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Symmetry breaking states of matter can transmit symmetry breaking to nearby atoms or molec-
ular complexes, perturbing their spectra. We calculate one such effect, involving the “axion elec-
trodynamics” relevant to topological insulators, quantitatively. We provide an operator framework
whereby effects of this kind can be analyzed systematically, qualitatively, and discuss possible ex-
perimental implications.

Introduction: Over the past few decades physicists
have come to appreciate the importance of increasingly
subtle forms of symmetry breaking in materials, often
connected with topology and entanglement. Many new
states of matter characterized by such “hidden” sym-
metry breaking have been proposed theoretically, but
concrete, unambiguous experimental manifestations have
been relatively sparse. Many of the proposed states vi-
olate some combination of the discrete symmetries P, T .
This opens up the possibility of unusual polarizabilities,
generalizing the familiar dielectric and para- or diamag-
netic response parameters ǫ, µ. Those polarizabilities can
support novel electromagnetic effects, which reflect the
discrete symmetry breaking directly. Here we will discuss
one such effect in quantitative detail, and then provide a
general framework which supports systematic qualitative
discussion.

Atmosphere from Axion Electrodynamics : Consider a
material whose interaction with the electromagnetic field
contains an action term
∫

d3xdt χM (x)∆Laxion =

∫

d3xdt χM (x)κ ~E · ~B ,

(1)
where χM (x) is the characteristic function of the mate-
rial. This sort of interaction was contemplated in [1], and
it is realized in topological insulators [2–4], with κ = jα,

where j is an odd integer. Since ~E · ~B is a total derivative,
it does not affect the bulk equations of motion. But when
the spatial region occupied by the material is bounded,
surface terms arise. Specifically, if the plane z = 0 forms
an upper boundary, we will have a surface action

∫

d3xdt χM (x)κ ~E · ~B

→
κ

2

∫

dx dy dt ǫ3αβγAα(x, y, 0, t)∂βAγ(x, y, 0, t). (2)

This gives us a two-photon vertex which violates the dis-
crete symmetries P, T , while preserving PT . Quantum
fluctuations involving this vertex will produce a sort of
P, T violating atmosphere above the material. (See Fig-
ure 1.) The atmosphere induces new kinds of “Casimir”

forces on bodies near the material [5–7]. It also induces
new kinds of effective interactions within atoms or molec-
ular centers, which effect their spectra. Such interactions
are especially interesting, because in favorable cases the
spectra can be measured quite accurately, thus plausibly
rendering small symmetry-violating effects accessible.

(a) (b)

p− kp′ − k

CS

r

FIG. 1. (a) Illustration of quantum atmosphere induced by a
Chern-Simon surface. The blue layer corresponds to the top
surface described by a Chern-Simon term at z = 0. Due to
quantum fluctuation, time-reversal symmetry breaking effect
will be transmitted to the nearby atom at the distance r from
the surface. (b) Feynman diagram involving Chern-Simon
vortex.

Let us analyze the most basic case, that is the in-
teraction of an electron. By symmetry and dimension
counting, the first-order effective P, T violating inter-
action with an electron, at a distance r from a planar
boundary, will take the form

Lint. ∼
ακ

mr2
n̂ · ~s , (3)

where m,~s are the electron’s mass and spin, and r, n̂
are the distance and normal to the plane. Expressed
using fundamental units only, as in the quoted form for
topological insulators, we find the dimensional estimate

Lint. ∼
α2

mr2
n̂ · ~s ≈

(10 nm.

r

)2 en̂ · s

m
10 gauss. (4)

Here we have expressed the atmospheric Zeeman-like
interaction in a form which allows ready comparison
with the Zeeman splitting induced by a magnetic field
strength. Taken at face value, this is comfortably within
the estimated sensitivity of magnetometry based on NV
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centers [8] – by many orders of magnitude (but see be-
low). Note however that we do not generate true mag-
netic flux, so that SQUID detectors are not suitable (but
see below).

We can check this estimate by explicit calculation, ac-
cording to the Feynman digram of Figure 1. We find
[9]

V (r) =
κe2

128π2

1

mr2
σ3 →

jα2

32π

1

mr2
σ3 (5)

One might attempt to generalize this calculation to
particles which possess an anomalous magnetic moment
(e.g., atomic nuclei), but one encounters an ultraviolet
divergence. This is not a physical contradiction, because
both anomalous magnetic moments and (especially) our
assumed action Eqn. (1) will have form-factors which pro-
vide cut-offs. Also for this reason, our estimate Eqn. (4)
and the result of our calculation Eqn. (5) should be re-
garded as encouraging, but not dispositive.

We can also consider the effect of applying an external
electric field. Importantly, this does not in itself intro-
duce T violation. If we apply an electric field parallel to
the boundary plane, we induce a surface Hall-like cur-
rent. A planar current sheet produces a spatially con-
stant (true) magnetic field, which will be aligned (or anti-
aligned) with the applied electric field. To maximize the
induced field while avoiding cancellations between con-
tributions from opposite sides of the material, we should
use samples with effective surfaces whose linear dimen-
sions are large compared to the distance to the test atom
or complex, but small compared to the separation be-
tween surfaces. If we apply an electric field perpendicu-
lar to the boundary plane, it induces a surface magnetic
charge, and thus again a magnetic field aligned or anti-
aligned with the applied electric field, and in the same
sense. The magnitudes of the magnetic fields, for mod-
erate values of the applied electric field, can be quite
substantial:

B ∼ κE → αE ≈ 10−1 gauss
( E

104 V

cm.

)

(6)

where the progression from general to particular is as
previously. These induced currents and fields were antic-
ipated in [1]; here we are adding some context on their
connection with symmetry and their possible experimen-
tal accessibility. They are a much more conservative ap-
plication of the effective theory.

Apart from spontaneous P, T symmetry breaking in
materials, we may also have intrinsic violation. A generic
signature of such violation is the existence of particles
having both elementary magnetic dipole moments and
(small) elementary electric dipole moments. A material
containing a density ρ of such particles will, in the pres-
ence of an applied electric field at temperature T , contain
a density ρge ~E/T of aligned spins, and hence an energy

density
(

gmge/T
)

ρ ~E · ~B. Thus, we identify an alterna-
tive source of our action Eqn. (1), with κ = ρgmge/T . In
this model, it is transparently clear why a normal elec-
tric field, by inducing a magnetic dipole density, yields a
surface magnetic charge density. Some possible experi-
mental arrangements to probe intrinsic symmetry break-
ing effects of this kind were discussed in [10] from a very
different point of view. Numerically, we have

B ∼ ρgmgeE/T

∼
( ρ

1022

cm3

) ge
10−26e cm

E

106 V

cm

10−3K

T
10−12gauss (7)

where we have inserted the electron gyromagnetic mo-
ment, aggressive reference values of the parameters, and
a reference value of the electric dipole moment compara-
ble to current limits. The resulting magnetic field is well
within advertised sensitivities [8]. It would be good to
revisit this issue in the light of modern technology.
Operator Analysis of Polarizabilities : In constructing

effective theories of electromagnetism in condensed mat-
ter, there are few principles we can apply a priori. Never-
theless, when plausible assumptions and approximations
give us tractable theories which contain few parameters,
those theories can be very useful in organizing data and
planning experiments. For our purposes, it is instructive
to recall that textbooks of electromagnetism commonly
introduce just two material-dependent parameters, ǫ and
µ, to describe a wide range of observed behaviors. They
can be considered as coefficients in the Maxwell action

∫

d3xdt χM (x)∆LMaxwell

=

∫

d3xdt χM (x)
ǫ

2
~E2 −

1

2µ
~B2 . (8)

These are the possible terms which satisfy four sorts of
conditions:

1. They are local in space and time, containing only
products of fields at the same space-time point.

2. They are invariant under many symmetries: time
and space translation, rotation, gauge.

3. They are quadratic in fields and of lowest possible
order (i.e., zero) in space and time gradients.

4. They are invariant under P and T symmetry.

Eqn. (1) is an additional term we can bring in if we
drop the last of those conditions. Aside from symmetry,
is also commonly ignored because it does not contribute
to the bulk equations of motion, but as we have seen that
reason is superficial.
The third condition is practical rather than fundamen-

tal. Indeed, terms containing higher powers of fields are
the meat and potatoes of nonlinear optics [12]. But in
many circumstances it is appropriate to ignore nonlinear



3

effects. Also, it is often appropriate to consider external
and effective fields which vary smoothly in space in time.
With those ideas in mind, we can get a nice inventory
of the possible terms which are quadratic in fields and of
lowest order in space and time gradients while consistent
with 1.-3. and displaying different P , T characters. We
arrive at the following candidate Lagrangian densities:

• P even, T even: Maxwell terms, Eqn. (8)

OE = ~E2

OB = ~B2 (9)

• P odd, T odd: axion electrodynamics, Eqn. (1)

Oa = ~E · ~B (10)

• P even, T odd:

O1 =
∂ ~E

∂t
· ~E =

∂

∂t

1

2
~E2

O2 =
∂ ~B

∂t
· ~B =

∂

∂t

1

2
~B2

O3 =
[

(∇× ~E) · ~B
]

O4 = (∇× ~B) · ~E = O3 −∇ · ( ~E × ~B) (11)

• P odd, T even:

O5 =
[

(∇× ~E) · ~E
]

O6 = (∇× ~B) · ~B

O7 =
∂ ~E

∂t
· ~B

O8 =
∂ ~B

∂t
· ~E =

∂

∂t
( ~B · ~E)−O7 (12)

The bracketed terms are redundant, since the Faraday
relation ∇ × ~E = −∂B

∂t
holds identically, when one ex-

presses the fields in terms of potentials. Terms which are
total time derivatives do not contribute to the equations
of motion or to surface times, while terms which are total
space divergences give boundary actions. Thus in the P
even, T odd case we find only a boundary action, corre-
sponding to O4, while in the P odd, T even case we get
two terms, corresponding to O6 andO7−O8, which affect
bulk behavior. These considerations can guide the design
of experiments. For example, to search for a P violating
but T invariant atmosphere (and thus, to probe for states
of matter with those symmetries) we might first exclude
an emergent n̂ · ~s interaction in a planar geometry, and
then look for an emergent n̂1 · (n̂2 × ~s) interaction in a
more complex geometry, involving two characteristic di-
rections. Upon applying a time-dependent electric field,
we may look for an atmospheric magnetic field whose di-

rection changes according to whether the magnitude of ~E
is increasing or decreasing. That behavior derives from
O7.

Note that if we work directly at the level of polarizabili-
ties, rather than actions, we can define contributions cor-
responding to all eight cases, and also two independent
“axion” terms. Thus for example we might write

~D = ce ~E + ca1 ~B + c1
∂ ~E

∂t
+ c4∇× ~B + c5∇× ~E + c8

∂ ~B

∂t

~H = cb ~B + ca2 ~E + c2
∂ ~B

∂t
+ c3∇× ~E + c6∇× ~B + c7

∂ ~E

∂t
.

(13)

After applying the Faraday relation, we have ten inde-
pendent terms, including the two conventional ones. The
more restrictive Lagrangian approach seems more prin-
cipled, however.

Materials that contain chiral molecules can violate P
while conserving T intrinsically; indeed, many such so-
called gyrotropic materials are well known [13]. A possi-
bility for more subtle, spontaneous breaking of this class,
which still preserves macroscopic rotation and transla-
tion symmetry, could be a non-vanishing correlation of
the type 〈~j · ~s〉 6= 0 between microscopic current and
and spin densities which are themselves uncorrelated
(〈~j〉 = 〈~s〉 = 0). Similarly, a non-vanishing correlation
of the type 〈~j · ~π〉 6= 0 between microscopic current and
polarization densities which are themselves uncorrelated
exhibits P even, T odd spontaneous breaking; while a
non-vanishing correlation 〈~s ·~π〉 6= 0 is odd under both P
and T , but even under PT , as we have mentioned before
implicitly.

Summary: We have discussed how quantum fluctu-
ations, in the presence of a material, produce a kind of
atmosphere which can affect the spectra of nearby atoms.
The atmosphere can be probed to diagnose properties of
the material, and in particular its symmetry. We have
calculated one effect of this kind, by taking the effective
theory based on axion electrodynamics at face value, and
found a result that is very large compared to expected
experimental sensitivities. The atmosphere can be influ-
enced in a calculable way by external fields. We displayed
an operator framework in which to discuss these issues
systematically, and classified the simplest non-trivial pos-
sibilities under stated, broad assumptions. Our assump-
tions could be relaxed, for instance to allow crystalline
asymmetries, at the cost of bringing in more operators.
The operator analysis suggests how to probe symmetry-
breaking atmospheres experimentally, and to parameter-
ize their properties.
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Calculation of the Feynman diagram in the main text

Q.-D. Jiang and F. Wilczek

I. TWO-PHOTON EXCHANGE FEYNMAN DIAGRAM

Consider an electron moving at a distance r above a Chern-Simon (CS) surface at z = 0. The action has the

following form

S =

∫

d4x

{

ψ̄ [γµ(pµ − eAµ)−m]ψ −
1

4
FµνF

µν

}

+

∫

d4x ǫαβγ3Aα∂βAγ δ(x3). (1)

We separate the whole action into free part and interaction part, i.e., S = S0 + SI , where

S0 =

∫

d4x

{

ψ̄ [γµpµ −m]ψ −
1

4
FµνF

µν

}

; (2)

SI = Sa
I + Sb

I =

∫

d4x ψ̄ (−eγµAµ)ψ +

∫

d4x ǫαβγ3Aα∂βAγ δ(x3). (3)

Note that Sa
I and Sb

I , respectively, represent electron-photon vortex and CS vortex.

Now, we can consider the generating function

Z =

∫

D[ψ̄, ψ]D[A] eiS0+iSI

∫

D[ψ̄, ψ]D[A] eiS0

=

∫

D[ψ̄, ψ]D[A] eiS0

[

1 + iSI +
1
2 (iSI)

2 + 1
3! (iSI)

3 + ...
]

∫

D[ψ̄, ψ]D[A] eiS0

(4)

So the lowest order contribution from the CS plate is a two-photon process: (two electron-photon vortices and one

CS vortex)

Z =

∫

D[ψ̄, ψ]D[A] eiS0

[

1
2 (i S

a
I )

2(i Sb
I)
]

∫

D[ψ̄, ψ]D[A] eiS0

. (5)

The relevant Feynman diagram [see the Figure 1] describe the interaction between the electron and Chern-Simon

term can be calculated via

M =

∫

d4x

∫

d4w

∫

d4z ψ̄(z) (−ieγµ)Dµα(z − x)G(z − w) (i∂β)Dρδ(x− w) δ(x3)ǫ
αβρ3 (−ieγδ)ψ(w) (6)

where G and D correspond to Feynman propagators of electron and photon, respectively.

pk

p-k
-kp

pz w

x(a) (b)
CS CS

Figure 1: The Feynman diagrams in real space (a) and in momentum space (b).
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Substitute the Fourier transformation of the Feynman propagators

Dµα(z − x) =

∫

d4k′

(2π)4
(−i)gµα

k′2 + iǫ
e−ik′(z−x) (7)

Dρδ(x− w) =

∫

d4k′′

(2π)4
(−i)gρδ

k′′2 + iǫ
e−ik′′(x−w) (8)

G(z − w) =

∫

d4k

(2π)4
i

γµkµ −m+ iǫ
e−ik(z−w) (9)

into the above expression Eqn. (6), and one can obtain:

M =

∫

d4x

∫

d4w

∫

d4z δ(x3)× ū(p′)eip
′z(ieγµ)

∫

d4k′

(2π)4
Dµα(k

′)e−ik′(z−x) × (i∂β)

∫

d4k′′

(2π)4
Dρδ(k

′′)e−ik′′(x−w)ǫαβρ3 ×

∫

d4k

(2π)4
G(k)e−ik(z−w) e−ipw(ieγδ)u(p)

=ū(p′)(ieγµ)

∫

dx0dx1dx2dx3

∫

dw0dw1dw2dw3

∫

dz0dz1dz2dz3 δ(x3)×

∫

d4k

(2π)4

∫

d4k′

(2π)4

∫

d4k′′

(2π)4
[

Dµα(k
′)× (k′′β)×Dρδ(k

′′)
]

ǫαβρ3G(k)(ieγδ)ei(k
′
−k′′)xei(k

′′+k−p)we−i(k+k′
−p′)zu(p)

=
1

2π
ū(p′)(ieγµ)

∫

d4k

∫

d4k′
∫

d4k′′
[

Dµα(k
′)× (k′′β)×Dρδ(k

′′)
]

ǫαβρ3G(k)(ieγδ)×

δ(k′ − k′′)0,1,2 δ(k
′ + k − p′) δ(k′′ + k − p)u(p)

=
1

2π
ū(p′) (ieγµ)

∫

d4k δ(p′ − p)0,1,2 [Dµα(p
′ − k)× (p− k)β ×Dρδ(p− k)] ǫαβρ3G(k)(ieγδ)× u(p)

(10)

In the Feynman gauge, photon’s propagator is diagonal. So the scattering amplitude is

M =
1

2π
δ(p′ − p)0,1,2 ū(p

′)(ieγµ)

∫

d4k×

(−i)gµµ
(p′ − k)2

×
(−i)gρρ
(p− k)2

× (p− k)β ×
i

γνkν −m
ǫµβρ3(ieγρ)u(p)

(11)

We can explicitly write down all possible terms according to the value of β in the above formula.

(i) β = 1 term:

M1 =−
i

2π
δ(p′ − p)0,1,2 ū(p

′) (e2γ0)

∫

d4k ×
1

(p− k)2
×

1

(p′ − k)2
×

(p− k)1
γνkν −m

γ2 × u(p)

+
i

2π
δ(p′ − p)0,1,2 ū(p

′) (e2γ2)

∫

d4k ×
1

(p− k)2
×

1

(p′ − k)2
×

(p− k)1
γνkν −m

γ0 × u(p)

=−
ie2

2π
δ(p′ − p)0,1,2 ū(p

′)×
∫

d4k
1

(p− k)2
×

1

(p′ − k)2
×
γ0(p− k)1 (γ

νkν +m)γ2 − γ2(p− k)1 (γ
νkν +m)γ0

k2 −m2
× u(p)

(12)

(ii) β = 2 term:

M2 =
ie2

2π
δ(p− p)0,1,2 ū(p

′)×
∫

d4k
1

(p− k)2
×

1

(p′ − k)2
×
γ0(p− k)2 (γ

νkν +m)γ1 − γ1(p− k)2 (γ
νkν +m)γ0

k2 −m2
× u(p)

(13)



3

(iii) β = 0 term:

M3 =−
ie2

2π
δ(p′ − p)0,1,2 ū(p

′)×
∫

d4k
1

(p− k)2
×

1

(p′ − k)2
×
γ1(p− k)0(γ

νkν +m)γ2 − γ2(p− k)0(γ
νkν +m)γ1

k2 −m2
× u(p)

(14)

II. CALCULATION OF THE INTEGRALS

First of all, let’s perform Feynman parametrization to simplify the denominator.

Using Feynman parametrization trick 1
ABC

= 2
∫ 1

0 du1
∫ u1

0 du2
1

[u2A+(u1−u2)B+(1−u1)C]3
, one can obtain

1

(p− k)2
×

1

(p′ − k)2
×

1

k2 −m2
= 2

∫ 1

0

du1

∫ u1

0

du2
1

[u2(p− k)2 + (u1 − u2)(p′ − k)2 + (1 − u1)(k2 −m2)]3

= 2

∫ 1

0

du1

∫ u1

0

du2
1

D3

(15)

Here,

D =u2(p− k)2 + (u1 − u2)(p
′ − k)2 + (1 − u1)(k

2 −m2)

=u2
[

(p− k)20 − (p− k)21 − (p− k)22 − (p− k)23
]

+ (u1 − u2)
[

(p′ − k)20 − (p′ − k)21 − (p′ − k)22 − (p′ − k)23
]

+ (1 − u1)
(

k20 − k21 − k22 − k23 −m2
)

=− u2(p3 − k3)
2 + u2(p

′

3 − k3)
2 + u1

[

(p′ − k)20 − (p′ − k)21 − (p′ − k)22 − (p′ − k)23
]

+ (1 − u1)
(

k20 − k21 − k22 − k23 −m2
)

=2u2(p3 − p′3)k3 + u1

[

(p′0
2
− 2p′0k0)− (p′1

2
− 2p′1k1)− (p′2

2
− 2p′2k2)− (p′3

2
− 2p′3k3)

]

+
(

k20 − k21 − k22 − k23
)

− (1− u1)m
2

=(k20 − 2u1p
′

0k0)− (k21 − 2u1p
′

1k1)− (k22 − 2u1p
′

2k2)−
[

k23 − 2u1p
′

3k3 + 2u2(p
′

3 − p3)k3
]

+ u1(p
′

0
2
− p′1

2
− p′2

2
− p′3

2
)− (1− u1)m

2

=(k20 − 2u1p
′

0k0)− (k21 − 2u1p
′

1k1)− (k22 − 2u1p
′

2k2)−
[

k23 − 2u1p
′

3k3 + 2u2(p
′

3 − p3)k3
]

+ u1m
2 − (1− u1)m

2

=(k0 − u1p
′

0)
2 − (k1 − u1p

′

1)
2 − (k2 − u1p

′

2)
2 − [k3 − u1p

′

3 + u2(p
′

3 − p3)]
2

+ (2u1 − 1)m2 − (u1p
′

0)
2 + (u1p

′

1)
2 + (u1p

′

2)
2 + [−u1p

′

3 + u2(p
′

3 − p3)]
2

=(k0 − u1p
′

0)
2 − (k1 − u1p

′

1)
2 − (k2 − u1p

′

2)
2 − [k3 − u1p

′

3 + u2(p
′

3 − p3)]
2

+ (−u21 + 2u1 − 1)m2 − u21p
′

3
2
+ ((u1 − u2)p

′

3 + u2p3)
2

=l20 − l21 − l22 − l23 − (1 − u1)
2m2 − u21p

′

3
2
+ [−u1p

′

3 + u2(p
′

3 − p3)]
2

=l20 − l21 − l22 − l23 − T 2

(16)

where T 2 = (1 − u1)
2m2 + u21p

′

3
2
− [u1p

′

3 − u2(p
′

3 − p3)]
2
. We have used substitution of variables l0 = k0 − u1p

′

0,

l1 = k1 − u1p
′

1, l2 = k2 − u1p
′

2, l3 = k3 − u1p
′

3 + u2(p
′

3 − p3), and on-shell condition of the external legs of electrons in

Eqn. (16).
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Second, let’s make some simplification of the numerator.

The numerator in M1 is

γ0(p− k)1 (γ
νkν +m)γ2 − γ2(p− k)1 (γ

νkν +m)γ0

=γ0γ2(p1 − k1)
[

−γ2(/k +m)γ2 + γ0(/k +m)γ0
]

=γ0γ1γ2(/p1 − /k1)
[

−γ2(/k +m)γ2 + γ0(/k +m)γ0
]

=2γ0γ1γ2(/p1 − /k1) [m− /k1 − /k3]

(17)

The numerator in M2 is

−
[

γ0(p− k)2 (γ
νkν +m)γ1 − γ1(p− k)2 (γ

νkν +m)γ0
]

=− γ0γ1γ2(/p2 − /k2)
[

γ1(/k +m)γ1 − γ0(/k +m)γ0
]

=2γ0γ1γ2(/p2 − /k2) [m− /k2 − /k3]

(18)

The numerator in M3 is

γ1(p− k)0(γ
νkν +m)γ2 − γ2(p− k)0(γ

νkν +m)γ1

=− γ0γ1γ2(/p0 − /k0)
[

γ2(/k +m)γ2 + γ1(/k +m)γ1
]

=2γ0γ1γ2(/p0 − /k0) [m− /k0 − /k3]

(19)

If we add up M1, M2, M3, the total numerator is

2mγ0γ1γ2
[

(/p0 − /k0) + (/p1 − /k1) + (/p2 − /k2)
]

− 2γ0γ1γ2
[

(/p0 − /k0)(/k0 + /k3) + (/p1 − /k1)(/k1 + /k3) + (/p2 − /k2)(/k2 + /k3)
] (20)

Next, we regroup the numerator into four parts.

a.

t1 = 2mγ0γ1γ2
[

(/p0 − /k0) + (/p1 − /k1) + (/p2 − /k2)
]

(21)

b.

t2 = 2γ0γ1γ2(k20 − k21 − k22) (22)

c.

t3 = −2γ0γ1γ2
[

(/p0 + /p1 + /p2)/k3 − (/k0 + /k1 + /k2)/k3

]

(23)

d.

t4 = −2γ0γ1γ2 [p0k0 − p1k1 − p2k2] (24)
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The integral that we need to calculate becomes

M = −
ie2

2π
δ(p′ − p)0,1,2 × 2

∫ 1

0

du1

∫ u1

0

du2

∫

d4l
t1 + t2 + t3 + t4

[l20 − l21 − l22 − l33 − T 2]
3 , (25)

where T 2 = α2 − [u1p
′

3 − u2(p
′

3 − p3)]
2
with α2 = (1− u1)

2m2 + u21p
′

3
2
.

In the following, we will often use the typical integral of momentum:

∫

d4l
1

(l20 − l21 − l22 − l23 − T 2 + iǫ)3
(Wick rotation: l0 → il0)

= −i

∫

d4l
1

(l20 + l21 + l22 + l23 + T 2)3

= −i2π2

∫

∞

0

dl
l3

(l2 + T 2)3
= −i

π2

2

1

T 2

(26)

We will often use variable substitution l0 = k0 − u1p
′

0, l1 = k1 − u1p
′

1, l2 = k2 − u1p
′

2, l3 = k3 − u1p
′

3 + u2(p
′

3 − p3);

and then perform Wick rotation l0 7→ il0 in the following context. In addition, we use the relations p′0 = p0, p
′

1 = p1,

p′2 = p2 due to the δ(p′ − p)0,1,2 function in M . Now, we can calculate the following terms based on four different

types of numerators.

a.

t1 =2mγ0γ1γ2
[

(/p
′

0
− /k0) + (/p

′

1
− /k1) + (/p

′

2
− /k2)

]

= −2mγ0γ1γ2
[

(/l0 + u1/p
′

0
− /p

′

0
) + (/l1 + u1/p

′

1
− /p

′

1
) + (/l2 + u1/p

′

2
− /p

′

2
)
]

= 2mγ0γ1γ2(1− u1)
[

/p
′

0
+ /p

′

1
+ /p

′

2

]

( dropped odd power of lµ)

= 2m(1− u1)
[

/p
′

0
+ /p

′

1
+ /p

′

2

]

γ0γ1γ2 (removed /p
′

µ
to the front)

= 2m(1− u1)
[

m− /p
′

3

]

γ0γ1γ2 (used on-shell condition of Dirac equation ū(p′)(/p
′ −m) = 0)

≈ 2m2(1− u1)γ
0γ1γ2 (in nonrelativistic limit m >> p1, p2, p3)

(27)

b.

t2 =2γ0γ1γ2
[

(l0 + u1p
′

0)
2 − (l1 + u1p

′

1)
2 − (l2 + u1p

′

2)
2
]

= 2γ0γ1γ2
[

l20 − l21 − l22 + u21(p
′

0
2
− p′1

2
− p′2

2
)
]

( dropped odd power of lµ, and Wick rotation →)

= 2γ0γ1γ2
[

−l20 − l21 − l22 + u21(p
′

0
2
− p′1

2
− p′2

2
)
]

= −2γ0γ1γ2(l20 + l21 + l22) + 2γ0γ1γ2u21

(

p′0
2
− p′1

2
− p′2

2
)

= −2γ0γ1γ2(l20 + l21 + l22) + 2γ0γ1γ2u21

(

m2 + p′3
2
)

(28)
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The first term 2γ0γ1γ2(−l20 + l21 + l22) contributes to the total scattering amplitude as

−
ie2

2π
δ(p′ − p)0,1,2 × 2

∫ 1

0

du1

∫ u1

0

du2(−i)

∫

d4l
−2γ0γ1γ2(l20 + l21 + l22)

(l20 + l21 + l22 + l23 + T 2)
3

=
e2

π
δ(p′ − p)0,1,2 × 2γ0γ1γ2

∫ 1

0

du1

∫ u1

0

du2 ×
3

4

∫

∞

0

dl (2π2)
l5

(l2 + T 2)
3

= e2πδ(p′ − p)0,1,2 × γ0γ1γ2
∫ 1

0

du1

∫ u1

0

du2 ×
3

2
Γ(0)

=
3πe2

4
δ(p′ − p)0,1,2γ

0γ1γ2Γ(0)

(29)

This term is independent of scattering momentum, thus does not contribute to the effective potential.

Now, we can consider the second term

2γ0γ1γ2u21

(

m2 + p′3
2
)

(in non-relativistic limit)

≈ 2γ0γ1γ2u21m
2

(30)

c.

t3 = 2γ0γ1γ2
[

(/k0 − /p
′

0
) + (/k1 − /p

′

1
) + (/k2 − /p

′

2
)
]

/k3

= 2γ0γ1γ2
[

(/l0 + u1/p
′

0
− /p

′

0
) + (/l1 + u1/p

′

1
− /p

′

1
) + (/l2 + u1/p

′

2
− /p

′

2
)
]

×
[

/l3 + u1/p
′

3
− u2(/p

′

3
− /p3)

]

= −2γ0γ1γ2(1 − u1)u1

(

/p
′

0
+ /p

′

1
+ /p

′

2

)

/p
′

3
+ 2γ0γ1γ2(1− u1)u2

(

/p
′

0
+ /p

′

1
+ /p

′

2

)

(/p
′

3
− /p3)

= −2(1− u1)u1
[

γ1γ2γ3p′0p
′

3 + γ0γ2γ3p′1p
′

3 − γ0γ1γ3p′2p
′

3

]

+ 2(1− u1)u2
[

γ1γ2γ3p′0(p
′

3 − p3) + γ0γ2γ3p′1(p
′

3 − p3)− γ0γ1γ3p′2(p
′

3 − p3)
]

= −2(1− u1)u1
[

γ0γ2γ3p′1p
′

3 − γ0γ1γ3p′2p
′

3

]

+ 2(1− u1)u2
[

γ0γ2γ3p′1(p
′

3 − p3)− γ0γ1γ3p′2(p
′

3 − p3)
]

= −2(1− u1)u1A+ 2(1− u1)u2B

(31)

If we want to calculate
∫ 1

0
du1

∫ u1

0
du2

t3
T 2 , we need to perform the following two integrals:

∫ u1

0

du2
u2

α2 − [u1p′3 − u2(p′3 − p3)]
2 [2(1− u1)B] (32)

∫ u1

0

du2
1

α2 − [u1p′3 − u2(p′3 − p3)]
2 [−2(1− u1)u1A] (33)

where α2 = (1 − u1)
2m2 + u21p

′

3
2
.

Because
∫ u1

0
du2

u2

α2
−[u1p

′

3
−u2(p′

3
−p3)]

2 =
u2

1

α2 ·
p′

3

p′

3
−p3

, and
∫ u1

0
du2

1

α2
−[u1p

′

3
−u2(p′

3
−p3)]

2 = u1

α2 . Then, you will find these

two integrals exactly canceled with each other. So we don’t need to consider the term c anymore. Note that these

integrals are calculate under the assumption p1 , p2 , p3 << m.

There is another way to prove the vanish of t3 term by invoking the symmetry of the integral. With the substitution

u2 → u1 − u2, the whole integral remains unchanged. So one can use the combination 1
2 (u2 + u1 − u2) = u1

2 to

represent u2. Remember p′3 = −p3, then one can show the two terms in t3 cancel out with each other.
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d.

t4 =− 2γ0γ1γ2 [p′0k0 − p′1k1 − p′2k2]

= −2γ0γ1γ2 [p′0(l0 + u1p
′

0)− p′1(l1 + u1p
′

1)− p′2(l2 + u1p
′

2)]

= −2γ0γ1γ2u1

(

p′0
2
− p′1

2
− p′2

2
)

= −2γ0γ1γ2u1

(

m2 + p′3
2
)

≈ −2γ0γ1γ2u1m
2

(34)

Add up t1, t2 and t4, and the numerator becomes

t1 + t2 + t4 = 2m2(1− u1 + u21 − u1)γ
0γ1γ2 = 2m2(1− u1)

2γ0γ1γ2 (35)

Consider t1 + t2 + t4, we need to calculate the integral:

[

2m2γ0γ1γ2
]

∫ 1

0

du1

∫ u1

0

du2(−
iπ2

2
)
(1 − u1)

2

T 2

=
[

2m2γ0γ1γ2
]

(

−
iπ2

2

)
∫ 1

0

du1
u1(1− u1)

2

α2

=
[

(−iπ2)γ0γ1γ2
]

m4 − πm3p′3 − 4m2p′3
2
+ 3m2p′3

2
log(m

p′

3

)2

2m4

(36)

We collect all the gradients and only care about the off-diagonal scattering amplitude, which is

M = δ(p′ − p)0,1,2 ū

(

−
ie2

2π

)

×
[

(−iπ2)γ0γ1γ2
]

(

−
π

2

) p′3
m

× u

= δ(p′ − p)0,1,2 ū

(

π2e2

4

)

γ0γ1γ2
p′3
m

× u

(37)

In non-relativistic limit, u→
(

ξ, p·σ
2m ξ

)T
, to the first order p′3/m, the scattering amplitude for spin up/down electron

is

M = δ(p′ − p)0,1,2 i ξ
†

(

−
π2e2

4

)

p′3
m
σ3 ξ (38)

In the scattering process, the transferred momentum is p̃ = (0, 0, 0, 2p′3). Fourier transform the scattering matrix,

we can get the effective interaction

V (r) =
1

(2π)4

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

dp̃0 dp̃1 dp̃2 δ(p̃)0,1,2 e
−ip̃0x0+ip̃1x1+ip̃2x2 × 2

∫

∞

0

dp̃3

(

−
π2e2

4

)

p′3
m
σ3e

ip̃3r

=
1

16π4

(

−
π2e2

4

)

× 4

∫

∞

0

dp′3
p′3
m
σ3 e

2ip′

3
r

= −
e2

16π2

∫

∞

0

dp′3
p′3
m
σ3 e

2ip′

3
r (Wick rotation p′3 → ip′3)

=
e2

16π2

∫

∞

0

dp′3
p′3
m
σ3 e

−2p′

3
r

=
e2

64π2

1

mr2
σ3

(39)

Note that, in our calculation, the coefficient before Chern-Simon term is 1. For the surface of a topological insulator,
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we can put the coefficient as κ
2 = jα

2 , where j is an odd number. Thus, our final result becomes

V (r) = j
κ

2
×

e2

64π2

1

mr2
σ3

= j
α2

32π

1

mr2
σ3

(40)
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