task. Plot indicates the mean excess path length across all sessions as a function of
trial number.
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Supplemental Figure 2: Differences in rodent and human hippocampal theta oscillations. PSD of hippocampal LFPs recorded in navigating
rodents (blue) and humans (red). Black line denotes average across channels. Rodent hippocampal LFP shows a clear peak in the 5-10 Hz
range in almost all channels, while the human LFP does not.
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1 s

Supplemental Figure 3: Examples of spatial phase precession during individual passes through a field. Spike times and 1–30-Hz filtered
LFP data during individual passes through peak firing bins for four neurons that exhibited significant spatial phase precession. Red arrows
denote peaks of individual theta cycles.
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Supplemental Figure 4: Additional examples of spatial phase precession. The activity of four neurons that show significant spatial phase
precession. Left: firing rate heat map. Brighter colors denote higher firing rates. Text label indicates the color scale for the plot with the mean
firing rate of the peak firing bin, which is noted with an asterisk. Dotted lines indicate maximum radius around field in which spiking was
assessed. Arrows in the center of the heatmap indicate the movement direction for which this plot was computed. Middle: spike phase as a
function of location relative to the field center. Spike phases are duplicated vertically to enable visualization of circular–linear regression (red).
Text indicates circular-linear regression coefficient (rho). Right: surrogate distribution of circular-linear regression rho-values generated by
permutation of spike phases. Red line indicates value of real data. Dark gray shading indicates 95th percentile of surrogate distribution.
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Supplemental Figure 5: Location- and time- control analyses for spatial phase precession. A) Example of alternate location selected to
test whether peak firing bins exhibited significantly greater phase precession than randomly selected locations. B) Distribution of differences in
circular-linear correlation coefficients for precession observed in peak firing bin vs. randomly selected location. C) Schematic of method for
identifying elevated firing rate. Firing rate had to exceed a firing rate threshold of 1.5 Hz for at least 250 ms in order to be classified as a firing
rate ”motif”. D) Schematic of of method for time-based phase precession within motifs of elevated firing rate. E) Example neuron exhibiting
significant phase precession relative to elapsed time within a firing rate motif. F) Distribution of differences in circular-linear correlation
coefficients for precession observed in peak firing bin vs. time in firing motifs.
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Supplemental Figure 6: Differences in rodent and human hippocampal neuronal spiking. Power spectral density from single-unit discharge
from rodent (blue) and human (red) hippocampus. Solid black line indicates average across neurons. Rodent spiking shows clear theta
modulation of spike timing while human spiking does not.
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Supplemental Figure 7: Phase precession in rodent CA1 without reference to position. A) Modulation index (MI) of spike-phase spectral
peaks for significant vs. non-significant neurons recorded in rodent CA1. D) Distribution of relative frequencies for neurons exhibiting
significant MI in the spike-phase spectra. Values to the right of the black line indicate that the neuronal frequency slightly exceeded the LFP
frequency.
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Supplemental Figure 8: Additional examples of goal-specific phase precession. Three example neurons exhibiting phase precession during
navigation to specific goals. Left: Power spectral density depicting frequency of neuronal spiking relative to ongoing LFP. Asterisk denotes
peaks that were significant and significantly different from other goals. Gray lines denote spike-phase spectra for non-significant goals. Right:
Spike-phase autocorelograms during navigation to each goal (significant goal epochs depicted in color). Text indicates the p-value for both
significance tests described in Figure 5C), and relative frequency of spiking to LFP. Black line indicates fit of decaying-oscillation function
added to significant examples shows oscillation in spike-phase autocorrelogram.
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Supplemental Figure 9: Goal-specific phase precession is not a function of a differences in navigation performance. A) Excess path
length as a function of goal. B) Distribution of Cohen’s d comparing excess path length during trajectories to goals that showed precession vs.
those that did not. Black dotted line indicates effect size of ±0.8.
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