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A N T H R O P O L O G Y

Role of climate in the rise and fall of the 
Neo-Assyrian Empire
Ashish Sinha1*, Gayatri Kathayat2†*, Harvey Weiss3,4†, Hanying Li2†, Hai Cheng2,5,  
Justin Reuter6, Adam W. Schneider7, Max Berkelhammer8, Selim F. Adalı9,  
Lowell D. Stott10, R. Lawrence Edwards5

Northern Iraq was the political and economic center of the Neo-Assyrian Empire (c. 912 to 609 BCE)—the largest 
and most powerful empire of its time. After more than two centuries of regional dominance, the Neo-Assyrian 
state plummeted from its zenith (c. 670 BCE) to complete political collapse (c. 615 to 609 BCE). Earlier explanations 
for the Assyrian collapse focused on the roles of internal politico-economic conflicts, territorial overextension, 
and military defeat. Here, we present a high-resolution and precisely dated speleothem record of climate change 
from the Kuna Ba cave in northern Iraq, which suggests that the empire’s rise occurred during a two-centuries-long 
interval of anomalously wet climate in the context of the past 4000 years, while megadroughts during the early-
mid seventh century BCE, as severe as recent droughts in the region but lasting for decades, triggered a decline in 
Assyria’s agrarian productivity and thus contributed to its eventual political and economic collapse.

INTRODUCTION
Based in the floodplain of the Tigris River in ancient northern 
Mesopotamia (now northern Iraq), the Neo-Assyrian Empire emerged 
during the 10th century BCE from the remnants of the earlier Middle 
Assyrian Kingdom (Fig. 1, A and B, and fig. S1) (1–4). Over the course 
of the next two centuries, the Neo-Assyrian (hereafter, Assyrian) 
Empire, accompanied by an ideology of universal conquest, expanded 
rapidly through military campaigns and forced taxation to become 
the “superpower” of the Near East (3). At its height (c. early seventh 
century BCE), the Assyrian state stretched from Central Anatolia in 
the north to the Mediterranean and Egypt in the west, and eastward 
to the Persian Gulf and western Iran (fig. S1) (1–4). Assyrian imperial 
policies of forcibly deporting and integrating local populations from 
conquered lands to their imperial and provincial capitals (5, 6) created 
Assyrian capital cities with populations far greater than any third or 
second millennium BCE cities (7, 8). To sustain these expansive urban 
and rural populations, the Assyrians engineered massive road and 
irrigation networks (fig. S2) (8–12), enabling settlement expansion 
into large parts of the “dry-farming belt” including marginal and 
previously unsettled zones (12, 13). However, the empire plummeted 
from its zenith (c. 670 BCE) to complete political collapse (c. 609 BCE) 
in just 60 years (1–5).

Earlier explanations for the speed and totality of the Assyrian 
collapse have focused on the roles of imperial overexpansion, internal 
politico-economic conflicts, civil wars, and, in particular, Assyrian 
military defeat at the hands of the combined armies of Babylonians 

and Medes (1–4, 14, 15). What role climate change played in shaping 
the course of the Assyrian Empire (16), however, has been largely 
ignored despite the fact that the Assyrian heartland and its hinterlands 
comprised a region of high interannual precipitation variability and 
drought vulnerability (17–20). Up to now, a lack of paleoclimate records 
from the region, with age control and temporal resolution compa-
rable in precision to Assyrian historical and archaeological records, 
has precluded assessment of whether regional climate change con-
tributed to the rise and/or collapse of the Assyrian Empire. Here, we 
present high-resolution and absolute-dated precipitation and effective 
moisture records over the past 4000 years from Kuna Ba Cave in 
northern Iraq, located ~300 km southeast of the ancient city of 
Nineveh (Fig. 1A and fig. S1). These data provide a climatic context 
for the rise, expansion, and ultimately the collapse of the Assyrian 
Empire during the mid-to-late seventh century BCE. Our data also 
permit us to place the recent multiyear droughts and a near-century-
long drying trend over the eastern Mediterranean and Middle East 
(EMME) region (Fig. 1) (17–19), in the broader context of the region’s 
hydroclimate variability during the past four millennia.

Regional setting
The core of the Assyrian Empire encompassed a triangular region 
in northern Iraq defined by the capital cities of Assur in the south 
(modern Qal’at Sherqat), the seventh century BCE Assyrian capital 
of Nineveh (modern Mosul) in the north, and Arbela (modern Erbil) 
in the east (Fig. 1, A and B, and fig. S1) (3, 4). Mediterranean cyclonic 
systems in this region provide the bulk of annual precipitation (~90 to 
95%) during the cool season (November to April), ranging from 600 to 
1000 mm in the north and west to ~200 to 300 mm or less in the 
south and east (fig. S3A) (17–19). Today, much of the region that 
constituted Assyria’s heartland and its hinterland is situated within 
the high-yield rain-fed cereal agriculture zone lying above the 200- to 
300-mm isohyets, referred as a “zone of uncertainty” (13) because 
interannual variability is typically 40 to 60% (Fig. 1B and fig. S3B) 
and rain-fed cereal cultivation is risky and unsustainable (13). During 
years of anomalously high and low rainfall, this agriculturally marginal 
zone shifts southward and northward by several hundred kilometers, 
rendering nearly all ancient Assyria’s heartland both favorable for 
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high-yield cereal cultivation and vulnerable to crop failures (Fig. 1B). 
The latter was demonstrated during the severe drought episodes of 
1999–2001 and 2007–2008 when cereal crop failures and widespread 
livestock death were pervasive across northern Syria and Iraq (18–20). 
These droughts, which were the most severe in the past 50 years, 
were marked by up to 60% reduction in cool-season rainfall over 
northern Iraq (Fig. 1, A and B) that exacerbated regional socio-
economic conditions already suffering from decades of political 
instability and unsustainable socioeconomic policies (20).

RESULTS
Paleoclimate record
The EMME is among the most water-stressed regions in the world 
today. Understanding the processes that govern its complex spatio-
temporal hydroclimate variability requires paleoclimate proxy 
reconstructions with high temporal resolution comparable to in-
strumental records. This is particularly crucial for regions such as 
northern Iraq, where decades of war and unrest have resulted in 
substantial gaps in instrumental observations. However, these records 
from the region are rare (21). We reconstructed the hydroclimate 
history of the region spanning the past ~4000 years [~−57 to 3988 years 

before the present (yr B.P.), where B.P. = 1950 AD] by using the stable 
oxygen (18O) and carbon (13C) isotope measurements (N = 1725) 
from two speleothems (NIR-1 and NIR-2) (table S1), which were 
collected from Kuna Ba Cave [35°09′32″N and 45°38′47″E; ~660 m 
above sea level (masl)] located near the city of Sulaymaniyah in the 
Kurdistan region of northeastern Iraq, approximately 300 km southeast 
of Nineveh (Fig. 1, A and B, and figs. S1 and S3A). The chronologies 
of NIR-1 and NIR-2 are constrained by 11 and 19 230Th dates, re-
spectively (Fig. 2, fig. S4, and table S2). Applications of different age-
modeling schemes (Materials and Methods) yielded nearly identical 
age models (fig. S4). Excellent replications between the NIR-1 and 
NIR-2 18O and 13C profiles on their independent age models (Fig. 2) 
strongly suggest that the records contain the regional climate signal 
and that the speleothem calcite precipitated at or near isotopic equi-
librium conditions (Materials and Methods and fig. S5). The composite 
(NIR) 18O and 13C profiles provide an average temporal resolution 
of ~3 years with an average temporal uncertainty of ~25 years (1) 
over most portions of our record (Materials and Methods).

Cave monitoring data and our 18O measurements of drip water 
and cool-season precipitation near the cave further indicate that (i) 
the speleothem calcite precipitation in Kuna Ba Cave occurs at or 
near isotopic equilibrium condition, (ii) the cave’s karstic system 
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Fig. 1. Locations, climate, proxy data, and historical context. (A) Observed November to April (N-A) precipitation anomalies (relative to 1901–1980) during one of 
the most severe episodes of multiyear (2006/7–2008/09) droughts (18, 19) in the eastern Mediterranean and Middle East (EMME) (~30° to 40°N and 30° to 50°E). Gridded 
(0.5° × 0.5°) precipitation data are from the Global Precipitation Climatology Center (GPCC v.7) (Materials and Methods) (52). The inferred spatial extent of the Assyrian 
Empire at its peak (~670 BCE) (dashed line), traditional Assyrian heartland (triangle) (1–3), and the locations of modern cities of Mosul (ancient Nineveh) and Erbil (yellow 
circles) are shown along with the location of Kuna Ba Cave (star). (B) Shaded regions show the area bounded between the 200- and 300-mm isohyets for the dry 
(2007–2009), wet (2009–10, 2013), and mean climatology (1980–2010) periods. Topography data are from Global 1-min elevation collection (https://www.ngdc.noaa.
gov/mgg/global/) (C to E) Time series of November to April GPCC precipitation anomalies (% departure from the 1901–1980 period) over the EMME and northern Iraq 
(~33° to 38°N and 41° to 46°E) and from the grid points closest to Mosul (~36.5°N and 43.1°E) and Kuna Ba Cave (~35°N and 45°E). (C) Kuna Ba (this study) and Gejkar cave 
18O data (21) for the 1900–2006 (D) and 1900–2012 (E) periods, respectively, as anomalies (relative to the 1900–2000 period) (shaded). Linear trends (least-squares fits 
of EMME and speleothem time series) that are significantly different from zero at 95% confidence level are shown with black lines.

https://www.ngdc.noaa.gov/mgg/global/
https://www.ngdc.noaa.gov/mgg/global/


Sinha et al., Sci. Adv. 2019; 5 : eaax6656     13 November 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 10

is recharged by cool-season rainfall, (iii) and the 18O of speleothem 
reflects seasonally averaged 18O of precipitation (18Op) (fig. S5). 
Several lines of empirical, modeling, and proxy observations sug-
gest that temporal variations in the Kuna Ba 18O and 13C records 
provide changes in the regional precipitation amount and the local 
precipitation-evaporation balance (Supplementary Text). These 
include (i) coherent positive trends in the speleothem 18O profiles 
of Kuna Ba and the nearby Gejkar cave (Fig. 1, D and E) (21), mir-
roring a century-scale drying trend (~15 to 20% decline in the 
cool-season precipitation since the 1930s) over the EMME region 
(Fig. 1C and fig. S6) (17–19) [a relatively muted Kuna Ba speleothem 
18O profile compared to instrument data highlights how speleothems 
typically smooth the climate signal in regions marked by high inter-
annual variability (Fig. 1D); sustained periods of higher (and asym-
metric) occurrences of drier (wetter) seasons, however, can skew the 
speleothem 18O toward more enriched (depleted) values]; (ii) a 
positive covariance between the Kuna Ba 18O and 13C profiles 
(Fig. 2) (r = 0.48, P = 0.018), which is typical of speleothem records 
from arid regions, because drier conditions result in slower infiltration 
rates and increased degassing, which drive higher 18O and 13C 
values and vice versa (21, 22); and (iii) the presence of a prominent 
inverse relationship between the oxygen isotope composition of pre-
cipitation (18Op) and precipitation amount in EMME (23–25), 

consistent with the simulated data from the isotope-enabled general 
circulation model ECHAM5-wiso (fig. S7) (26).

DISCUSSION
Assyrian megapluvial and megadrought
The Kuna Ba 18O and 13C records display a range of ~2.0 and 2.5‰, 
respectively, revealing a wide spectrum of hydroclimate variability 
consisting of multicentennial trends and quasi-oscillatory variability 
together with step-like shifts in the mean climate of the region over 
the past 4000 years (fig. S8A). Distinct multidecadal to centennial 
length intervals of “drier” and “wetter” conditions are defined 
by substantially enriched and depleted 18O values (see Materials 
and Methods) (Fig. 3 and fig. S8B). To highlight multidecadal- to 
centennial-scale variability, we removed the long-term (>500 years) 
nonlinear trends from the composite 18O record (Materials and 
Methods). The z score transformed values of the detrended record 
delineating the drier intervals are similar to the values observed 
during the ~1980–2007 period of our record (Fig. 3 and fig. S8), the 
latter coeval with the period of the largest reduction in cool-season 
precipitation over the northern Iraq and Syria during the past 
century (18, 19). The interval between ~2800 and 2690 yr B.P. (~850 and 
740 BCE) emerged as one of the wettest periods of the past 4000 years 
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in the Kuna Ba record, representing ~15 to 30% increase in the cool-
season precipitation amount (relative to 1980–2007 CE) as inferred 
from the observed modern speleothem 18O-precipitation relation-
ship (Figs. 1, C to E, and 3). This peak wet period, termed here the 
Assyrian megapluvial, was embedded within nearly two centuries 
(~925–725 BCE) of pluvial conditions and is synchronous with the 

prominent phases of the Assyrian imperial expansion (c. 920–730 BCE) 
(1–4) within the margin of dating errors of both proxy (~25 years, 
1) and historical records (~1 year) (Fig. 3). The age errors associated 
with the events surrounding the rise and fall of the Assyrian Empire 
are known with annual and, for many events, at monthly chrono-
logical precision (Supplementary Text) (27).
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The near-simultaneous increases in the Kuna Ba 18O and 13C 
values between ~2750 yr B.P. (~800 BCE) and ~2650 yr B.P. (~700 BCE) 
(Figs. 2 and 3) mark the transition from peak pluvial to peak dry 
conditions. The timings of initial “change points” in all four isotopic 
profiles (Fig. 2 and Materials and Methods) indicate that the 13C 
values lagged changes in the 18O values by ~30 to 50 years, consistent 
with an expected slower response of speleothem 13C due to longer 
turnover time of organic carbon in response to changes in local ef-
fective moisture and/or precipitation. The interval between ~2650 
and 2500 yr B.P. (~675–550 BCE) in the detrended record delineated 
by some of the highest 13C values and 18O values emerged as 
a ~125-year period of peak aridity, termed here the Assyrian mega-
drought, which is synchronous, within the margins of dating error, 
with the period of the Assyrian imperial collapse (c. 660–600 BCE) 
(Fig. 3) (1–4). The severity of the Assyrian megadrought is comparable 
in magnitude to the post-1980 CE drought inferred from our speleo

them record—an observation that provides critical context for both 
historical and modern droughts (17, 18).

Imprecise chronologic constraints and/or substantially coarser 
temporal resolutions of most of the existing proxy records from the 
EMME region preclude a definitive assessment of the spatial and 
temporal signatures of the Assyrian megadrought and megapluvial 
events (Fig. 4). Nonetheless, the transition from the megapluvial to 
the megadrought conditions in our record between ~2.6 and 2.7 ka B.P. 
matches in timing with a hemispheric scale and possibly a global-scale 
climate event, generally referred in the literature as the 2.7- or 2.8-ka 
event [see review in (28)]. The shift from wetter to drier conditions 
at ~2.7 ka B.P. is also evident in a high-resolution speleothem 18O 
record from Jeita cave in the northern Levant (22) as well as in some 
lake, marine, and speleothem proxy records from the eastern 
Mediterranean, Turkey, and the Middle East (Fig. 4) [e.g., (29–37)], 
although the exact timing of this transition varies between records 
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(Fig. 4). A comparison between the Kuna Ba and nearby Gejkar cave 
speleothem records show a broadly similar pattern of multidecadal 
variability superimposed over a statistically significant drying trend 
in both records over the past millennium (fig. S8C). However, the 
two records exhibit marked differences between the 1.6- and 2.4-ka 
period (fig. S8C) when the chronologic constraints in the Gejkar cave 
record are considerably less precise (21).

Climate change and Assyrian agriculture
Like all ancient Mesopotamian states, the Assyrian Empire was fun-
damentally an agrarian society, and consequently, control of agri-
culturally productive land was the primary means for generating wealth 
(38). Because Assyrian rain-fed agriculture was highly dependent on 
cool-season precipitation, it is instructive to examine the relationship 
between precipitation variability and agriculture productivity in 
the geographic context of the Assyrian core area in present-day 
northern Iraq. Observational data show that, during years when mean 
annual precipitation in the region is 15 to 30% higher than the cli-
matological mean, the zone of uncertainty lies substantially south-
ward of the Assyrian heartland, resulting in conditions favorable for 
rain-fed agriculture over land that would not be arable without irri-
gation (Fig. 1B and fig. S9, A and B). Using “wet years” as a modern 
analog, we suggest that “Assyrian megapluvial” conditions would 
have strengthened the Assyrian agrarian economy and powered the 
imperial campaigns supported by the state’s agricultural revenues 
(38). Recent archeological surveys in the central and northern parts 
of the Kurdistan region of Iraq suggest that a key feature of Assyrian 
expansion during this period involved conquest of previously un-
settled dry steppe terrain (Neo-Assyrian madbarum) in the capitals’ 
hinterlands (12). Ongoing surveys also indicate that this period 
was marked by execution of imperial “control technologies” to ma-
terially and ideologically commemorate the landscape through large-
scale construction of hydraulic systems of regional scale, establishment 
of large fortified capital and provincial cities together with the forced 
migration of deportees, and the creation of a dense network of small 
rural settlements (12).

Our analysis of solar-induced chlorophyll fluorescence (SIF), a 
proxy for photosynthesis and a strong predictor of cereal crop yield 
(39) together with other satellite-based vegetation indices, shows 
marked changes in vegetation and crop productivity (20) during 
periods of drought in this region. The SIF analysis quantitatively shows 
that the cereal crop yield over northern Iraq is highly sensitive to 
rainfall changes between 200 and 400 mm but is minimally sensitive 
to rainfall variations above 400 mm (fig. S9D). Therefore, a northward 
displacement of 200 to 300 mm isohyets during the Assyrian mega-
drought can situate a large portion of the historical region of Assyrian 
heartland and hinterland under conditions where vegetation pro-
ductivity would have plummeted (fig. S9A). A similar scenario playing 
out frequently during the first half of the seventh century BCE would 
have dealt a major blow to the Assyrian rain-fed agrarian economy in 
northern Mesopotamia (8, 10–16, 40) through frequent and wide-
spread crop failures notwithstanding the massive irrigation networks 
that Assyria had put in place around Nineveh (c. 702 and 688 BCE) 
(fig. S2) (9–12) to sustain the estimated 4.5 million deportees that 
were settled mostly in the Assyrian heartland (6). Given that the 
Assyrian megadrought occurred in the context of widespread regional 
aridity and that Assyrian agricultural production probably reached 
maximum capacity (16), there were little means to import food from 
adjacent regions due to the friction of animal traction cereal transport 

(7). The frequent crop failures during the Assyrian megadrought 
may thus have exacerbated the political unrest in Assyria in its final 
decades by inflaming preexisting tensions both within Assyrian 
society and between the Assyrians and conquered subject peoples 
like the Babylonians and Medes (Supplementary Text) (1–5).

Post-Assyrian period
There is little historical or archaeological information to assess what 
became of the Assyrian heartland and its hinterlands’ population 
following the empire’s conquest and collapse in 608 BCE. In the 
heartland, the destruction levels of palaces, temples, and residential 
areas were followed by collapse strata with rare signs of paltry re-
construction and minor “squatter” occupations during the extended 
drought period (14, 40). At the provincial capital Sheikh Hamad/
Dur-katlimmu, 200 km west of Assur, the last four Neo-Assyrian tablets 
are dated to only a decade after the fall of Nineveh (41). Towns and 
village populations of the hinterland also abandoned the region, with 
similar abandonments along the lower Khabur River, where ~71% of 
all sites disappeared rapidly (42). The populations of the desiccated 
heartland may have habitat-tracked to southern Mesopotamian 
refugia, where Neo-Babylonian irrigation-based agriculture remained 
less vulnerable to megadrought and soon expanded greatly to feed 
hypertrophic cities. This absence of sedentary north Mesopotamian 
agricultural settlement noticed by Xenophon (Anab. III, 4) in 401 BCE, 
and with only rare exceptions at riverine refugia such as Nisibina, 
persisted past the return of pre-megadrought precipitation until the 
Seleucid and Parthian settlement revivals that began in the late fourth 
century BCE (43).

CONCLUSIONS
The fall of the Assyrian Empire was one of the iconic events of world 
history. The chain of events leading to its rise, expansion, and downfall 
likely included multiple proximal and distal factors. The past few 
decades of the empire were marked by political instability, civil wars, 
and, ultimately, invasion by the combined armies of Babylonians 
and Medes (1–4), which were perhaps among the proximate causes 
for the Assyrian collapse. Our data suggest that climate change was 
an underlying causal factor, whose effects on the Assyrian imperial 
economy began centuries before the Empire’s collapse. Nearly two 
centuries of high precipitation and high agrarian outputs encouraged 
high-density urbanization and imperial expansion that was not sus-
tainable when climate shifted to megadrought conditions during the 
seventh century BCE. Megadroughts as severe as modern droughts 
in the region but lasting for multiple decades likely crippled the Assyrian 
economy and precipitated its collapse. Our data also suggest that the 
recent multiyear droughts superimposed over a century-long drying 
trend are among the worst episodes of drought in the region’s hy-
droclimate variability during the past four millennia.

MATERIALS AND METHODS
Field collection and sample preparation
Kuna Ba Cave (~500 m in length; ~660 masl; 35°09′32″ N and 
45°38′47″E) is located near the city of Sulaymaniyah (Supplementary 
Text). Two speleothems (stalagmites)—NIR-1 (~121 mm) and NIR-2 
(~406 mm)—were collected ~150 and 300 m from the cave’s entrance, 
respectively. NIR-2 was actively growing at the time of collection 
(November 2007). Fresh calcite growth was induced on a frosted glass 
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plate beneath the feeder drip of NIR-2 after its removal. The cave’s 
ambient temperature and the relative humidity (RH) at the time of 
sample collection were ~18.0°C and 95%, respectively. Drip water 
samples were subsequently collected in August 2008, November 2011, 
and February and June 2012. The average 18O of drip water, RH, and 
temperature are −6.17 ± 0.5‰ (n = 21), 95 ± 2%, and 18° ± 1.0°C, 
respectively (fig. S5). 18O of modern calcite scraped from the center 
of the glass plate is −6.24 ± 0.08‰, consistent with the theoretical 
18O values of calcite precipitated at the equilibrium isotopic condi-
tion (fig. S5). A program of daily rainfall collection was conducted 
between January and March 2012 at the University of Sulaimani, 
Sulaymaniyah, located ~30 km from the Kuna Ba cave. 18Op of 
precipitation over this period ranged from ~−2.40 to −10.45‰, with 
an amount-weighted average value of −6.05‰ (n = 20), similar to 
the average 18O value of the drip water samples (−6.17‰, n = 24). 
The stalagmites were cut with a thin diamond blade along the growth 
axes and lightly polished. An automated triaxial micromill was used 
to obtain subsamples for stable isotopic analyses by continuously 
milling in 100-m increments along the growth axis of NIR-1 (be-
tween ~18 and 121 mm from the top) and NIR-2 (between 0 and 
~401 mm, with 0 being top of the sample) (table S1). Subsamples for 
230Th dating (weighing typically between 150 and 300 g) were 
obtained by drilling with a 0.9-mm carbide dental burr.

Stable isotope measurement
The NIR-I and NIR-2 profiles consist of 625 and 1100 stable isotope 
measurements (table S1). Subsamples for 18O and 13C analyses were 
measured using a Multi-Prep dual inlet system attached to an isoprime 
stable isotope ratio mass spectrometer at the University of Southern 
California. The long-term precision of the Ultissima standard for the 
18O and 13C measurements over the course of this study was ~0.06 
and 0.03‰, respectively.

230Th dating
The chronological frameworks of NIR-1 and NIR-2 records were 
established by 11 and 19 230Th dates, respectively (table S2). 230Th 
dating was performed at the University of Minnesota and at Xi’an 
Jiaotong University, China, by using Thermo-Finnigan Neptune/
Neptune plus multi-collector inductively coupled plasma mass spec-
trometers. The methods are identical in both laboratories. We used 
standard chemistry procedures (44) to separate uranium and thorium. 
A triple-spike (229Th-233U-236U) isotope dilution method was used 
to correct instrumental fractionation and to determine U/Th isotopic 
ratios and concentrations (45). U and Th isotopes were measured 
on a MasCom multiplier behind the retarding potential quadrupole 
in the peak-jumping mode using standard procedures (45). Un-
certainties in U/Th isotopic measurements were calculated offline 
at the 2 level, including corrections for blanks, multiplier dark noise, 
abundance sensitivity, and contents of the same nuclides in spike 
solution. Corrected 230Th ages assume an initial 230Th/232Th atomic 
ratio of 4.4 ± 2.2 × 10−6, the values for a material at secular equilibrium 
with a bulk earth 232Th/238U value of 3.8 (45).

Statistical analyses
Age models
The NIR-1 and NIR-2 age models and associated age uncertainties 
were modeled using COPRA (Constructing Proxy Records from Age 
model) (46), Bchron (47), and OxCal (48) age-modeling schemes 
(fig. S4). All three modeling schemes yielded nearly identical age 

models, and the conclusions of this study are not sensitive to the 
choice of any one age model. We adopted COPRA age models and 
generated 2000 realizations to account for the dating uncertainties 
(2.5 and 97.5% quantile confidence limits). The temporal resolution 
of NIR-2 on COPRA age models ranges from 0.5 to 12 years, with 
an average resolution of ~4 years. The average temporal resolution 
of NIR-1 is ~2.8 years. The NIR-1 and NIR-2 isotope profiles during 
the period of overlap were averaged to derive a composite record 
(average temporal resolution of ~3 years).
Change point estimation
We applied a parametric nonlinear regression technique (49) to con-
strain the timings of initial changes in Kuna Ba isotope profiles marking 
the transition from the Assyrian megapluvial to Assyrian megadrought 
state (Fig. 2). This method uses a continuous function consisting of 
two linear parts that are joined at the break point. The break model 
was fitted to data using a weighted least-squares method with a 
brute-force search for the break point. Statistical uncertainties of 
the trend, timing, and break point were evaluated using 2000 block 
bootstrap simulations, which preserved the distribution and serial 
dependence of the data over the length of a block (49). Change point 
estimations in the 18O profiles predated changes points in the 13C 
profiles by ~30 to 50 years (Fig. 2).
Detrending
We used singular spectrum analysis (SSA) (50) to remove nonlinear 
trends (>500 years) from the composite NIR 18O time series. The 
SSA method decomposes time series into several modes of variability 
(monotonic and oscillatory) and the remaining low-amplitude high-
frequency noise. Before applying SSA, the time series was linearly 
interpolated (2.98-year interval) to match the number of data points 
in the original composite time series. The time series was detrended 
by removing the first component (i.e., largest eigenvalue from an auto 
covariance matrix of SSA). The size of the embedded window was 
set to one-fifth the size of the length of the time series. The detrended 
time series was normalized by its mean and SD to produce z scores.
Precipitation data analysis
Assessments of precipitation trends and anomalies in both spatial and 
temporal domain evolution can be sensitive to the choice of gridded 
precipitation data. This is particularly important for regions such as 
northern Iraq, where the sparseness of station gauge data before 
the 1930s and after the 1980s precludes a definitive assessment of 
centennial-scale trend at the local scale. A recent study (51) applied 
the compromise programming approach to evaluate several widely 
used gridded datasets and concluded that gauge-based high-resolution 
(0.5° × 0.5°) Global Precipitation Climatology Centre (GPCC) version 7 
(52) global datasets of observed monthly precipitation best replicate 
annual and seasonal mean and variability and probability distribution 
of observed precipitation from 41 stations located within and sur-
rounding Iraq. Consequently, we used the GPCC product to extract 
November to April precipitation data over the EMME (~30° to 40°N 
and 30° to 50°E) and northern Iraq (~33° to 38°N and 41° to 46°E) 
and from the grid points closest to Mosul (36.35°N and 43.16°E) and 
Kuna Ba Cave (35.09°N and 45°4E) (Fig. 1B). These data were used 
to analyze the spatial precipitation trends (fig. S6, A and B), anomalies 
(Fig. 1, A and C), amounts (figs. S3, S6, D and F, and S9), and the 
mean positions of the isohyets for different time periods as dis-
cussed in the text (Fig. 1B and fig. S9, A and B). We also used the 
University of East Anglia Climatic Research Unit (CRU) version 
4.1 (53) to estimate precipitation trends during the instrumental period 
(fig. S6A). The GPCC and CRU datasets are in close agreement, 
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but some differences exist before the 1930s because of the sparseness 
of observational data before the 1930s. Station data from Mosul and 
Sulaymaniyah (available with gaps between 1923 and 1980 and 1941 
to 2004, respectively) were also used (fig. S3C). The precipitation 
amount and isohyets for wet and dry composites (fig. S9, A and B) 
were constructed by using the GPCC data. The composites represent 
means of November to April precipitation amount for the 10 driest 
(2012, 2008, 2007, 2000, 1999, 1986, 1984, 1983, 1958, and 1935) 
and 10 wettest (1987, 1985, 1980, 1976, 1961, 1941, 1936, 1923, 1920, 
and 1903) years, which were identified from the GPCC data.
Trend analysis
Statistical significance of linear trends in precipitation and speleothems 
18O time series from Kuna Ba and Gejkar caves (Fig. 1C and fig. S6A) 
was evaluated by generating 95% bootstrapped confidence intervals 
(N = 2000). Trends significance for gridded precipitation data at each 
grid point at 95% confidence level (fig. S6B) was determined by using 
a nonparametric modified Mann-Kendall’s test that accounts for serial 
autocorrelation in data.
Solar-induced chlorophyll fluorescence
We used monthly gridded SIF from the Global Ozone Monitoring 
Experiment-2 (GOME-2) MetOp-A satellite, which measures the 
spectrum for top-of-atmosphere radiance between 240 and 790 nm. 
Data between 734 and 758 nm were used to estimate the SIF following 
the methods described by Joiner et al. (54). The level 3 GOME-2 SIF 
product was prescreened for clouds (≥30% cloud coverage was 
excluded) and has undergone limited validation with ground data 
and other satellite products (54). We used data from the period 
2007 to 2017 from the most current version available at the time of 
the study (version 27). The footprint of the retrieval was 40 km by 
80 km before July 2013 and 40 km by 40 km afterward. The data 
were archived onto a 0.5° grid. We extracted the mean November for 
April SIF for each grid cell shown with a unit of mW m−2 nm−1 sr−1. 
SIF measurements were binned into 50-mm precipitation windows 
to assess the average SIF associated with different amounts of cool-
season precipitation. Average SIF retrievals from 2007 to 2017 for 
each grid cell were co-located with precipitation and then binned 
into 50-mm precipitation bins. To estimate sensitivity, we calculated 
the rate of change of SIF for each incremental change in precipitation.
Isotopic equilibrium tests
Conventional criteria to assess the isotopic equilibrium of stalagmites 
require no correlation between 18O and 13C along the same growth 
laminae (55). The latter has proven to be difficult, and in some cases, 
it has been demonstrated that a lack of correlation between 18O and 
13C values along the speleothem’s flanks does not preclude deposition 
of calcite in isotopic conditions at or near the growth axis (56). Instead, 
the replication test (i.e., a high degree of coherence between 18O 
profiles of individual speleothems from the same or nearby cave) is 
a more rigorous and reliable test of isotopic equilibrium (56). A high 
degree of visual similarity between the coeval portions of NIR-1 and 
NIR-2 18O profiles suggests that both stalagmites record primary 
climate signals. The visual comparison was further confirmed by 
statistically significant correlations between the NIR-1 and NIR-2 
18O profiles (r = 0.66, which is significant at 95% confidence level) 
using ISCAM algorithm (57). The significance levels were assessed 
against a red-noise background generated by using artificially sim-
ulated first-order autoregressive time series (AR1). Furthermore, 
a strong replication between the NIR-1 and NIR 2 13C profiles 
(r = 0.81) is suggestive of isotopic equilibrium precipitation of 
calcite. Last, the coherence between the measured 18O values of 

calcite obtained from the tip of actively growing NIR-2 and glass 
plates under feeder drips with the theoretical range in 18O values of 
calcite precipitated in isotopic equilibrium condition (fig. S5) sup-
ports the idea that calcite deposition in Kuna Ba cave occurs at or 
close to isotopic equilibrium conditions.

ECHAM5-wiso simulated data
We used an isotope-enabled general circulation climate model 
ECHAM5-wiso (26) data to understand the dynamic controls of 
18Op variability over the EMME. We used data from a historical 
climate simulation (1871 to 2011) with this model at T106 (1° reso-
lution) (58) for this study. The ECHAM5-wiso has been widely used 
for both modern and past climate and isotope simulations and has 
been shown to be in good agreement with available 18Op observations 
from the Global Network of Isotopes in Precipitation (GNIP) on an 
annual and seasonal time scale (26). We further validated the model 
using two of the longest GNIP 18O datasets from the region, namely, 
Adana, Turkey (monthly 18Op data available from 1980 to 2011), 
and Tehran, Iran (monthly 18Op data available from 1960 to 1980) 
(fig. S7, C and E). Spatial pattern of simulated precipitation amount 
from ECHAM5-wiso correctly captures the observed spatial pattern 
of the cool-season (November to April) precipitation amounts and 
18Op over the EMME. The model’s finer resolution provides a realistic 
representation of strong east-west and north-south gradient in both 
precipitation amount and 18Op over the broader EMME region (fig. S7, 
A, B, and G) as well as across Iraq and Syria, which agree reasonably 
well with the observed data (59, 60). The model results show moderate 
to strong inverse correlation between the amount-weighted 18Op 
extracted from the grid point closest to Kuna Ba with upstream 
regional precipitation amount, consistent with results of previous 
empirical studies from the region [e.g., (23–25)].

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/11/eaax6656/DC1
Supplementary Text
Fig. S1. The geographic context of the Neo-Assyrian Empire and major Assyrian cities.
Fig. S2. The geographic context of the key Neo-Assyrian canal systems.
Fig. S3. The climatic context of the study area.
Fig. S4. Age models of NIR-1 and NIR-2 and scanned images of speleothems.
Fig. S5. 18O of rainfall, drip water, and modern calcite.
Fig. S6. Regional precipitation trends and anomalies.
Fig. S7. Observed and simulated precipitation amount and 18Op.
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