
- None -

Explanation of ARCH Process, Methods, Rules

Document Number: RCA.Doc.60
Version Number: 0.2
Published: 2022-04-26 
Publisher:
EUG and EULYNX partners 
Technical authors: 
None 
Classification: None
PUBLIC 



4

4

5

6

9

9

9

10

12

Table of contents

1 Introduction

1.1 Purpose of this documentation

2 Method and Toolchain (M&T) Setting

3 The ARCH Process and ARCH Methods

4 Explanation of ARCH layers

4.1 Operational Needs (OA) layer

4.2 System Needs (SA) layer

4.3 Logical Architecture (LA) layer

4.4 Subsystem Architecture (PA) layer

- None -

Explanation of ARCH Process, Methods, Rules, 2022-04-26, RCA.Doc.60, Version 0.2 2



Content

Version history

0.1 07.12.2021
First

version

0.2 26.04.2022

Still

initial

version

with

some

updates

and

changed

of

format

- None -

Explanation of ARCH Process, Methods, Rules, 2022-04-26, RCA.Doc.60, Version 0.2 3



1 Introduction
1.1 Purpose of this documentation

This document gives a small overview of the context of M&T Cluster and the relation to other

clusters in RCA. It is also gives an insight into the ARCH process, methods and rules. To

explain how to work with it a theoretical example is given. The full content of he ARCH process,

method and rules can be found in RCA.Doc.33.

- None -

Explanation of ARCH Process, Methods, Rules, 2022-04-26, RCA.Doc.60, Version 0.2 4



2 Method and Toolchain (M&T) Setting
The RCA cluster M&T provides all services around tooling, processes, method and rules for

currently all other clusters in RCA working on the RCA model. Broader European usage of the

M&T services is possible and under discussion. The current work mode setup between M&T

and the clusters is presented in Figure 1. The tooling platform is the basis for all modelling work

done in the different clusters. The core modellers are included in work groups of different

clusters and are there formalising the model together with domain experts. While domain

experts have only basic knowledge of the methods and modelling rules, the core modellers are

the experts providing method and modelling knowledge as a service. With such a centralised

service it is possible to achieve a common, overarching model that can be used to produce a

system architecture as part of the architecture cluster work and to elaborate this architecture in

discussions with industry. Besides the pure modelling rules, common processes like document

management, configuration management, review, etc. need to be defined and will be delivered

by the M&T cluster.

Figure 1: 

Figure 1 Setting of M&T as central service for all RCA clusters using the same tooling platform.

- None -

Explanation of ARCH Process, Methods, Rules, 2022-04-26, RCA.Doc.60, Version 0.2 5



3 The ARCH Process and ARCH Methods
One goal of RCA is defining a reference architecture for a railway command-control-signalling

(CCS) system, to achieve this goal a process is needed to create an effective reference

architecture. 

The ARCADIA method already provides certain rules at a high level, but for detailed work,

distributed over different groups, more guidance is needed. Especially in the case of RCA,

where new stakeholder needs need to be assessed that lead to innovative products with

influence on the whole railway system. To break down the complexity of such a new system

and to obtain well defined requirements, strict method, rules and a reliable process are key to

success. In the case of RCA therefore the ARCH process based on the ARCADIA method was

established. It is crucial, to achieve a common understanding of how certain features are

expressed in the model. The ARCH process provides a clear work breakdown structure and

rules to produce a consistent set of artefacts that support consistency of different approaches

and help to get a proper reference architecture. 

It aims therefore, that the different groups working on the same model get to comparable

results. The method documentation and the modelling rules also serve external experts, such

as industry engineers, to exactly interpret the model. In Figure 2 the overall ontology of process

and methodology as applied at RCA is shown. The following figures present different levels of

the ARCH process and their link to the specific methods and modelling rules as applied in RCA.

The whole documentation is currently done in confluence, an easy-to-navigate documentation

tool. In addition, a html export (RCA.DOC.33) of the current status was generated to grant

access for everyone.

RCA agreed on using the ARCH process already used and provided by DB. Therefore some

parts of the process still refer to DB internal information, but nevertheless the overall process is

applicable to RCA. Cleaning up the ARCH process to a RCA process is ongoing work.

Figure 1: Figure 2 Ontology for process and methodology

- None -

Explanation of ARCH Process, Methods, Rules, 2022-04-26, RCA.Doc.60, Version 0.2 6



Figure 1: Example: ARCH.913 Analyse the system capabilities to determine detailed system
needs

Figure 3 The ARCH process based on the ARCADIA method. For each box in the coloured

columns above, there are multiple process steps defined in confluence.

The figure 4 and 5 shows an example of a detailed process step description and a viewpoint

description in confluence:

- None -

Explanation of ARCH Process, Methods, Rules, 2022-04-26, RCA.Doc.60, Version 0.2 7



Figure 4 Example of a process description on the lowest level (ARCH.088 in Figure 3).

Figure 5 Example of a viewpoint definition created for process step ARCH.088 presented in

Figure 4. Here also the corresponding modelling rules are linked.

- None -

Explanation of ARCH Process, Methods, Rules, 2022-04-26, RCA.Doc.60, Version 0.2 8



4 Explanation of ARCH layers
The ARCADIA method does not attempt to provide a full blown process for specific domains

such as RCA. It provides a method for a functional analysis to derive a system architecture. All

domain specific needs have to be defined by the domain experts. Therefore, M&T provides with

the ARCH process such a framework.

In the following, an example per layer is presented. Especially in examples including interfaces

to the Traffic Management System (TMS) and the train onboard CCS system (e.g. OCORA)

the overall complexity becomes visible. 

4.1 Operational Needs (OA) layer

Definition of the operational processes that shall be (eventually only partially) supported by the

system

Figure 1: In this layer, we focus purely on the operational processes, In this layer, we focus purely
on the operational processes, as agnostic of technology as it can get!

We avoid mentioning specific technologies like ETCS or ATO
Layer must pass the "steam train test"

On this layer, we can start to perform risk analyses. We do this by identifying pure operational

hazards and thinking of countermeasures. This is done for 3 categories of risks:

Safety risks ("S", typical railway hazards) - see red boxes above
Security risks (second "S", already possible partially on process level, e.g. authorisation
can be found here)
Risks to the business ("RAM", e.g. missing performance or reliability is a business risk)

4.2 System Needs (SA) layer

This layer represents the system needs or "Definition of work statement" - this layer does not

show any solutions, just what the task is that is to be done and how that task is restricted.

The area of concern for this layer is to define:

what part of the operational capabilities the system shall do and which parts not
which constraints are applicable to a specific solution

⌘ 
⌘ 

⌘ 
⌘ 

⌘ 

⌘ 
⌘ 

- None -

Explanation of ARCH Process, Methods, Rules, 2022-04-26, RCA.Doc.60, Version 0.2 9



Example:

Figure 1: In this example, that roughly translates to:In this example, that roughly translates to:

We need a system that interacts with TMS and the train
The system needs to control the motion of that train
The system must need to be able to sense and observe the motion of that train
The observation must be fed back to form a control loop
The interface to the train must be compliant to subset 119.
The interface to TMS is not constraint (we can design whatever we want: morse code,
fax, homing pigeon).
The SA layer doe not yet mention any solution concepts and should be agnostic as
possible. The above example could be implemented by today's electronic interlockings,
track-side signals and and train control systems like legacy PZB or ETCS.

System functions are following a certain pattern according to control loop theory: 

4.3 Logical Architecture (LA) layer

The area of concern is "Defining sub-problems, introduction of logical solution concepts and

logical building blocks" - this layer shows which basic ideas and concepts are used to define

small "bricks" of solutions that can be used to build an architecture upon.

LA layer does not yet define a system architecture, but a library of building blocks to construct

an architecture from. Also LA layer does not define, if a solution is realised e.g. on the track or

onboard side.

There are also other splitting criteria to split the system functions, but one is a layer architecture

of layers of a specific purpose, e.g. Safety Control is a layer that decides authoritatively about

the state changes of an controlled object.

Example:

⌘ 
⌘ 
⌘ 
⌘ 
⌘ 
⌘ 

⌘ 

- None -

Explanation of ARCH Process, Methods, Rules, 2022-04-26, RCA.Doc.60, Version 0.2 10



Figure 1: in the represented example case, that roughly translates to (only shown on the control
function):in the represented example case, that roughly translates to (only shown on the control

function):

The system function splits up into 5 logical functions according to the purposes of the
layers. One layer can be used multiple times!

First we introduce the Movement Permission (MP) as concept; the MP is requested
by the plan execution function (as it executes the operational plan coming from
TMS)
Then the MP is authoritatively allowed or denied by a safety control function -
meaning: there is nobody else allowing or denying a MP
Then the MP is translated to an MA according to SS026 in the abstraction layer
Then the driving is supervised against the MA including the Most Restrictive Speed
Profile (MRSP) formed based on the MP, this again is a safety layer function
In case of a violation of the MA a safety reaction is triggered and commanded to the
vehicle by the device control layer

We can use all the nice concepts we think of: MPs, MAs, etc. all those solution concepts
are fully valid here and determine the splitting of a system function

Logical functions are also the elements that will carry the specification of their behaviour. This

can be done by natural language (not recommended) or by semi-formal or formal means of

specification. Also non-functional requirements are derived for the functions (e.g. accuracy,

latency, failure rates...).

Functions are then allocated to logical components. These logical components are:

not subsystem but small providers of services, like in a micro-service architecture
not instantiated, so there is only 1 per system
not allocated to the deployment location (track-side, OB or cloud...)

Figure 1: 

⌘ 

⌘ 

⌘ 

⌘ 
⌘ 

⌘ 

⌘ 

⌘ 
⌘ 
⌘ 

- None -

Explanation of ARCH Process, Methods, Rules, 2022-04-26, RCA.Doc.60, Version 0.2 11



4.4 Subsystem Architecture (PA) layer

"Do system architecture, define subsystems and interfaces" - in this layer, the "real" subsystem

architecture is created. Only from here an allocation to track-side/on board is possible, also in

terms an allocation of functionality to domains should happen here.

Usually multiple physical architectures are possible based on the same logical architecture.

Example 1:

The first example shows, how the logical components are allocated to subsystems in a classical

way creating roughly the exiting ETCS SS026.

Figure 1: Example 2:

The second example shows an architecture that was (if I remember correctly) at one point in

time proposed by some IM for a virtual European Vital Computer (EVC) implementation on the

track-side (!). In this architecture, only brake commands are transmitted to the train (I know that

is not what we want). But the interesting fact is that both architectures are based on the same

logical components.

- None -

Explanation of ARCH Process, Methods, Rules, 2022-04-26, RCA.Doc.60, Version 0.2 12



Figure 1: 

After the logical components have been allocated to the subsystems, all interfaces and their

extended behaviour have to be specified. This means that also behaviour has to be added that

takes the existence of interfaces into account, e.g. the fact that they can fail or need to be

initialised.

This will create a lot of work and requires deep knowledge of the subsystems and in any case

needs to be done in the domains. In the end, on this layer all requirements will come together

and are the basis for generating specification documents.

- None -

Explanation of ARCH Process, Methods, Rules, 2022-04-26, RCA.Doc.60, Version 0.2 13



Figure 1: This layer defines:This layer defines:

which individual subsystems are in the architecture
by which standardised interfaces are these subsystems connected (full stack, at least so
many layer as are needed to define the interface on FFFIS level)

⌘ 
⌘ 

- None -

Explanation of ARCH Process, Methods, Rules, 2022-04-26, RCA.Doc.60, Version 0.2 14


	Table of contents
	Introduction
	Purpose of this documentation

	Method and Toolchain (M&T) Setting
	The ARCH Process and ARCH Methods
	Explanation of ARCH layers
	Operational Needs (OA) layer
	System Needs (SA) layer
	Logical Architecture (LA) layer
	Subsystem Architecture (PA) layer


