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ABSTRACT
We present the first large-scale studies of three advanced web
tracking mechanisms — canvas fingerprinting, evercookies
and use of “cookie syncing” in conjunction with evercookies.
Canvas fingerprinting, a recently developed form of browser
fingerprinting, has not previously been reported in the wild;
our results show that over 5% of the top 100,000 websites
employ it. We then present the first automated study of
evercookies and respawning and the discovery of a new ev-
ercookie vector, IndexedDB. Turning to cookie syncing, we
present novel techniques for detection and analysing ID flows
and we quantify the amplification of privacy-intrusive track-
ing practices due to cookie syncing.

Our evaluation of the defensive techniques used by
privacy-aware users finds that there exist subtle pitfalls —
such as failing to clear state on multiple browsers at once
— in which a single lapse in judgement can shatter privacy
defenses. This suggests that even sophisticated users face
great difficulties in evading tracking techniques.

1. INTRODUCTION

A 1999 New York Times article called cookies compre-
hensive privacy invaders and described them as“surveillance
files that many marketers implant in the personal computers
of people.” Ten years later, the stealth and sophistication of
tracking techniques had advanced to the point that Edward
Felten wrote“If You’re Going to Track Me, Please Use Cook-
ies” [17]. Indeed, online tracking has often been described
as an “arms race” [43], and in this work we study the latest
advances in that race.

The tracking mechanisms we study are advanced in that
they are hard to control, hard to detect and resilient
to blocking or removing. Canvas fingerprinting uses the
browser’s Canvas API to draw invisible images and ex-
tract a persistent, long-term fingerprint without the user’s
knowledge. There doesn’t appear to be a way to automati-
cally block canvas fingerprinting without false positives that
block legitimate functionality; even a partial fix requires a
browser source-code patch [38]. Evercookies actively circum-
vent users’ deliberate attempts to start with a fresh pro-
file by abusing different browser storage mechanisms to re-

store removed cookies. Cookie syncing, a workaround to
the Same-Origin Policy, allows different trackers to share
user identifiers with each other. Besides being hard to de-
tect, cookie syncing enables back-end server-to-server data
merges hidden from public view.

Our goal is to improve transparency of web tracking
in general and advanced tracking techniques in particular.
We hope that our techniques and results will lead to bet-
ter defenses, increased accountability for companies deploy-
ing exotic tracking techniques and an invigorated and in-
formed public and regulatory debate on increasingly persis-
tent tracking techniques.

While conducting our measurements, we aimed to auto-
mate all possible data collection and analysis steps. This
improved the scalability of our crawlers and allowed us to
analyze 100,000 sites for fingerprinting experiments, as well
as significantly improve upon the scale and sophistication of
the prior work on respawning, evercookies and cookie sync-
ing.

1.1 Contributions
First study of real-world canvas fingerprinting

practices. We present the results of previously unreported
canvas fingerprinting scripts as found on the top 100,000
Alexa sites. We find canvas fingerprinting to be the most
common fingerprinting method ever studied, with more than
5% prevalence. Analysis of the real-world scripts revealed
that they went beyond the techniques suggested by the aca-
demic research community (Section 3).

Automated analysis of evercookies and respawn-
ing. We describe an automated detection method for ever-
cookies and cookie respawning. Applying this analysis, we
detected respawning by Flash cookies on 10 of the 200 most
popular sites and found 33 different Flash cookies were used
to respawn over 175 HTTP cookies on 107 of the top 10,000
sites. We also uncover a new evercookie vector, IndexedDB,
which was never found in the wild before (Section 4). Re-
markably, respawning has already led to a lawsuit and a
$500,000 settlement [14], and yet it is quite prevalent on the
web.

Cookie syncing privacy analysis. We find instances of
syncing of respawned IDs in the wild, i.e., an ID respawned
by one domain is passed to another domain. Respawning
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enables trackers to link a user’s browsing logs before cookie
clearing to browsing logs after cookie clearing. In our mea-
surements, approximately 1.4% of a user’s browser history
can be linked this way in the wild. However, the figure
jumps to at least 11% when these respawned cookies are
subsequently synced. Cookie syncing also allows trackers
to merge records on individual users, although this merging
cannot be observed via the browser. Our measurements in
Section 5 show that in the model of back-end merging we
study, the number of trackers that can obtain a sizable frac-
tion (40%) of a user’s browsing history increases from 0.3%
to 22.1%.

Novel techniques. In performing the above experi-
ments, we developed and utilized novel analysis and data
collection techniques that can be used in similar web pri-
vacy studies.

• Using the strace debugging tool for low-level monitor-
ing of the browser and the Flash plugin player (Section
4.2).

• A set of criteria for distinguishing and extracting
pseudonymous identifiers from traditional storage vec-
tors, such as cookies, as well as other vectors such
as Flash storage. By extracting known IDs, we can
track them as they spread to multiple domains through
cookie syncing.

Making the code and the data public. We intend
to publicly release all the code we developed for our exper-
iments and all collected data, including (i) our crawling in-
frastructure, (ii) modules for analysing browser profile data
and (iii) crawl databases collected in the course of this study.

1.2 Implications
The thrust of our results is that the three advanced track-

ing mechanisms we studied are present in the wild and some
of them are rather prevalent. As we elaborate on in Section
6.1, they are hard to block, especially without loss of con-
tent or functionality, and once some tracking has happened,
it is hard to start from a truly clean profile. A frequent ar-
gument in online privacy debates is that individuals should
“take control” of their own privacy online. Our results sug-
gest that even sophisticated users may not be able to do so
without significant trade-offs.

We show that cookie syncing can greatly amplify privacy
breaches through server-to-server communication. While
web privacy measurement has helped illuminate many pri-
vacy breaches online, server-to-server communication is not
directly observable. All of this argues that greater oversight
over online tracking is becoming ever more necessary.

2. BACKGROUND AND RELATED WORK

The tracking mechanisms studied in this paper can be
differentiated from their conventional counterparts by their
potential to circumvent users’ tracking preferences, being
hard to discover and resilient to removal. We selected three
of the most prominent persistent tracking techniques — can-
vas fingerprinting, evercookies and cookie syncing — based
on the lack of adequate or comprehensive empirical measure-
ments of these mechanisms in the wild. We now give a brief
overview of these techniques.
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Figure 1: Canvas fingerprinting basic flow of operations

Canvas fingerprinting: Canvas fingerprinting is a type of
browser or device fingerprinting technique that was first pre-
sented in a paper by Mowery and Shacham in 2012 [30].
The authors found that by using the Canvas API of modern
browsers, an adversary can exploit the subtle differences in
the rendering of the same text to extract a consistent finger-
print that can easily be obtained in a fraction of a second
without user’s awareness.

The same text can be rendered in different ways on dif-
ferent computers depending on the operating system, font
library, graphics card, graphics driver and the browser. This
may be due to the differences in font rasterization such as
anti-aliasing, hinting or sub-pixel smoothing, differences in
system fonts, API implementations or even the physical dis-
play [30]. In order to maximize the diversity of outcomes,
the adversary may draw as many different letters as possi-
ble to the canvas. Mowery and Shacham, for instance, used
the pangram How quickly daft jumping zebras vex in their
experiments.

Figure 1 shows the basic flow of operations to fingerprint
canvas. When a user visits a page, the fingerprinting script
first draws text with the font and size of its choice and adds
background colors (1). Next, the script calls Canvas API’s
ToDataURL method to get the canvas pixel data in dataURL
format (2), which is basically a Base64 encoded representa-
tion of the binary pixel data. Finally, the script takes the
hash of the text-encoded pixel data (3), which serves as the
fingerprint and may be combined with other high-entropy
browser properties such as the list of plugins, the list of
fonts, or the user agent string [15].

Evercookies and respawning: A 2009 study by Soltani
et al. showed the abuse of Flash cookies for regenerating
previously removed HTTP cookies, a technique referred to
as “respawning” [40]. They found that 54 of the 100 popular
sites (rated by Quantcast) stored Flash cookies, of which 41
had matching content with regular cookies. Soltani et al.
then analyzed respawning and found that several sites, in-
cluding aol.com, about.com and hulu.com, regenerated pre-
viously removed HTTP cookies using Flash cookies. A fol-
low up study in 2011 found that sites use ETags and HTML5
localStorage API to respawn cookies [6].

In 2010, Samy Kamkar demonstrated the “Evercookie,” a
resilient tracking mechanism that utilizes multiple storage
vectors including Flash cookies, localStorage, sessionStor-
age and ETags [20]. Kamkar employed a variety of novel
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Figure 2: Respawning HTTP cookies by Flash evercook-
ies: (a) a webpage stores an HTTP and a Flash cookie
(LSO), (b) a user removes the HTTP cookie, (c) the web-
page respawns the HTTP cookie by copying the value from
the Flash cookie.

techniques, such as printing ID strings into a canvas image
which is then force-cached and read from the cached im-
age on subsequent visits. Instead of just respawning HTTP
cookies by Flash cookies, his script would check the cleared
vectors in the background and respawn from any storage
that persists.

Figure 2 depicts the stages of respawning by Local Shared
Objects (LSOs), also known as Flash cookies. Whenever
a user visits a site that uses evercookies, the site issues an
ID and stores it in multiple storage mechanisms, including
cookies, LSOs and localStorage. In Figure 2a, the value 123
is stored in both HTTP and Flash cookies. When the user
removes her HTTP cookie (Figure 2b), the website places
a cookie with the same value (123) by reading the ID value
from a Flash cookie that the user may fail to remove (Fig-
ure 2c).

Cookie syncing: Cookie synchronization or cookie sync-
ing is the practice of tracker domains passing pseudonymous
IDs associated with a given user, typically stored in cookies,
amongst each other. Domain A, for instance, could pass an
ID to domain B by making a request to a URL owned by
domain B which contains the ID as a parameter string. Ac-
cording to Google’s developer guide to cookie syncing (which
they call cookie matching), cookie syncing provides a means
for domains sharing cookie values, given the restriction that
sites can’t read each other cookies, in order to better facili-
tate targeting and real-time bidding [3].

In general, we consider the domains involved in cookie sync-
ing to be third parties — that is, they appear on the first-
party sites that a user explicitly chooses to visit. Although
some sites such as facebook.com appear both in a first and
third-party context, this distinction is usually quite clear.

The authors of [36] consider cookie synchronization both as
a means of detecting business relationships between different
third-parties but also as a means of determining to what de-
gree user data may flow between parties, primarily through
real-time bidding. In the present work, we study the impli-
cations of the fact that trackers that share an ID through
syncing are in position to merge their database entries cor-
responding to a particular user, thereby reconstructing a
larger fraction of the user’s browsing patterns.

2.1 Related work
While HTTP cookies continue to be the most common

method of third-party online tracking, a variety of more in-
trusive tracking mechanisms have been demonstrated, re-

fined and deployed over the last few years. In response, var-
ious defenses have been developed, and a number of stud-
ies have presented measurements of the state of tracking.
While advertising companies have claimed that tracking is
essential for the web economy to function, a line of research
papers have proposed and prototyped solutions to carry out
behavioral advertising without tracking.

Fingerprinting, novel mechanisms. Researchers have
presented novel browser fingerprinting mechanisms such as
those based on performance metrics [29], the JavaScript en-
gine [31] , the rendering engine [46], clock skew [22], acoustic
characteristics [13], WebGL and canvas fingerprinting [30].
Most of those studies followed the path opened by the in-
fluential Panopticlick study [15], which demonstrated the
potentials of browser fingerprinting for online tracking.

Measurement studies. Web privacy measurement is a
burgeoning field; an influential early work is [23] and promi-
nent recent work includes [27, 39]. Mayer and Mitchell made
a comprehensive survey of tracking in combination with the
policy that surrounds it, and developed a tool for similar
web privacy measurement studies [27]. Roesner et al. ana-
lyzed different tracking methods and suggested a taxonomy
for third-party tracking [39].

Other papers have looked at various aspects of web pri-
vacy, including PII leakage [24], mobile web tracking [16],
JavaScript inclusions [33], targeted advertisements [25], and
the effectiveness of blocking tools [26].

Two studies measured the prevalence of different finger-
printing mechanisms and evaluated existing countermea-
sures [35, 5]. Nikiforakis et al. studied three previ-
ously known fingerprinting companies and found 40 such
sites among the top 10K sites employing practices such
as font probing and the use of Flash to circumvent proxy
servers [35]. Acar et al. found that 404 sites in the top mil-
lion deployed JavaScript-based fingerprinting and 145 sites
of the top 10,000 sites leveraged Flash-based fingerprint-
ing [5]. In comparison to these studies, we focus on can-
vas fingerprinting, which, to the best of our knowledge, has
never been reported to be found in the wild and is much
harder to block.

Several studies have looked at the use of Flash cook-
ies (LSOs) and, in particular, the use of Flash cookies to
respawn HTTP cookies [40, 6, 28]. Soltani et al. uncovered
the first use of respawning by Flash cookies [40], and in a
follow-up study, Ayenson et al. found the first use of cache
ETags and localStorage for respawning [6]. McDonald and
Cranor analyzed the landing pages of 100 popular websites,
plus 500 randomly-selected websites, and found two cases
of respawning in the top 100 websites and no respawning
in the randomly selected 500 sites [28]. In a recent study,
Sorensen analyzed the use of cache as a persistent storage
mechanism and found several instances of HTTP cookies
respawned from cached page content[41]. The main differ-
ence between our study and the papers mentioned here is
that we automated respawning detection as explained in Sec-
tion 4, and this allowed us to analyze orders of magnitude
more sites.

Olejnik et al. studied cookie syncing (which they call
cookie matching) [36]. They found that over 100 cookie
syncing events happen on the top 100 sites. In comparison
to their work, our study of cookie syncing (i) is large-scale,
covering 3,000 sites, (ii) is based on crawling rather than
crowd-sourcing, allowing easier comparative measurements



over time and (iii) presents a global view, in that we go be-
yond detecting individual sync events and are able to cap-
ture and analyze the propagation of IDs through the tracking
ecosystem. Further, we study how cookie syncing interacts
with respawning, leading to more persistent tracking and
widening the effects of these two vulnerabilities taken indi-
vidually.

Program analysis of JavaScript (i.e., static analysis and
dynamic analysis) is a common technique in web security
[42]. A few studies have used such techniques for blocking
or measuring web trackers. Orr et al. use static analysis
to detect and block JavaScript-loaded ads [37]. Tran et al.
use dynamic taint analysis to detect various privacy-invasive
behaviors [44]. Acar et al. use behavioral analysis to detect
fingerprinting scripts that employ font probing [5].

Defenses. Besson et al. [9] examined the theoretical
boundaries of fingerprinting defenses using Quantified In-
formation Flow. Following a more practical approach, Niki-
forakis and others developed a defense called PriVaricator
to prevent linkability from fingerprinters by randomizing
browser features such as plugins [34]. Finally, Unger et al.
[46], studied the potentials of browser fingerprinting as a
defense mechanism against HTTP(S) session hijacking.

In Section 6.1 we discuss how existing privacy tools defend
against the advanced tracking mechanisms we study.

Behavioral targeting without tracking. Several pa-
pers have addressed the question of whether all this tracking
is in fact necessary — they proposed ways to achieve the
purported goals of third-party tracking, primarily targeted
advertising, without server-side profiles. In Adnostic, the
browser continually updates a behavioral profile of the user
based on browsing activity, and targeting is done locally [14].
PrivAd has a similar model, but includes a trusted party that
attempts to anonymize the client [19]. RePriv has the more
general goal of enabling personalization via interest profiling
in the browser [18]. Bilenko et al. propose a model in which
the user’s profile and recent browsing history is stored in a
cookie [10]. Other work on similar lines includes [7, 45, 32].

3. CANVAS FINGERPRINTING
Canvas fingerprinting works by drawing text onto canvas

and reading the rendered image data back. In the following
experiments we used an instrumented Firefox browser that
we built by modifying the source code and logged all the
function calls that might be used for canvas fingerprinting.

3.1 Methodology and Data collection
Our methodology can be divided into two main steps. In

the first, we identified the ways we can detect canvas fin-
gerprinting, developed a crawler based on an instrumented
browser and ran exploratory crawls. This stage allowed us
to develop a formal and automated method based on the
early findings. In the second step, we applied the analysis
method we distilled from the early findings and nearly fully
automated the detection of canvas fingerprinting.

Mowery and Shacham used fillText and ToDataURL

methods to draw text and read image data respectively [30].
We logged the return value of ToDataURL and, in order to
find out the strings drawn onto the canvas, we logged the
arguments of fillText and strokeText methods1.

1In addition to these three methods we intercepted calls to
MozFetchAsStream, getImageData and ExtractData meth-

We logged the URL of the caller script and the
line number of the calling (initiator) code using Fire-
fox’s nsContentUtils::GetCurrentJSContext and nsJSU-

tils::GetCallingLocation methods. This allowed us to
precisely attribute the fingerprinting attempt to the respon-
sible script and the code segment. All function call logs were
parsed and combined in a SQLite database that allowed us
to efficiently analyze the crawl data. For each visit, we also
added cookies, localStorage items, cache metadata, HTTP
request/response headers and request bodies to the SQLite
database. We used mitmproxy 2 to capture HTTP data and
parsed data accumulated in the profile folder for other data
such as cookies, localStorage and cache data. The aggre-
gated data were used in the early stage analysis for canvas
fingerprinting and evercookie detection, which is explained
in Section 4.2. Our browser modifications for Firefox con-
sist of mere 33 lines of code, spread across four files and the
performance overhead of the modifications is minimal.

We crawled the home pages of the top 100,000 Alexa sites
with the instrumented Firefox browser in May 2014. We
used Selenium [4] to drive browsers to sites and ran multiple
Firefox instances in parallel to reduce the crawl time. Imple-
menting some basic optimizations and a naive load limiting
check, we were able to run up to 30 browsers in parallel on a
4-core 8GB desktop machine running GNU/Linux operating
system. The modified browsers were run in a chroot jail to
limit the effects of the host operating system.

False positive removal The Canvas API is used by
many benign scripts to draw images, create animations or
store content for games. During our crawls we found in-
teresting use cases, such as generating dynamic favicons,
creating tag clouds, and checking font smoothing support.
By examining the distinctive features of false positives and
the fingerprinting scripts found in the initial experiments,
we distilled the following conditions for filtering out false
positives:

• There should be both ToDataURL and fillText (or
strokeText) method calls and both calls should come
from the same URL.

• The canvas image read by the script should contain
more than one color and its size should be greater than
16x16 pixels.

• The image should not be requested in a lossy compres-
sion format such as JPEG.

Checking the origin of the script for both read and write
access helped us to remove scripts that use canvas for only
generating images but not reading them or vice versa. Al-
though it is possible that two scripts from the same domain
can divide the work to circumvent our detection method, we
accepted that as a limitation.

Enforcing a 16x16 pixel size limit allowed us to filter out
scripts that read too few pixels to efficiently extract the
canvas fingerprint. Although there are 240 possible color

ods which can be used to extract canvas image data. But we
did not put effort into recording the extracted image data
for three reasons: they were not used in the original can-
vas fingerprinting paper [30], they are less convenient for
fingerprinting (requires extra steps), and we did not find
any script that uses these methods and fingerprints other
browser properties in the initial experiments.
2http://mitmproxy.org/



Fingerprinting script
Number of

including sites
Text drawn into the canvas

ct1.addthis.com/static/r07/core130.js 5282 Cwm fjordbank glyphs vext quiz,

Charbase
A visual unicode database

Search

U+1F603: SMILING FACE WITH OPEN MOUTH

← U+1F602 FACE WITH TEARS OF JOY U+1F604 SMILING FACE WITH OPEN MOUTH AND
SMILING EYES →

0   Tweet 0

Your Browser �
Index U+1F603 (128515)
Class Other Symbol (So)
Block Emoticons

Java Escape "\ud83d\ude03"
Javascript Escape "\ud83d\ude03"
Python Escape u'\U0001f603'
HTML Escapes &#128515; &#x1f603;
URL Encoded q=%F0%9F%98%83

UTF8 f0 9f 98 83
UTF16 d83d de03

Contact Us

i.ligatus.com/script/fingerprint.min.js 115 http://valve.github.io

src.kitcode.net/fp2.js 68 http://valve.github.io

admicro1.vcmedia.vn/fingerprint/figp.js 31 http://admicro.vn/

amazonaws.com/af-bdaz/bquery.js 26 Centillion

*.shorte.st/js/packed/smeadvert-intermediate-ad.js 14 http://valve.github.io

stat.ringier.cz/js/fingerprint.min.js 4 http://valve.github.io

cya2.net/js/STAT/89946.js 3 ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz0123456789+/

images.revtrax.com/RevTrax/js/fp/fp.min.jsp 3 http://valve.github.io

pof.com 2 http://www.plentyoffish.com

*.rackcdn.com/mongoose.fp.js 2 http://api.gonorthleads.com

9 others* 9 (Various)

TOTAL 5559

(5542 unique1) -

Table 1: Canvas fingerprinting domains found on Top Alexa 100K sites.
*: Some URLs are truncated or omitted for brevity. See Appendix for the complete list of URLs.

1: Some sites include canvas fingerprinting scripts from more than one domain.

combinations for a 16x16 pixel image,3 operating systems
or font libraries only apply anti-aliasing (which is an im-
portant source of diversity for canvas fingerprinting) to text
larger than a minimum font size.4

The final check was to filter out cases where canvas image
data is requested in a lossy compression format. Under a
lossy compression scheme, the returned image may lose the
subtle differences that are essential for fingerprinting.

Applying these checks, we reduced the false positive ratio
to zero for the 100,000 crawl, upon which we perform our
primary analysis. It should be noted that in other pilot
crawls (beyond 100K), we witnessed some false positives that
our conditions failed to remove.

3.2 Results
Table 1 shows the prevalence of the canvas fingerprinting

scripts found during the home page crawl of the Top Alexa
100,000 sites. We found that more than 5.5% of crawled
sites actively ran canvas fingerprinting scripts on their home
pages. Although the overwhelming majority (95%) of the
scripts belong to a single provider (addthis.com), we discov-
ered a total of 20 canvas fingerprinting provider domains, ac-
tive on 5542 of the top 100,000 sites5. Of these, 11 provider
domains, encompassing 5532 sites, are third parties. Based
on these providers’ websites, they appear to be companies

3w × h × 2colordepth, 16 × 16 × 232 = 240 for the
RGBA color space, which uses 24 bits for the col-
ors (RGB) and 8 bits for the alpha channel. See,
http://www.whatwg.org/specs/web-apps/current-
work/multipage/the-canvas-element.html#pixel-
manipulation
4https://wiki.ubuntu.com/Fonts#Font_Smoothing
5We discarded some cases where the canvas fingerprinting
script is served from a content delivery network (CDN) and
additional analysis was needed to distinguish between dif-
ferent providers serving from the same (CDN) domain. In-
cluding these cases would only change the number of unique
sites with canvas fingerprinting to 5552 (from 5542).

that deploy fingerprinting as part of some other service
rather than offering fingerprinting directly as a service to
first parties. We found that the other nine provider do-
mains (active on 10 sites) are in-house fingerprinting scripts
deployed by first parties. Note that our crawl in this paper
was limited to home pages. A deeper crawl covering internal
pages of the crawled sites would find a higher percentage of
fingerprinting.
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Figure 3: Frequency of canvas fingerprinting scripts on the
home pages of Top Alexa 100K sites.

The 5.5% prevalence is much higher than what other
fingerprinting measurement studies had previously found
(0.4% [35], 0.4%, 1.5% [5]), although these studies may not
be directly comparable due to the differences in methodol-
ogy and data collection. Also note that canvas fingerprinting
was first used by AddThis between January 15 to February
1st, 2014, 6 which was after all the mentioned studies.

6The date was determined using http://httparchive.org/



Rank interval % of sites with canvas

fingerprinting scripts

[1, 1K) 1.80

[1K, 10K) 4.93

[10K, 100K] 5.73

Table 2: Percentage of sites that include canvas fingerprint-
ing scripts on the homepage, found in top 100K Alexa sites
divided in intervals of variable length. Websites in the 1 to
1K rank interval are 2.5 times less likely to embed a canvas
fingerprinting script than a site within 1K-10K interval.

Below rank 10,000, the prevalence of canvas fingerprint-
ing is close to uniform. However, we found that the top
1,000 sites are 2.5 times less likely to have included canvas
fingerprinting scripts than the ones within the 1,000-10,000
range.

Note that the URL http://valve.github.io, printed by
many scripts onto the canvas, belongs to the developer of
an open source fingerprinting library7. Furthermore, all
scripts except one use the same colors for the text and back-
ground shape. This similarity is possibly due to the use of
the publicly available open source fingerprinting library fin-
gerprintjs [47]. Figure 4 shows five different canvas images
used by different canvas fingerprinting scripts. The images
are generated by intercepting the canvas pixel data extracted
by the scripts listed in Table 1.

;
Figure 4: Different images printed to canvas by fingerprint-
ing scripts. Note that the phrase “Cwm fjordbank glyphs
vext quiz” in the top image is a perfect pangram, that is, it
contains all the letters of the English alphabet only once to
maximize diversity of the outcomes with the shortest possi-
ble string.

Manually analyzing AddThis’s script, we found that it
goes beyond the ideas previously discussed by researchers
and adds new tests to extract more entropy from the can-
vas image. Specifically, we found that in addition to the
techniques outlined in Mowery and Shacham’s canvas fin-
gerprinting paper [30] AddThis scripts perform the following
tests:

• Drawing the text with the default fallback font by us-
ing a bogus font name, starting with “no-real-font-”.

• Using the perfect pangram8 “Cwm fjordbank glyphs
vext quiz” as the text string

7See, https://github.com/Valve/fingerprintjs/blob/
v0.5.3/fingerprint.js#L250
8http://en.wikipedia.org/wiki/List_of_pangrams#
Perfect_pangrams_in_English_.2826_letters.29

• Checking the support for drawing Unicode by printing
the character U+1F603 smiling face with open mouth.

• Checking for canvas globalCompositeOperation sup-
port.

• Drawing two rectangles and checking if a specific point
is in the path by the isPointInPath method.

By requesting a non-existent font, the first test tries to em-
ploy the browser’s default fallback font. This may be used
distinguish between different browsers and operating sys-
tems. Using a perfect pangram, which includes a single in-
stance of each letter of the English alphabet, the script enu-
merates all the possible letter forms using the shortest string.
The last three tests may be trying to uncover the browser’s
support for the canvas features that are not equally sup-
ported. For instance, we found that the Opera browser can-
not draw the requested Unicode character, U+1F603.

Another interesting canvas fingerprinting sample was the
script served from the admicro.vcmedia.vn domain. By in-
specting the source code, we found that the script checks
the existence of 1126 fonts using JavaScript font probing.

Overall, it is interesting to see that commercial tracking
companies are advancing the fingerprinting technology be-
yond the privacy/security literature. By collecting finger-
prints from millions of users and correlating this with cookie
based identification, the popular third party trackers such
as AddThis are in the best position to both measure how
identifying browser features are and develop methods for
monitoring and matching changing fingerprints. Note that
according to a recent ComScore report, AddThis “solutions”
reaches 97.2% of the total Internet population in the United
States and get 103 billion monthly page views.9

4. EVERCOOKIES
Evercookies are designed to overcome the “shortcomings”

of the traditional tracking mechanisms. By utilizing multiple
storage vectors that are less transparent to users and may
be more difficult to clear, evercookies provide an extremely
resilient tracking mechanism, and have been found to be
used by many popular sites to circumvent deliberate user
actions [40, 6, 14]. In this section, we first provide a set
of criteria that we used to automatically detect identifier
strings, present detailed results of an automated analysis of
respawning by Flash evercookies, and show the existence of
respawning by both HTTP cookies and IndexedDB.

4.1 Detecting User IDs
Given that not all instances of the various potential stor-

age vectors are used to track users, detecting evercookies
hinges on determining whether a given string can serve as a
user ID. In order to detect persistent IDs in a given storage
vector, we leveraged data from two simultaneous crawls on
separate machines as well as a series of classification criteria.

First, if a cookie expires within a month of being placed,
we rule it out as containing a persistent identifier since it is
likely too transient to track a user over long periods.

Second, we parse cookie value strings using several delim-
iters we have observed to commonly occur (e.g. : and &).

9http://www.businesswire.com/news/home/
20131113005901/en/comScore-Ranks-AddThis-1-
Distributed-Content-United



This enables us to extract the potential identifier strings
from other non-essential data.

Third, we ensure that a potential identifier remains con-
stant throughout an individual crawl. A string that contin-
ually changes is unlikely to be an identifier.

Fourth, we compare instances of the same storage vector
using data from two unrelated crawls on different machines.
We consider a string a potenital identifier if the different
instances are no more than 33% similar according to the
Ratcliff-Obershelp algorithm [11]. Similarities above this
amount are unlikely to provide sufficient entropy to be iden-
tifiers.

Fifth, we filter out potential identifier strings that do not
always appear with the same length since identifiers are most
often in a fixed format, likely arising from the use of third-
party library functions.

The presented method provides a strict and conservative
detection of identifiers that we believe (through manual in-
spection) to have a very low false positive rate. We antici-
pate several sources of false negatives, for example ID strings
embedded in longer strings using non-standard delimiters or
ID strings that happen to have a high similarity. Similarly,
an adversarial tracker could continually change an identifier
or cookie sync short-lived identifiers, but keep a mapping on
the back end to enable long-term tracking. Therefore, the
results of this analysis provide a lower bound on the pres-
ence of evercookie storage vectors and on the level of cookie
syncing.

4.2 Flash cookies respawning HTTP cookies
Although there are many “exotic” storage vectors that can

be used to store tracking identifiers, Flash cookies have a
clear advantage of being shared between different browsers
that make use of the Adobe Flash plugin10. We developed a
procedure to automate the detection of respawning by Flash
cookies employing the method discussed in Section 4.1 to
detect IDs and using GNU/Linux’s strace [21] debugging
tool to log access to Flash cookies.

Compared to earlier respawning studies [40, 6, 28], the
method employed in this paper is different in terms of au-
tomation and scale. In prioir studies, most of the work, in-
cluding the matching of HTTP and Flash cookie identifiers
was carried out manually. By automating the analysis and
parallelizing the crawls, we were able to analyze 10,000 web-
sites, which is substantially more than the previous studies
(100 sites, 700 sites). Note that, similar to [28], we only
visited the home pages, whereas [40, 6] visited 10 internal
links on each website. Another methodological difference is
that we maintained the Flash cookies when visiting different
websites, whereas [40, 6] used a virtual machine to prevent
contamination. Last, [28] also used the moving and contrast-
ing Flash cookies from different computers to determine ID
and non-ID strings, which is one of the main ideas of the
analysis described below.

For this analysis we used data from four different crawls.
First, we sequentially crawled the Alexa top 10,000 sites and
saved the accumulated HTTP and Flash cookies (Crawl1).
We then made three 10,000 site crawls, two of which were
run with the Flash cookies loaded from the sequential crawl
(Crawl2,3). The third crawler ran on a different machine,
without any data loaded from the previous crawl (Crawl4).

10Chrome/Chromium bundled with the Pepper API are ex-
ceptions

Note that, except for the sequential crawl (Crawl1), we ran
multiple browsers in parallel to extend the reach of the study
at the cost of not keeping a profile state (cookies, localStor-
age) between visits. During each visit, we ran an strace
instance that logs all open, read and write system calls of
Firefox and all of its child processes. Trace logs were parsed
to get a list of Flash cookies accessed during the visit, which
are then parsed and inserted into a crawl database.

For the analysis, we first split the Flash cookie contents
from the three crawls (Crawl2,3,4) by using a common set
of separators11. We then took the common strings between
crawls made with the same LSOs (Crawl2,3) and subtracted
the strings found in LSO contents from the unrelated crawl
(Crawl4). We then checked the cookie contents from the
original profile (Crawl1) and cookies collected during the
visits made with the same LSO set (Crawl2,3). Finally,
we subtracted strings that are found in an unrelated visit’s
cookies (Crawl4) to minimize the false positives.

For clarity, we express the operation in set notation:

MaxRank⋃
i=1

((((F2i ∩ F3i) \ F4) ∩ C2i ∩ C3i) \ C4),

where Fni denotes Flash cookies from Crawln for the site
with the Alexa rank i, Cni denotes Cookies from Crawln
for the site with the Alexa rank i and F4, and C4 denotes all
Flash cookies and HTTP cookies collected during Crawl4.

We applied the method described above to four crawls
run in May 2014 and found that 33 different Flash cook-
ies from 30 different domains respawned a total of 355
cookies on 107 first party domains during the two crawls
(Crawl2,3). Table 3 shows that on six of the top 100 sites,
Flash cookies are used to respawn HTTP cookies. Nine
of top ten sites on which we observed respawning belong
to Chinese companies (one from Hong Kong) whereas the
other site belongs to the top Russian search engine Yan-
dex. The Flash cookie that respawned the most cook-
ies (69 cookies on 24 websites) was bbcookie.sol from the
bbcdn-bbnaut.ibillboard.com domain which belongs to a
company that found to use Flash based fingerprinting [5].
Note that this Flash cookie respawned almost three HTTP
cookies per site which belong to different third party do-
mains (bbelements.com, .ibillboard.com and the first-
party domain). The domain with the second highest number
of respawns was kiks.yandex.ru which restored 11 cookies
on 11 sites in each crawl (Crawl2,3).

IndexedDB as Evercookie While running crawls for
canvas fingerprinting experiments, we looked for sites that
store data in the IndexedDB storage vector. Specifically,
we checked the storage/persistent directory of the Fire-
fox profile. A very small number of sites, only 20 out of
100K, were found to use the IndexedDB storage vector.
Analyzing the IndexedDB file from the respawning crawl
(Crawl2) described above, we found that a script from the
weibo.com domain stored an item in the IndexedDB that
exactly matched the content of the Flash cookie named
simg.sinajs.cn/stonecc_suppercookie.sol. This Flash
cookie was used to respawn HTTP cookies on Chinese mi-
croblogging site weibo.com and its associated web portal
sina.com.cn. To the best of our knowledge, this is the first
report of IndexedDB as an evercookie vector. A more thor-

11Such as ”=:&;



Global

rank
Site CC

Respawning

(Flash) domain

1st/3rd

Party

16 sina.com.cn CN simg.sinajs.cn 3rd*

17 yandex.ru RU kiks.yandex.ru 1st

27 weibo.com CN simg.sinajs.cn 3rd*

41 hao123.com CN ar.hao123.com 1st

52 sohu.com CN tv.sohu.com 1st

64 ifeng.com HK y3.ifengimg.com 3rd*

69 youku.com CN irs01.net 3rd

178 56.com CN irs01.net 3rd

196 letv.com CN irs01.net 3rd

197 tudou.com CN irs01.net 3rd

Table 3: Top-ranked websites found to include respawning
based on Flash cookies. CC: ISO 3166-1 code of the coun-
try where the website is based. 3rd*: The domains that
are different from the first-party but registered for the same
company in the WHOIS database.

ough study of respawning based on IndexedDB is left for
future study.

4.3 HTTP cookies respawning Flash cookies
We ran a sequential crawl of the Top 3,000 Alexa sites

and saved the accumulated HTTP and Flash cookies. We
extracted IDs from this crawl’s HTTP cookies using the
method described in Section 4.1. We then made an addi-
tional sequential crawl of the Top 3,000 Alexa sites on a
separate machine loading only the HTTP cookies from the
initial crawl.

Our method of detecting HTTP respawning from Flash
cookies is as follows: (i) take the intersection of the initial
crawl’s flash objects with the final crawl’s flash objects (ii)
subtract common strings from the intersection using an un-
related crawl’s flash objects and (iii) search the resulting
strings for the first crawl’s extracted HTTP cookie IDs as
described in Section 4.1. This enables us to ensure that the
IDs are indeed found in the Flash objects of both crawls,
aren’t common to unrelated crawls, and exist as IDs on the
original machine. Using this method, we detected 11 differ-
ent unique IDs common between the three storage locations.

These 11 IDs correspond to 14 first-party domains, a
summary of which is provided by Table 7 in the Ap-
pendix. We primarily observe respawning from JavaScript
originating from two third-parties: www.iovation.com, a
fraud detection company that is specialized in device fin-
gerprinting, and www.postaffiliatepro.com, creators of af-
filiate tracking software (that runs in the first-party con-
text). We also observe three instances of what appears to
be in-house respawning scripts from three brands: Twitch
Interactive (twitch.tv and justin.tv), casino.com, and
xlovecam.com.

5. COOKIE SYNCING

Cookie synchronization — the practice of third-party do-
mains sharing pseudonymous user IDs typically stored in
cookies — provides the potential for more effective tracking,
especially when coupled with technologies such as evercook-
ies. First, pairs of domains who both know the same IDs

via synchronization can use these IDs to merge their track-
ing databases on the back end. Second, respawned cookies
may contain IDs that are widely shared due to prior sync
events, enabling trackers to link a user’s browsing histories
from before and after clearing browsing state.

In this section, we present our method for detecting syncs,
present an overview of the synchronization landscape and ex-
amine the threats of back-end database merges and history-
linking for users who clear state.

5.1 Detecting cookie synchronization
Using the techniques outlined in Section 4.1, we identified

cookies containing values likely to be user IDs. In order to
learn which domains know a given ID through synchroniza-
tion, we examined cookie value strings and HTTP traffic.

If a domain owns a cookie containing an ID, clearly the
domain knows that ID. In fact, a telltale sign of cookie sync-
ing is multiple domains owning cookies containing the same
ID. Likewise, if an ID appears in a domain’s URL string
(e.g. a referrer URL), then that domain also knows the ID.
Note that a given tracker may simply ignore an ID received
during a sync, but as we will demonstrate in Section 5.3,
trackers opting to store IDs have the ability to gain user
data through history merging.

The domains involved in HTTP traffic can be divided into
(referrer, requested URL, location) tuples in which the loca-
tion domain is non-empty only for HTTP response redirects.
The rules for ID passing are as follows:

• If an ID appears in the referrer URL, the requested
domain and location domain (if it exists) learn the ID.

• If the ID appears in the location URL, the requested
domain learns the ID.

As per [36], we cannot assume that the referrer learns
a synced ID appearing in the requested URL or location
URL string. In particular, third-party JavaScript executing
a sync on a first-party site will cause the first party to show
up as the referrer, even though it may not even be aware of
the ID sync. Although we can determine the directionality
of ID syncs in the cases of redirects, the fraction of flows
in which we could determine both the sender and receiver
was small. Hence, when examining cookie synchronization,
we focused on which domains knew a given ID, rather than
attempting to reconstruct the paths of ID flows.

5.2 Basic results
Before examining the privacy threats that can stem from

cookie synchronization, we first provide an overview of
cookie syncing activities that occur when browsing under
different privacy settings. We ran multiple crawls of the
top 3,000 Alexa domains on Amazon EC2 instances using
three different Firefox privacy settings: allowing all cookies
(i.e. no privacy-protective measures), allowing all cookies
but enabling Do Not Track, and blocking third-party cook-
ies. With all cookies allowed, the impact of Do Not Track on
the aggregate statistics we measure was negligible. In par-
ticular, enabling Do Not Track only reduced the number of
domains involved in synchronization by 2.9% and the num-
ber of IDs being synced by 2.6%. This finding is consistent
with studies such as Balebako et al. [8] — they find that, due
to lack of industry enforcement, Do Not Track provides lit-
tle practical protection against trackers. We therefore omit



further measurement and analysis of the effect of Do Not
Track in this section.

Table 4 shows high-level statistics for illustrative crawls
under the two third-party cookie settings. We say that an
ID is involved in synchronization if it is known by at least
two domains. Cookies and domains are involved in synchro-
nization if they contain or know such an ID, respectively.
The statistics displayed aggregate both third-party and
first-party data, as many domains (e.g. doubleclick.com,
facebook.com) exist in both the Alexa Top 3000 and as
third-parties on other sites.

Statistic
Third party cookie policy
Allow Block

# IDs 1308 938
# ID cookies 1482 953
# IDs in sync 435 347
# ID cookies in sync 596 353
# (First*) Parties in sync (407) 730 (321) 450
# IDs known per party 1/2.0/1/33 1/1.8/1/36
# Parties knowing an ID 2/3.4/2/43 2/2.3/2/22

Table 4: Comparison of high-level cookie syncing statistics
when allowing and disallowing third-party cookies (top 3,000
Alexa domains). The format of the bottom two rows is
minimum/mean/median/maximum. *Here we define a first-
party as a site which was visited in the first-party context
at any point in the crawl.

Appendix B shows a summary of the top 10 parties in-
volved in cookie synchronization under both cookie policies.
Observe that although some parties are involved in less sync-
ing under the stricter cookie policy, many of the top parties
remain the same. Overall, disabling third-party cookies re-
duces the number of synced IDs and parties involved in sync-
ing by nearly a factor of two. While this reduction appears
promising from a privacy standpoint, in the next section we
will see that even with this much sparser amount of data,
database merges could enable domains to reconstruct a large
portion of a user’s browsing history.

5.3 Back-end database synchronization
We now turn to quantifying how much trackers can learn

about users’ browsing histories by merging databases on the
back-end based on synced IDs. Cookie syncing allows track-
ers to associate a given user both with their own pseudony-
mous ID and with IDs received through syncs, facilitating
later back-end merges. We cannot observe these merges di-
rectly, so we do not know if such merges occur with any
frequency. That said, there is a natural incentive in the
tracking ecosystem to aggregate data in order to learn a
much larger fraction of a user’s history.

First, assuming no collaboration among third-party track-
ers, only a handful of trackers are in position to track a
sizeable fraction of an individual’s browsing history. As per
Olejnik et al [36], if a visited first party appears as the re-
ferrer in a request to another domain, we assume the second
domain knows about this visit. For a crawl of 3,000 sites
when allowing all cookies, only two of the 730 trackers could
recover more than 40% of a user’s history and only 11 could
recover more than 10%. When disabling third-party cook-
ies, the corresponding numbers are two and six, respectively.
These results are consistent with earlier findings in Roesner
et al [39].
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Figure 5: Proportions of user history known when allow-
ing and blocking third party cookies under the two different
merging schemes. Note that since the x-axis is sorted by the
proportion of a user’s history that a domain can recover,
the domains may appear in different orders for the different
models.

We consider the following model of back-end database
merges: a domain can merge its records with a single other
domain that mutually knows some ID. We assume that when
two domains merge their records for a particular user, they
will share their full records. Our model assumes some col-
laboration within the tracking ecosystem — among domains
already known to share IDs — but is much weaker than as-
suming full cooperation.

Figure 5 shows the proportion of a user’s 3,000-site brows-
ing history a domain can recover, in decreasing sorted order,
if a user enables all cookies. The figure when blocking third-
party cookies (also Figure 5) takes a identical shape but is
steeper because it only includes roughly 60% as many par-
ties.

Observe that after introducing the ability for a site to
merge records directly with one other tracker, the known
proportion of a user’s 3,000-site history dramatically in-
creased for a large number of sites. When third-party cook-
ies are allowed, 101 domains can reconstruct over 50% of a
user’s history and 161 could recover over 40%. Even when
these cookies are blocked, 44 domains could recover over
40% of a user’s history.

Not much is known about how prevalent back-end
database merges are. In terms of incentives, a pair of track-
ers may enter into a mutually beneficial arrangement to in-
crease their respective coverage of users’ browsing histories,
or a large tracker may act as a data broker and sell user
histories for a fee.

5.4 Respawning and syncing
At a given point in time, cookie synchronization pro-

vides a mechanism for trackers to link a user’s history to-
gether. Represented as a graph, sites in an individual’s his-
tory can be represented as nodes with edges between sites
if a user tagged with some psuedonymous ID visited both



sites. When a user clears his cookies and restarts browsing,
the third parties will place and sync a new set of IDs and
eventually reconstruct a new history graph.

Since these history graphs correspond to browsing periods
with completely different tracking IDs, they will be disjoint
— in other words, trackers can not associate the individual’s
history before and after clearing cookies. However, if one of
the trackers respawns a particular cookie, parts of the two
history graphs can be connected by an edge, thereby linking
an individual’s history over time. This inference becomes
stronger if this respawned ID is synced to a party present
on a large number of the sites that a user visits.

To test this possibility, we ran two 3,000 site crawls on
two EC2 instances, A and B. We cleared the cookies, Flash
storage, cache, and local storage from machine B and loaded
the Flash files from A. Finally, we ran another 3,000 site
crawl on site B.

If an HTTP cookie appears in both machine A’s crawl
database and the database for machine B’s crawl after load-
ing Flash, we consider this cookie to have been respawned.
In total, we detected eight domains placing respawned ID
strings. Since these strings also appeared in the loaded Flash
storage, they were likely used in the respawning process.
The number of Flash-respawned cookies in this section is
smaller than the number reported in Section 4.2 due to the
shorter length of the sync measurements and due to the fact
that the sync measurements retained HTTP cookies (with
the exception of clearing cookies between crawls) while the
evercookie measurements wiped the cookies between each
page visit.12

More unexpectedly, we discovered 18 additional domains
that respawned IDs between the two crawls on machine B us-
ing methods other than the previously-examined evercookie
vectors. Three of these IDs were later observed in sync flows.
After conducting manual analysis, we were unable to deter-
mine the exact mechanism through which these IDs were
respawned since we cleared all the storage vectors previously
discussed, nor did we detect JavaScript-based browser fin-
gerprinting. We conjecture that these IDs were respawned
through some form of passive, server-side fingerprinting13.

One of these IDs provides a useful case study. After
respawning this ID, its owner, merchenta.com, passed it
to adnxs.com through an HTTP redirect sync call. Now,
merchenta.com by itself is not in a position to observe a
large fraction of a user’s history — it only appears on a sin-
gle first party domain (casino.com). In fact, the largest ob-
served percentage of a user’s history observable by a cookie-
respawning domain acting alone was 1.4%. However, by
passing its ID to adnxs.com, merchenta.com enabled a much

12Cookies were cleared between crawls when measuring ever-
cookies respawning cookies in order to better understand
the number of sites on which cleared cookies would be
respawned. During the sync measurements, we retained
cookies since we were primarily interested in how partic-
ular cookie values would be spread over time rather than
how they are respawned on particular sites.

13Note that a document from one of these respawning do-
mains, merchenta.com mentions tracking by fingerprint-
ing: “Merchenta’s unique fingerprint tracking enables con-
sumers to be engaged playfully, over an extended period of
time, long after solely cookie-based tracking loses its effec-
tiveness”, http://www.merchenta.com/wp-content/files/
Merchenta%20Case%20Study%20-%20Virgin.pdf

Figure 6: The Tor Browser’s notification dialog for canvas
read attempts. The empty image is returned to thwart can-
vas fingerprinting.

larger proportion of a user’s history to be linked across state
clears.

In particular, we observed adnxs.com on approximately
11% of first party sites across the two crawls. Thus adnxs.

com now has the ability to merge its records for a particular
user before and after an attempt to clear cookies, although of
course we have no insight into whether or not they actually
do so. This scenario enables at least 11% of a user’s history
to be tracked over time.

Our measurements in this section illustrate the potential
for cookie respawning and syncing event on a single site by a
small tracker to enable a large proportion of a user’s history
to be tracked by more prolific third parties.

6. DISCUSSION
After presenting an evaluation of advanced tracking tech-

niques, we now discuss the potential defenses against these
methods and the implications of our study for privacy-
conscious users.

6.1 Mitigation
A blunt way to defend against tracking is to simply block

third-party content. This is the approach taken by tools
such as AdBlock Plus 14 and Ghostery.15 The user may also
disable evercookie storage vectors such as Flash cookies [2],
but to the best of our knowledge, tracking vectors such as lo-
calStorage, IndexedDB and canvas cannot be disabled, often
due to the fact that doing so would break core functionality.

Canvas fingerprinting: The initial canvas fingerprinting
study discusses possible countermeasures such as adding
noise to the pixel data or trying to produce same pixel re-
sults for every system. Finding some barriers to all these
options, the paper concludes that asking user permission for
each canvas read attempt may be the only effective solu-
tion. Indeed, this is precisely the technique adopted in the
Tor Browser, the only software that we found to successfully
protect against canvas fingerprinting. Specifically, the Tor
Browser returns an empty image from all the canvas func-
tions that can be used to read image data [12]. The user
is then shown a dialog where she may permit trusted sites
to access the canvas. We confirmed the validity of this ap-
proach when visiting a site we built which performs browser
fingerprinting.

14https://adblockplus.org
15http://www.ghostery.com/



As for more traditional fingerprinting techniques, the Tor
browser again appears to be the only effective tool. With
the exception of a recent Mozilla effort to limit plugin enu-
meration [1], browser manufacturers have not attempted to
build in defenses against fingerprinting. We note that they
are in a position to facilitate such defenses by providing APIs
or settings or tools that can be used to develop countermea-
sures.

Finally, academic studies on mitigating browser fingerprint-
ing are promising but still far from providing practically
implementable and comprehensive countermeasures that ad-
dress all the attack possibilities [9, 34].

Evercookies: The straightforward way to defend against
evercookies is to clear all possible storage locations. The
long list of items removed by the Tor Browser when a user
switches to a new identity provides a hint of what can be
stored in unexpected corners of the browser: “searchbox
and findbox text, HTTP auth, SSL state, OCSP state, site-
specific content preferences (including HSTS state), content
and image cache, offline cache, Cookies, DOM storage, DOM
local storage, the safe browsing key, and the Google wifi ge-
olocation token[...]”[38].

The user interfaces provided by popular browsers for manag-
ing browsing information are often fragmented, incomplete,
or esoteric. For instance, Firefox’s Clear Recent History in-
terface does not clear localStorage if the user doesn’t select
“Everything” as the time range of removal16and there is no
unified interface for checking what is stored in localStor-
age and IndexedDB. Similarly, Offline Website Data (App-
Cache and Cache) can only be checked by visiting a separate
about:cache page.

Even if the user manages to clear all storage vectors, the fact
that Flash storage is not isolated17 between browsers which
use the Adobe Flash plugin (e.g. Firefox, Chromium, and
Internet Explorer) still creates an opportunity for respawn-
ing. Consider the common scenario of a multi-user environ-
ment where Alice uses browser A and Bob uses browser B,
without any OS-level separation of user accounts. Assume
that Alice is privacy-conscious and clears browser state fre-
quently, but Bob does not. Consider an ID on Browser A is
shared between Browser A’s Flash Cookies and HTTP Cook-
ies. When Bob browses, X may be respawned as an HTTP
cookie in browser B. In Section 4.2, we showed that this be-
havior occurs in the wild. Now when Alice completely clears
the state of Browser A, the ID X will be removed from com-
mon flash storage and Browser A’s HTTP storage. Crucially,
however, when Bob browses again, it could be respawned
from B’s HTTP storage to common flash storage and later
when Alice browses again, back to A’s HTTP storage. We
showed in Section 4.3 that HTTP-to-Flash respawning oc-
curs in the wild as well. Thus the only way to defend against
this attack in a multi-browser environment is to clear state
on all browsers simultaneously. As a proof-of-concept, we
manually tested the first-party domains on which we ob-
serve HTTP-to-Flash respawning (Appendix Table 7) and
we found this exact scenario occurs on both casino.com and
xlovecam.com.

16Bug 527667 https://bugzilla.mozilla.org/show_bug.
cgi?id=527667

17Confirmed through manual analysis

Cookie syncing: We’re not aware of any tools that specifi-
cally block cookie syncing. The bluntest approach, of course,
is to simply block third-party cookie placement and HTTP
traffic. EFF’s newly released tool Privacy Badger18 uses
heuristics to block third-party cookies with the goal of pre-
venting third-party tracking, erring on the side of false pos-
itives (i.e., blocking too many cookies). The Tor Browser
Bundle (TBB) prevents cross-site cookie tracking by dis-
abling all third-party cookies, and not storing any persis-
tent data such as cookies, cache or localStorage. A more
targeted solution would be to block third-party traffic con-
taining strings that are cookie values, but this approach will
likely suffer from false negatives. However, even a perfect
blocking tool is flawed if it is not used immediately from
a completely fresh browsing state. For instance, if a user
browses for a short amount of time before installing such a
tool, trackers may have already placed and synced cookies
— enabling them to merge data in the back-end. If these
IDs are maintained through a hard-to-block technique such
as canvas fingerprinting, the trackers can still follow a user as
he browses and link their records through these previously-
established syncing relationships even if all future syncs are
blocked.

6.2 The effect of opt-out
In order to study the effect of ad-industry opt-out tools

on the tracking mechanisms we study, we opted-out from
all the listed companies on the Network Advertising Initia-
tive (NAI)19 and European Interactive Digital Advertising
Alliance (EDAA)20 opt-out pages.

Canvas fingerprinting: For each canvas fingerprinting
script we visited two sites that included this script. We
did not observe any website that stopped collecting can-
vas fingerprint due to opt-out.21 This was despite the fact
that AddThis was listed on the NAI opt-out page and Lig-
atus (second most popular canvas fingerprinter) was listed
on EDAA’s page.

We also tried opting-out by on AddThis’ own Data Collec-
tion Opt-Out website22, which again, did not stop AddThis’s
script collecting the canvas fingerprint.

Respawning: We did not observe any change in cookie
respawning from HTTP to Flash cookies. This is expected
as the parties involved are not participants in the advertising
opt-out initiatives.

Cookie syncing: The use of opt-out cookies reduces the
number of IDs involved in cookie synchronization by 30%.
However, we see only a 5% reduction in the number of par-
ties involved in synchronization. This reduction is compar-
atively smaller than the reduction seen when the browser
is set to block third-party cookies. The composition of the
top parties involved in synchronization is nearly the same as
in the first-party cookie only case seen in Appendix B. In

18https://www.eff.org/privacybadger
19http://www.networkadvertising.org/choices/
20http://www.youronlinechoices.com/uk/your-ad-
choices

21We observed that two of the 20 fingerprinting scripts
(revtrax.com and vcmedia.vn) were missing on the sites we
found them before, though we checked to ensure that this
was not related to opt-out.

22http://www.addthis.com/privacy/opt-out



Section 5.3 we show how, even under the larger reduction
in sync activity afforded by blocking all third-party cookies,
it is possible to recover a large portion of a user’s browsing
history using just a small number of the parties involved.

Note that most companies offering or honoring the opt-outs
we evaluated do not promise to stop tracking when a user
opts out, but only behavioral advertising. While we ob-
served tiny or nonexistent reductions in various forms of
tracking due to opt-out, we make no claims about how opt-
outs affect behavioral advertising.

6.3 Implications
Let us consider the level of user effort and sophistication

required for effective mitigation. First, users must be very
careful in their use of existing tools, such as clearing state
on all browsers at once or installing blocking tools before
cookie syncing has occurred. Second, users must accept us-
ability drawbacks such as the prompt for Canvas API access.
Third, there are also trade-offs in functionality and content
availability. Finally, the rapid pace at which new tracking
techniques are developed and deployed implies that users
must constantly install and update new defensive tools. It
is doubtful that even privacy-conscious and technologically-
savvy users can adopt and maintain the necessary privacy
tools without ever experiencing a single misstep.

Evercookies were at the center of fierce debates when
Soltani et al. reported their findings [40] a few years ago.
Although this resulted in a lawsuit and a $500,000 settle-
ment [14], we find an increasing number of websites using
these tracking technologies as well as significant advances in
the technologies themselves.

The World Wide Web Consortium (W3C) standards doc-
uments that describe three new storage APIs (localStorage,
IndexedDB and WebStorage APIs) have the same boiler-
plate warning about the tracking potentials of these mecha-
nisms23 and mention the necessity of an interface to commu-
nicate the evercookie risk. Perhaps a fruitful future direc-
tion for standards bodies is to consider privacy issues at the
design stage, acknowledging that without such a proactive
effort, tracking techniques are likely to have the upper hand
over defenses.

7. CONCLUSION

We present a large-scale study of tracking mechanisms
that misuse browser features to circumvent users’ tracking
preferences. We employed innovative measurement meth-
ods to reveal their prevalence and sophistication in the wild.
Current options for users to mitigate these threats are lim-
ited, in part due to the difficulty of distinguishing unwanted
tracking from benign behavior. In the long run, a viable
approach to online privacy must go beyond add-ons and
browser extensions. These technical efforts can be but-
tressed by regulatory oversight. In addition, privacy-friendly
browser vendors who have hitherto attempted to take a neu-
tral stance should consider integrating defenses more deeply
into the browser.
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APPENDIX

A. FLASH COOKIES WITH THE MOST RESPAWNS

Flash domain # respawned cookies

Pass 1 Pass 2

bbcdn-bbnaut.ibillboard.com 63 69

irs01.net 21 18

embed.wistia.com 14 13

source.mmi.bemobile.ua 13 14

kiks.yandex.ru 11 11

static.baifendian.com 10 10

tv.sohu.com 7 7

ar.hao123.com 3 2

embed-ssl.wistia.com 3 3

img5.uloz.to 3 3

Table 5: The Flash cookies that respawn most cookies on Alexa top 10,000 sites. The rightmost two columns represent the
number of cookies respawned in two crawls made with the same set of Flash cookies (Crawl2,3).

B. TOP 10 PARTIES INVOLVED IN COOKIE SYNC

All Cookies Allowed No 3P Cookies

Domain # IDs Domain # IDs

gemius.pl 33 gemius.pl 36

doubleclick.net 32 2o7.net 27

2o7.net 27 omtrdc.net 27

rubiconproject.com 25 cbsi.com 26

omtrdc.net 24 parsely.com 16

cbsi.com 24 marinsm.com 14

adnxs.com 22 gravity.com 14

openx.net 19 cxense.com 13

cloudfront.net 18 cloudfront.net 10

rlcdn.com 17 doubleclick.net 10

Table 6: Number of IDs known by the Top 10 parties involved in cookie sync under both the policy of allowing all cookies
and blocking third-party cookies.

C. LIST OF HTTP RESPAWNING SCRIPTS

First-Party Domains Source of Respawn Script Source

accountonline.com (citi.com),
fling.com*, flirt4free.com,
zoosk.com

Third-party: Iovation Fraud Detection https://mpsnare.iesnare.com/snare.js
https://mpsnare.iesnare.com/stmgwb2.swf

seoprofiler.com, seobook.com, bi-
grock.in, imperiaonline.org, me-
diatemple.net, resellerclub.com

First-party: Post Affiliate Pro Software http://seobook.com/aff/scripts/trackjs.js

twitch.tv, justin.tv Third-party: Shared CDN http://www-cdn.jtvnw.net/assets/global-
6e555e3e646ba25fd387852cd97c19e1.js

casino.com First-party: Unknown/In-house http://www.casino.com/shared/js/mts.tracker.js

xlovecam.com First-party: Unknown/In-house http://www.xlovecam.com/colormaker.js

Table 7: Summary of HTTP respawning. “Source of Respawn” describes whether or not the tracking occurs in the
first-party or third-party context and lists the entity responsible for writing the script. * Interestingly fling.com has

the ID passed from the third-party context and saved in the first-party context



D. LIST OF CANVAS FINGERPRINTING SCRIPTS

Domain URL of the Fingerprinting Script

addthis.com http://ct1.addthis.com/static/r07/core130.js, http://ct1.addthis.com/static/r07/sh157.html# and 16 others

ligatus.com http://i.ligatus.com//script/fingerprint.min.js

kitcode.net http://src.kitcode.net/fp2.js

vcmedia.vn http://admicro1.vcmedia.vn/fingerprint/figp.js

amazonaws.com1 https://s3-ap-southeast-1.amazonaws.com/af-bdaz/bquery.js

shorte.st http://static.shorte.st/js/packed/smeadvert-intermediate-ad.js?v1.7.10

ringier.cz http://stat.ringier.cz/js/fingerprint.min.js

cya2.net http://cya2.net/js/STAT/89946.js?ver=adl&cid=T[...]

revtrax.com http://images.revtrax.com/RevTrax/js/fp/fp.min.jsp

pof.com http://www.pof.com/

rackcdn.com2 https://c44ed9b5ebea0e0739c3-dcbf3c0901f34702b963a7ca35c5bc1c.ssl.cf2.rackcdn.com/mongoose.fp.js

hediyera.com http://www.hediyera.com/js/dota/dota.js

meinkauf.at http://www.meinkauf.at/assets/application-74bbc9cea66102ea5766faa9209cf3e0.js

freevoipdeal.com http://www.freevoipdeal.com/en/asset/js/39b4e838c58e140741f9752542545e77

voipbuster.com http://www.voipbuster.com/en/asset/js/8ecf64add423a396f83430f9357a0e55

nonoh.net http://www.nonoh.net/asset/js/e4cf90bfdfa29f5fd61050d14a11f0a1

49winners.com http://49winners.com/js/49w3/fingerprint.js?v=1.1

freecall.com http://www.freecall.com/asset/js/f4ccb1cb0e4128b6d4b08f9eb2c8deb4

domainsigma.com http://static.domainsigma.com/static/public/js/common.9b6f343c.js

insnw.net3 http://dollarshaveclub-002.insnw.net/assets/dsc/dsc.fingerprint-b01440d0b6406b266f8e0bd07c760b07.js

Table 8: URLs of Canvas Fingerprinting JavaScript. The URL parameters snipped for brevity are denoted by [...].
1: s3-ap-southeast-1.amazonaws.com (sends the collected fingerprint to adsfactor.net domain).

2: 44ed9b5ebea0e0739cdcbf3c0901f34702b963a7ca35c5bc1c.ssl.cf2.rackcdn.com (sends the collected fingerprint to
api.gonorthleads.com). 3:dollarshaveclub002.insnw.net


