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Bell’s theorem sets a boundary between the
classical and quantum realms1, by providing a
strict proof of the existence of entangled quan-
tum states with no classical counterpart. An ex-
perimental violation of Bell’s inequality demands
simultaneously high fidelities in the preparation,
manipulation and measurement of multipartite
quantum entangled states. For this reason the
Bell signal has been tagged as a single-number
benchmark for the performance of quantum com-
puting devices2–4. Here we demonstrate deter-
ministic, on-demand generation of two-qubit en-
tangled states of the electron and the nuclear spin
of a single phosphorus atom embedded in a sili-
con nanoelectronic device5. By sequentially read-
ing the electron and the nucleus, we show that
these entangled states violate the Bell/CHSH6 in-
equality with a Bell signal of 2.50(10). An even
higher value of 2.70(9) is obtained by mapping
the parity of the two-qubit state onto the nuclear
spin, which allows for high-fidelity quantum non-
demolition measurement (QND)7 of the parity.
Furthermore, we complement the Bell inequality
entanglement witness with full two-qubit state to-
mography exploiting QND measurement, which
reveals that our prepared states match the tar-
get maximally entangled Bell states with >96% fi-
delity. These experiments demonstrate complete
control of the two-qubit Hilbert space of a phos-
phorus atom, and show that this system is able
to maintain its simultaneously high initialization,
manipulation and measurement fidelities past the
single-qubit regime.

Bell’s theorem provides a boundary to the strength
of correlation that a pair of quantum two-level systems
(qubits) can display, under the assumption that physical
systems cannot be instantly affected by distant objects
(“locality”) and that their properties exist before they
are observed (“realism”). Certain quantum entangled
states are predicted to violate Bell’s theorem, and there-
fore invalidate local realistic interpretations of quantum
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mechanics8. The most profound implications of Bell’s
theorem arise when observing entangled pairs of parti-
cles that are separated in space-time, such as photons
travelling at the speed of light in different directions9,10.
Even for physical systems where space-time separation is
not achievable, the Bell test carries an important mes-
sage when placed in the context of using such systems
for quantum information processing11. It is in princi-
ple possible to produce and observe quantum entangle-
ment without violating Bell’s inequality, as is the case
in a wide range of experiments, particularly in the solid
state12–17. However, a Bell’s inequality violation consti-
tutes an even stronger measure of the ability to faithfully
produce, control and read out non-classical states of pairs
of qubits2–4. This maps directly onto the ability to per-
form high-fidelity entangling operations18, which, along
with single-qubit operations can fully access the full two-
qubit Hilbert space.

Experimental access to Bell’s theorem takes the form
of the Clauser-Horne-Shimony-Holt (CHSH) inequality6.
It involves the joint measurement of a two-qubit system
along measurement axes α and β. The binary measure-
ment outcomes (0/1) produce a correlation

E(α, β) = P00 + P11 − P01 − P10 (1)

where P is the probability of detecting the subscripted
measurement outcome. In its standard form, the inequal-
ity is tested by measuring each qubit along two axes, α, α′

and β, β′ respectively, and extracting E in all four possi-
ble combination of axes. If the measurement setup does
not allow for physically rotating the measurement axes,
equivalent outcomes are obtained by rotating the qubit
prior to a measurement along a fixed axis. The Bell signal
is then

S = E(α, β) + E(α′, β) + E(α, β′)− E(α′, β′). (2)

Bell’s theorem states that, within local realistic theo-
ries, |S| ≤ 2. Conversely, quantum mechanics predicts
Smax = 2

√
2 for a maximally entangled state and an ap-

propriately chosen sets of axes.
In the present experiment we use as qubits the elec-

tron (↓ / ↑) and the nuclear (⇓ / ⇑) spins of a single
substitutional 31P donor, implanted20 in an isotopically
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Figure 1 | Device operation and state preparation protocols. a. Coloured scanning electron microscope
image of a device similar to the one used in the experiments. The gates coloured in red make up the single electron
transistor (SET), used to perform sensitive charge sensing for electron spin readout; the donor gates (DG) coloured
in blue, control the donor potential; the gate coloured in yellow is a broadband antenna used to drive the nuclear
magnetic resonance and electron spin resonance (NMR/ESR) transitions. Inset shows a schematic four-level energy
diagram of the two-spin electron-nuclear system under a static magnetic field. The colour coding of the three
accessible transitions (mw1, mw2, rf) will be used in the pulse sequences throughout the text and figures.
b.(Bottom) Electron |↓〉 initialization is achieved by setting the donor potential such that µ↑ > µset > µ↓. Since
γeB0 � kBT , where kB is the Boltzmann constant and T ≈ 100 mK is the temperature of the electron reservoir, the
ionized donor is predominantly neutralized by a |↓〉 electron. (Top) After initialization, Vdg is increased to lower the
donor potential to µ↓, µ↑ � µSET , preventing the electron from escaping the donor during the control phase. c. The
nuclear spin is initialized |⇑〉 by applying the sequence πmw2:πrf

19. If the nuclear spin is |⇑〉, πmw2 flips the electron
spin to |↑〉, after which πrf is off-resonance and leaves the nuclear spin remains in the target state |⇑〉. If the nuclear
spin is |⇓〉, πmw2 is off-resonance, allowing the subsequent πrf to flip the nuclear spin to |⇑〉. A final electron
|downarrow〉 initialization phase completes the |↓⇑〉 preparation. After the two-spin initialization sequence is
performed, one of the maximally entangled states (DQC or ZQC) is prepared. d. Electron Rabi oscillations
highlighting the improvement in visibility with the implementation of selective initialization (see main text) and
QND measurement protocols.

enriched 28Si epilayer5,21. The qubits are coupled by
the hyperfine interaction A ≈ 96.9 MHz (shifted from
the bulk value of 117 MHz due to the strong electric
fields in the nanostructure22). A static magnetic field
B0 ≈ 1.55 T induces a Zeeman splitting on the electron
(γeB0 with γe ≈ 27.97 GHz/T) and nuclear (γnB0 with
γn ≈ 17.23 MHz/T) spins, resulting in the two-qubit en-
ergy levels diagram depicted in the inset of Figure 1a.
Manipulation of the full two-qubit Hilbert space requires

access to at least three eigenstate transitions. Our ex-
perimental setup includes three microwave sources which
deliver signals to a nanoscale broadband antenna23, pro-
viding access to both electron spin resonance (ESR) tran-
sitions (νmw1,2 = γeB0 ∓A/2) and one nuclear magnetic
resonance (NMR) transition (νrf = γnB0 +A/2). Coher-
ent qubit rotations are denoted as αs where α is the rota-
tion angle in radians and the subscript identifies the tran-
sition. The 31P donor is located in the vicinity (≈ 25 nm)
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of the large electron island of a single-electron transistor
(SET), formed by biasing a metal-oxide-semiconductor
(MOS) gate stack above a SiO2 layer. An additional
set of gates (DG) controls the (spin-dependent) electro-
chemical potential of the donor, µ↑,↓, with respect to the
SET potential µset (Figure 1a)5. The SET island acts as
a quasi-continuum electron reservoir for spin-dependent
electron tunnelling to and from the donor, which is the
key step for single-shot readout and electrical initializa-
tion of the electron qubit state24.

On-demand entanglement requires the two-spin system
to be initialized to a known state. Figure 1b-c explains
in detail the initialization procedure. The fidelity is lim-
ited by electron initialization errors. The probability of
erroneous |↑〉 electron initialization is proportional to the
thermal population of electrons in the SET island at the
potential µ↑. Similarly, there is a small probability for a
|↓〉 electron to tunnel back to the SET, inversely propor-
tional to the density of states in the SET island at µ↓

25.
Additionally, the finite ratio between the electron tunnel
rate and the initialization time can be another source of
error. If the donor is in the ionised state at the time the
potential is lowered, the loading of the electron occurs
while both spin states are equally accessible, resulting
in a random initial electron spin state. To improve the
initialization fidelity we monitor the SET current dur-
ing the |↓〉 initialization phase, and discard the traces
where the donor is found ionised at the end of that phase
(see Extended Data Figure 1). This selective initializa-
tion protocol improves the two-spin initialization fidelity
from 94.3(7)% to ∼ 96.5(7)%.

We then apply the two-pulse sequence π/2rf:πmw1 or
π/2rf:πmw2 to the |↓⇑〉 state to prepare a maximally en-
tangled Bell state. By selecting mw1 or mw2 for the sec-
ond pulse, we can prepare the zero quantum coherence
(ZQC) |Ψ〉 = 1√

2
(|↑⇓〉+ |↓⇑〉) or the double quantum co-

herence (DQC) |Φ〉 = 1√
2
(|↑⇑〉+|↓⇓〉) states, respectively.

The entire initialization and entangled state preparation
sequence is depicted in Figure 1c.

Characterization of the prepared entangled state re-
quires high-fidelity single-shot projective measurements.
The electron spin readout, based upon spin-dependent
tunnelling from the donor to the SET island24, is de-
structive (the electron is lost after readout). Its fidelity,
here up to 97%5, is limited by the thermal broadening of
the reservoir. In contrast, the nuclear qubit is measured
through a quantum nondemolition (QND) method7 by
mapping its spin state onto that of the electron, through
an electron-nuclear CNOT operation (e.g. by applying
πmw2). The QND readout allows for repetitive measure-
ment of the nuclear spin state, which reaches a fidelity
> 99.9% with 30 repetitions5. With access to the full
two-qubit Hilbert space, any observable in the four-level
system can be mapped to the nuclear spin in order to
take advantage of the high-fidelity QND measurement.

To illustrate this point, we perform coherent Rabi ro-
tations of the electron spin qubit. Their visibility is a
nontrivial function of both measurement and initializa-
tion fidelities25. First we perform the measurement by
direct electron readout, then by mapping the electron
state onto the nucleus and performing QND readout on
it. By further applying the initialization protocol de-
scribed above, the overall Rabi visibility improves from
91% to 96% (Figure 1d), which means we have removed
over half of the state preparation and measurement errors
in the system.

The two-qubit system is now optimized to attempt
CHSH inequality violations. The single qubit rotations
required by the CHSH protocol are achieved through
sequential rotations at each of the qubit’s transitions.
To perform a β rotation on the electron independent of
the nuclear state, we use the sequence βmw1:βmw2, since
both electron frequencies (mw1 and mw2) are simulta-
neously addressable. Conversely, for the nuclear spin we
can only apply rf within the |↓〉 subspace. Therefore
a α rotation on the nuclear qubit is performed through
αrf:πmw1:πmw2:αrf, where the πmw1:πmw2 pulses bring the
|↑〉 manifold into the RF-addressable |↓〉 subspace.

A maximum Bell signal is achieved when the angle be-
tween the two projection axes on the same qubit (e.g.
α and α′) is π/2 and the relative shift between the two
sets of axes is π/4. The correlation E is obtained by in-
dependently measuring the individual qubits, through a
single-shot readout of the electron spin immediately fol-
lowed by a nuclear spin measurement. By repeating the
sequence 300 times and logging each set of electron and
nuclear spin results, we can construct the set of probabili-
ties for each eigenstate {P↑⇑, P↓⇓, P↑⇓, P↓⇑} and compute
E from Equation 1.

Alternatively, we can obtain E in a single measurement
by first mapping the parity of the Bell states (even parity
for DQC, odd parity for ZQC) to the nuclear spin state,
and then performing a QND measurement on it (See Ex-
tended Data Figure 2a). This is done by applying a πrf
pulse before a nuclear measurement, resulting in |⇑〉 with
probability P↑⇑+P↓⇓ and |⇓〉 with probability P↑⇓+P↓⇑.
Therefore, the correlation (Eq. 1) becomes E = 1− 2P⇓.
The complete sequence for the CHSH experiment—along
with our chosen set of projected axes—is shown in Fig-
ure 2a.

The histograms in Figure 2b show clear violations of
Bell’s inequality for both DQC and ZQC states, using
both standard and QND measurement protocols (see
numbers in Table 1). We obtain a maximum mean Bell
signal of 2.70(9) for the ZQC state using QND readout,
with the error taken as the standard deviation of the
histogram data. Each histogram is constructed from a
compilation of ∼ 120, 000 single-shot measurements (see
Figure 2 and Extended Data Figure 2b for the break-
down), taken over a period of ∼ 11 hours, highlighting
the long-term stability of this system. The on-demand
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Figure 2 | Bell’s inequality violation. a. Protocol for performing the CHSH experiment in the 31P
electron-nucleus system. After preparation of an electron-nuclear entangled state, each qubit is rotated to obtain the
desired combination of projection axes. Then, the correlation is extracted by measuring the qubits either directly or
via mapping the parity onto the nuclear qubit, and performing a single QND readout on it. A correlation value
E(α, β) is calculated after 300 repetitions of this sequence. b. Histograms of Bell signal values obtained for the ZQC
(left) and DQC (right) states. After obtaining E for each of the 4 combinations of qubit rotations, a bell signal S is
calculated (Equation 2). The histograms in the figure are constructed from ∼ 100 Bell signal values each. We
assume a normal distribution to calculate the mean and standard deviation of S displayed in Table 1.

entangled state preparation and single-shot readout tech-
niques adopted here also avoid the detection loophole26.

In addition to the Bell test, we have experimentally
mapped out the density matrix of the entangled states
by adopting a tomography method first implemented by
Mehring et al.27, where the off-diagonal matrix elements
of an electron-nuclear state are extracted from measure-
ments of a single observable. We apply geometric phase
operations to the input state and increment the geomet-
ric phase of the electron and nuclear spins relative to
each other, through the sequence πφrf:π

θ
mw2, where φ and

θ are the pulse rotation axes relative to the initial state
preparation pulse. We sweep the phases by increments
∆φ, ∆θ and map the desired off-diagonal coherence to
the nuclear observable. The mapping is a pulse sequence
that depends on the particular coherence being measured
(see Extended Data Figure 3). The measured P⇑ as a
function of phase increment reveals oscillations with am-
plitude proportional to the off-diagonal density matrix
element (Figure 3a). The frequency of the oscillations
is a linear function of ∆φ and ∆θ, which can be cho-
sen such that the recovered oscillations for each coher-
ence have distinct frequencies (Figure 3b). The diago-
nal elements of the density matrix are obtained from the

offsets of the tomography signals. Extended Data Fig-
ure 3 provides details on the pulse sequences, frequencies
and offsets for each of the coherences of the system. The
main advantages of this tomography method are twofold:
first, the extracted coherence amplitudes are strict lower
bounds and hence provide a conservative entanglement
estimate; second, it only requires measurement of one of
the qubits, which allows us to exploit the much higher
fidelity of the nuclear qubit QND measurement. Addi-
tionally, this technique reduces false positive signal con-
tributions which could arise from pulse errors. Each co-
herence evolves according to a distinct frequency, and
when measuring a particular coherence only its particu-
lar frequency numerically contributes to the tomographic
result; all other frequency contributions are due to pulse
errors and are discarded (see Extended Data Figure 4).

The density matrices (Figure 3c, see Extended Data
Figure 4 for numerical matrix) extracted using this pro-
tocol show remarkable fidelities F = Tr

[√√
ρ1ρ2
√
ρ1
]
>

96% when compared to the ideal states. Two addi-
tional density matrix tests, the positive partial transpose
(PPT)18,28 and the concurrence (C)29, both confirm our
measured states to be highly entangled. Table 1 shows all
of the entanglement benchmarks obtained from both the
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Figure 3 | Density matrix tomography. a. Example of state tomography through application of geometric
phases. After preparing the ZQC state, we apply the geometric phase map, and then move the |↑⇓〉 〈↓⇑| coherence
onto the nuclear spin observable, which is then measured in QND mode. The oscillations in the |⇓〉 probability P⇓
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b. Fourier transforms of tomography protocol signals obtained after preparing and mapping each of the off-diagonal
coherences (protocols shown in Extended figure 3). With carefully chosen phase increments (∆φ = − 2

21π and
∆θ = − 5

21π) we can obtain well separated peaks for each coherence. c. Density matrices extracted for the DQC
(Left) and ZQC (Right) states, expressed in polar coordinates where an off-diagonal element’s phase is indicated by
its colour. We have added a global phase correction to the matrices such that the maximum off-diagonal elements
have zero phase.

Bell test measurements and density matrix tomography.

The deterministic preparation and detection of quan-
tum entangled states that violate Bell’s inequality with
S = 2.70(9) provides a striking demonstration of the po-
tential of donor-based qubits in silicon for quantum in-
formation processing. In particular, it highlights the role
of the nuclear spin in expanding the size of the available
Hilbert space and in providing a pathway to high-fidelity
QND measurements for all observables. Future exper-
iments will further explore the role of nuclear spins in
facilitating logic gates between electron qubits30, and in
providing ancillas and long-lived memories in large fault-
tolerant quantum computer architectures.

Bell Test Tomography

State Standard QND F PPT C
ZQC 2.50(10) 2.70(9) 97(2)% -0.45(4) 0.88(17)

DQC 2.37(12) 2.49(11) 96(3)% -0.43(6) 0.74(17)

Table 1 | Summary of electron-nuclear entanglement
benchmarks.

METHODS

The fabrication process, cryogenic setup, gate biasing
and data acquisition is identical to that described by
Muhonen et al.5. We combine the signals of three differ-
ent generators (Agilent E8257D/E8267D PSG for ESR
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and Agilent N5182 MXG for NMR) to apply pulses to
each of the transitions described in the main text. We
can achieve πmw1,2 rotations in ∼ 3 µs and πrf rotations
in ∼ 30 µs. The generators are pulse modulated using
a SpinCore PulseBlaster ESR TTL pulse generator. For
phase control in the density matrix tomography experi-
ments, we use the internal baseband arbitrary waveform
generator (AWG) in the E8267D vector source, and we
use an Agilent 81180A AWG to gate the I/Q inputs of
the N5182.
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Extended Data Figure 2 | Bell’s inequality violation experiment details. a. Diagram showing how a πrf
maps the parity observable onto the nuclear observable. The pulse coherently swaps the coefficients of the
|↓⇓〉 ↔ |↓⇑〉 eigenstates, leaving the odd and even parity manifolds mapped on the |⇓〉 and |⇑〉 manifolds
respectively. b. Correlation measurements used to construct the Bell signal histograms of Figure 2b. Line colours
correspond to each of the nuclear and electron qubit projection combinations, as shown in the legend (α and β are
defined in Figure 2a). The top inset shows the cumulative moving average of P⇓ from a sample set of 300× 4
single-shot measurements used to obtain one correlation set. For the QND measurements, we calculate the
correlation E = 1− 2P⇓ after each set of 300 single-shot measurements.
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Manifold to map Phase-Map sequence
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(cycles/increment) Offset

Extended Data Figure 3 | Density matrix tomography pulse sequences and fitting parameters. Left
column: set of coherences measured by the tomography protocol. After preparing each tomography target state, a
πrf and πmw2 pulse are applied with phase offsets φ and θ respectively. These pulses act as phase gates, which alter
the phase of the coherence. The rest of the pulse sequence maps the coherence to be measured onto the |↓⇓〉 〈↓⇑|
manifold (column 2). A π/2rf pulse is then applied to project the coherence onto the nuclear observable before
performing a QND nuclear measurement. The nuclear spin proportion is plotted as we increment the phase offsets
by ∆φ and ∆θ, and the resulting signals (see Extended Data Figure 4) are fitted to
P⇓(nph) = A sin(2πfpnph +B) + C + 0.5. Here, nph is the phase increment number and fp is a frequency in
cycles/increment which is unique to each coherence (column 3). A and B are free fitting parameters from which we
extract the off-diagonal element amplitude and phase respectively. The remaining free fitting parameter C is the
offset of the measured signal, which gives information on the eigenstate populations (column 4). The diagonal
elements of the density matrix are extracted by constructing a system of equations with all of the extracted offsets
and | ↑⇑ |2 + | ↑⇓ |2 + | ↓⇑ |2 + | ↓⇓ |2 = 1. The overdetermined system is solved using a non-negative least-squares
solving algorithm.
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Extended Data Figure 4 | Density matrix tomography detailed results. Plots correspond to the resulting
signals obtained from following the density matrix tomography protocol for each of the coherences, after preparing
the entangled states DQC and ZQC. The data (dots) is fitted (solid line) as described in Extended Data Figure 3.
The quadrature component is obtained by applying a π/2 phase offset to the final projective π/2rf pulse and is
fitted by adding π/2 to the sin argument in the fitting function. Note that some traces display oscillations at
frequencies which are different from the characteristic frequency of the coherence. These oscillations arise from
cross-talk between coherences that can result from the tomography pulse sequence. The cross-talk is minimized by
carefully choosing the rate of phase increments for different coherences, to ensure that their Fourier transforms are
well spaced from each other. Black dashed lines indicate offsets for the ideal states. The resulting density matrices
for each entangled state are presented in numerical form at the bottom. We assume the matrix is Hermitian and
apply a global phase correction so the coherence with greatest amplitude has zero phase.
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