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We investigatewhether quantum theory can be understood as the continuum limit of amechanical theory, in
which there is a huge, but finite, number of classical “worlds,” and quantum effects arise solely from a
universal interaction between theseworlds, without reference to anywave function. Here, a “world”means an
entire universe with well-defined properties, determined by the classical configuration of its particles and
fields. In our approach, each world evolves deterministically, probabilities arise due to ignorance as to which
world a given observer occupies, andwe argue that in the limit of infinitelymanyworlds thewave function can
be recovered (as a secondary object) from the motion of these worlds. We introduce a simple model of such a
“many interactingworlds” approach and show that it can reproduce somegeneric quantumphenomena—such
as Ehrenfest’s theorem, wave packet spreading, barrier tunneling, and zero-point energy—as a direct
consequence of mutual repulsion between worlds. Finally, we perform numerical simulations using our
approach. We demonstrate, first, that it can be used to calculate quantum ground states, and second, that it is
capable of reproducing, at least qualitatively, the double-slit interference phenomenon.
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I. INTRODUCTION

The role of the wave function differs markedly in various
formulations of quantum mechanics. For example, in the
Copenhagen interpretation, it is a necessary tool for
calculating statistical correlations between a priori classical
preparation and registration devices [1]; in the de Broglie–
Bohm (dBB) interpretation, it acts as a pilot wave that
guides the world’s classical configuration [2]; in the many-
worlds (MW) interpretation, it describes an ever-branching
tree of noninteracting quasiclassical worlds [3]; and in
spontaneous collapse models, its objective “collapse”
creates a single quasiclassical world [4].
In other formulations, the wave function does not even

play a primary role. For example, in Madelung’s quantum
hydrodynamics [5], Nelson’s stochastic dynamics [6], and
Hall and Reginatto’s exact uncertainty approach [7], the
fundamental equations of motion are formulated in terms of
a configuration probability density P and a momentum
potential S (or the gradient of the latter), with a purely
formal translation to a wave function description via
Ψ ≔ P1=2 exp½iS=ℏ�. These approaches can describe the
evolution of any scalar wave function on configuration
space, which includes any fixed number of spinless

particles, plus bosonic fields. In this paper, we similarly
treat spinless and bosonic degrees of freedom.
More recently, it has been observed by Holland [8] and

by Poirier and co-workers [9–11] that the evolution of
such quantum systems can be formulated without reference
to even a momentum potential S. Instead, nonlinear Euler-
Lagrange equations are used to define trajectories of a
continuum of fluid elements, in an essentially hydrody-
namical picture. The trajectories are labeled by a continu-
ous parameter, such as the initial position of each element,
and the equations involve partial derivatives of up to fourth
order with respect to this parameter.
In the Holland-Poirier hydrodynamical approach, the

wave function plays no dynamical role. However, it may be
recovered, in a nontrivial manner, by integrating the
trajectories up to any given time [8]. This has proved a
useful tool for making efficient and accurate numerical
calculations in quantum chemistry [9,10]. Schiff and
Poirier [11], while “drawing no definite conclusions,”
interpret their formulation as a “kind of ‘many worlds’
theory,” albeit they have a continuum of trajectories (i.e.,
flow lines), not a discrete set of worlds.
Here, we take a different but related approach, with the

aim of avoiding the ontological difficulty of a continuum
of worlds. In particular, we explore the possibility of
replacing the continuum of fluid elements in the
Holland-Poirier approach by a huge but finite number of
interacting “worlds.” Each world is classical in the sense
of having determinate properties that are functions of
its configuration. In the absence of the interaction with
other worlds, each world evolves according to classical
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Newtonian physics. All quantum effects arise from, and
only from, the interaction between worlds. We therefore
call this the many interacting worlds (MIW) approach to
quantum mechanics. A broadly similar idea has been
independently suggested by Sebens [12], although without
any explicit model being given.
The MIW approach can only become equivalent to

standard quantum dynamics in the continuum limit, where
the number of worlds becomes uncountably infinite.
However, we show that even in the case of just two
interacting worlds it is a useful toy model for modeling
and explaining quantum phenomena, such as the spreading
of wave packets and tunneling through a potential barrier.
Regarded as a fundamental physical theory in its own right,
the MIWapproach may also lead to new predictions arising
from the restriction to a finite number of worlds. Finally, it
provides a natural discretization of the Holland-Poirier
approach, which may be useful for numerical purposes.
Before considering how its dynamics might be mathemati-
cally formulated and used as a numerical tool, however, we
give a brief discussion of how its ontology may appeal to
those who favor realist interpretations.

A. Comparative ontology of the MIW approach

At the current stage, the MIW approach is not yet well
enough developed to be considered on equal grounds with
other long-established realistic approaches to quantum
mechanics, such as the de Broglie–Bohm and many-worlds
interpretations. Nevertheless, we think it is of interest to
compare its ontology with those of these better known
approaches.
In the MIW approach there is no wave function, only a

very large number of classical-like worlds with definite
configurations that evolve deterministically. Probabilities
arise only because observers are ignorant of which world
they actually occupy, and so assign an equal weighting to all
worlds compatible with the macroscopic state of affairs they
perceive. In a typical quantum experiment, where the
outcome is indeterminate in orthodox quantum mechanics,
the final configurations of the worlds in the MIW approach
can be grouped into different classes based on macroscopic
properties corresponding to the different possible outcomes.
The orthodox quantum probabilities will then be approx-
imately proportional to the number of worlds in each class.
In contrast, the dBB interpretation postulates a single

classical-like world, deterministically guided by a physical
universal wave function. This world—a single point of
configuration space—does not exert any backreaction on
the guiding wave, which has no source but which occupies
the entire configuration space. This makes it challenging to
give an ontology for the wave function in parts of
configuration space so remote from the “real” configuration
that it will never affect its trajectory (a nice analogy can be
found in Feynman’s criticism of classical electromagnetism
[13]). Furthermore, this wave function also determines a

probability density for the initial world configuration
[2,14]. From a Bayesian perspective, this dual role is not
easy to reconcile [15].
In the Everett or MW interpretation, the worlds are

orthogonal components of a universal wave function [3].
The particular decomposition at any time, and the identity
of worlds through time, is argued to be defined (at least well
enough for practical purposes) by the quantum dynamics
which generates essentially independent evolution of these
quasiclassical worlds into the future (a phenomenon
called effective decoherence). The inherent fuzziness of
Everettian worlds is in contrast to the corresponding
concepts in the MIW approach of a well-defined group
of deterministically evolving configurations. In the MW
interpretation, it is meaningless to ask exactly how many
worlds there are at a given time, or exactly when a
branching event into subcomponents occurs, leading to
criticisms that there is no precise ontology [16]. Another
difficult issue is that worlds are not equally “real” in the
MW interpretation, but are “weighted” by the modulus
squared of the corresponding superposition coefficients. As
noted above, in the MIW approach, all worlds are equally
weighted, so that Laplace’s theory of probability is suffi-
cient to account for our experience and expectations.
The skeptical reader may wonder whether it is appro-

priate to call the entities in our MIW theory worlds at all.
After all, each world corresponds to a set of positions of
particles in real (3D) space. How, then, is the nature and
interaction of these worlds any different from those of
different gas species, say A and B, where the positions of all
the A molecules constitute one world and those of the B
molecules (each one partnered, nominally and uniquely,
with one of the Amolecules) constitute another world? The
answer lies in the details of the interaction.
In the above example, any given Amolecule will interact

with any B molecule whenever they are close together in
3D space. Thus, a hypothetical being in the “A world,”
made of some subset of the A molecules, would experience
the presence of B molecules in much the same way that it
would feel the presence of other A molecules. By contrast,
as will be shown later in this paper, the force between
worlds in our MIW approach is non-negligible only when
the two worlds are close in configuration space. It would be
as if the A gas and B gas were completely oblivious to each
other unless every single A molecule were close to its B
partner. Such an interaction is quite unlike anything in
classical physics, and it is clear that our hypothetical
A-composed observer would have no experience of the
B world in its everyday observations, but by careful
experiment might detect a subtle and nonlocal action on
the Amolecules of its world. Such action, though involving
very many, rather than just two, worlds, is what we propose
could lie behind the subtle and nonlocal character of
quantum mechanics.
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B. Outline of the paper

In Sec. II, we introduce the MIWapproach in detail. The
approach allows flexibility in specifying the precise
dynamics of the interacting worlds. Hence, we consider
a whole class of MIW models which, as we discuss in
Sec. II B, should agree with the predictions of orthodox
quantum mechanics in the limit of infinitely many worlds.
We present a particularly simple model in Sec. III and
demonstrate in Sec. IV that it is capable of reproducing
some well-known quantum phenomena: Ehrenfest’s theo-
rem, wave packet spreading, barrier tunneling, and zero-
point energy. We conclude with a numerical analysis of
oscillator ground states and double-slit interference phe-
nomena in Secs. V and VI, respectively.

II. FORMULATION OF THE MANY
INTERACTING WORLDS APPROACH

A. From dBB to MIW

For pedagogical reasons, we introduce MIW from the
perspective of the dBB interpretation of quantum mechan-
ics, and, hence, start with a brief review of the latter. We
regard the MIW approach as fundamental, but to show that
it should (in an appropriate limit) reproduce the predictions
of orthodox quantum mechanics, it is convenient to build
up to it via the equations of dBB mechanics. It is well
known that the dBB interpretation reproduces all the
predictions of orthodox quantum mechanics, so far as
the latter is well defined [14,17].
Consider then a universe comprising J scalar nonrela-

tivistic distinguishable particles, in a D-dimensional space.
(As mentioned in the Introduction, we could also include
bosonic fields, but for simplicity we omit them here.) In
dBB mechanics, there is a universal (or world) wave
function ΨtðqÞ defined on configuration space. Here, the
argument of the wave function is a vector q ¼
fq1;…; qKg⊤ of length K ¼ DJ. We order these variables
so that for D ¼ 3, the vector ðq3j−2; q3j−1; q3jÞ⊤ describes
the position of the jth particle. For convenience, we
associate a mass with each direction in configuration space,
so that the mass of the jth particle appears 3 times, as
m3j−2 ¼ m3j−1 ¼ m3j. Then, we can write Schrödinger’s
equation for the world wave function ΨtðqÞ as

iℏ
∂
∂tΨtðqÞ ¼

�XK
k¼1

ℏ2

2mk

� ∂
∂qk

�
2

þ VðqÞ
�
ΨtðqÞ: ð1Þ

As well as the world wave function, there is another part of
the dBB ontology, corresponding to the real positions of all
the particles. We call this the world-particle, with position
xðtÞ ¼ fx1ðtÞ;…; xKðtÞg⊤, which we also call the world
configuration. Reflecting “our ignorance of the initial
conditions” [2], the initial position xð0Þ of the world-
particle is a random variable distributed according to
probability density P0ðxÞ, where

PtðqÞ ¼ jΨtðqÞj2: ð2Þ

The velocity of the world-particle _x is then defined by

mk _xkðtÞ ¼ ∂StðqÞ
∂qk

����
q¼xðtÞ

; ð3Þ

where

StðqÞ ¼ ℏ arg½ΨtðqÞ�: ð4Þ

This equation of motion guarantees that the probability
density for theworld configurationxðtÞ at any time t is given
by PtðxÞ. This property is known as equivariance [14,18].
In Bohm’s original formulation [2], the law of motion

[Eq. (3)] is expressed equivalently by the second-order
equation

mkẍk ¼ fkðxÞ þ rkt ðxÞ; ð5Þ

with Eq. (3) applied as a constraint on the velocity at the
initial time (t ¼ 0). Here, the force has been split into
classical (f) and quantum (r) contributions, the latter called
r because of its locally repulsive nature, which will be
shown later. These are defined by

fðqÞ ¼ −∇VðqÞ; rtðqÞ ¼ −∇QtðqÞ ð6Þ

(with the kth component of ∇ being ∂=∂qk). Here,

QtðqÞ ¼ ½PtðqÞ�−1=2
XK
k¼1

−ℏ2

2mk

� ∂
∂qk

�
2

½PtðqÞ�1=2 ð7Þ

was called the quantum potential by Bohm [2], and
vanishes for ℏ ¼ 0.

It can be shown that Eq. (5) reproduces Eq. (3) at all
times. Although Eq. (6) looks like Newtonian mechanics,
there is no conserved energy for the world-particle alone,
because Qt is time dependent in general. Moreover, the
wave function ΨtðqÞ evolves in complete indifference to
the world-particle, so there is no transfer of energy there.
Thus, these dynamics are quite unlike those familiar from
classical mechanics.
Suppose now that instead of only one world-particle, as

in the dBB interpretation, there were a huge number N of
world-particles coexisting, with positions (world configu-
rations) x1;…;xn;…;xN . If each of the N initial world
configurations is chosen at random from P0ðqÞ, as
described above, then

P0ðqÞ ≈ N−1
XN
n¼1

δððq − xnð0ÞÞ ð8Þ

by construction. The approximation is in the statistical
sense that the averages of any sufficiently smooth function
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φðqÞ, calculated via either side, will be approximately
equal, and it becomes arbitrarily good in the limit N → ∞.
Clearly, a similar approximation also holds if the empirical
density on the right-hand side is replaced by a suitably
smoothed version thereof.
By equivariance, the quality of either approximation is

then conserved for all times.
One can thus approximate PtðqÞ, and its derivatives,

from a suitably smoothed version of the empirical density
at time t. From this smoothed density, one may also obtain a
corresponding approximation of the Bohmian force
[Eq. (6)],

rtðqÞ ≈ rNðq;XtÞ for N ≫ 1; ð9Þ

in terms of the list of world configurations

Xt ¼ fx1ðtÞ;x2ðtÞ;…xNðtÞg ð10Þ

at time t. Note, in fact, that since only local properties of
PtðqÞ are required for rtðqÞ, the approximation rNðq;XtÞ
requires only worlds from the set Xt which are in the
K-dimensional neighborhood of q. That is, the approxi-
mate force is local in K-dimensional configuration space.
We now take the crucial step of replacing the Bohmian

force [Eq. (6)], which acts on each world-particle xnðtÞ via
Eq. (5), by the approximation rN(xnðtÞ;Xt). Thus, the
evolution of the world configuration xnðtÞ is directly
determined by the other configurations in Xt. This makes
the wave functionΨtðqÞ, and the functions PtðqÞ and StðqÞ
derived from it, superfluous. What is left is a mechanical
theory, referred to as MIW, which describes the motion of a
“multiverse” of N coexisting worlds x1ðtÞ;…xnðtÞ;…
xNðtÞ, where each world configuration xnðtÞ is a K vector
specifying the position of J ¼ K=D particles.

While the MIW approach was motivated above as an
approximation to the dBB interpretation of quantum
mechanics, we have the opposite in mind. We regard
MIW as the fundamental theory, from which, under certain
conditions, dBB can be recovered as an effective theory
provided N is sufficiently large; see Sec. II B. Note that the
MIW approach is conceptually and mathematically very
different from dBB. Its fundamental dynamics are
described by the system of N × J ×D second-order differ-
ential equations

mkẍknðtÞ ¼ fk(xnðtÞ)þ rkN(xnðtÞ;Xt): ð11Þ

In the absence of an interworld interaction, corresponding
to the classical limit rkN(xnðtÞ;Xt) ¼ 0 in Eq. (11), the
worlds evolve independently under purely Newtonian
dynamics. Hence, all quantumlike effects arise from the
existence of this interaction. It is shown in Secs. III–VI that
this nonclassical interaction corresponds to a repulsive
force between worlds having close configurations, leading

to a simple and intuitive picture for many typical quantum
phenomena.
Note also that we use the term “MIW approach” rather

than “MIW interpretation.” This is because, while some
predictions of quantum mechanics, such as the Ehrenfest
theorem and rate of wave packet spreading, will be seen to
hold precisely for any number of worlds, other predictions
can be accurately recovered only under certain conditions
in the limit N → ∞. This has two immediate implications:
the possibility of experimental predictions different from
standard quantum mechanics, due to the finiteness of N,
and the possibility of using the MIWapproach for approxi-
mating the dynamics of standard quantum systems in a
controlled manner. In the latter case, Eq. (11) must be
supplemented by suitable initial conditions, corresponding
to choosing the initial world configurations randomly from
P0, and the initial world-particle velocities from S0 via
Eq. (3) (see Sec. II C below and Sec. VI).

B. Probabilities and the quantum limit

While each world evolves deterministically under
Eq. (11), which of the N worlds we are actually living
in, compatible with the perceived macroscopic state of
affairs, is unknown. Hence, assertions about the configu-
ration of the J particles in our world naturally become
probabilistic. In particular, for a given function φðxÞ of the
world configuration, only an equally weighted population
mean

hφðxÞiX ≡ 1

N

XN
n¼1

φðxnÞ; ð12Þ

over all the worlds compatible with observed macroscopic
properties, can be predicted at any time.
We now show that under certain conditions the MIW

expectation values [Eq. (12)] are expected to converge to
the ones predicted by quantum theory when the number of
worlds N tends to infinity. For this, suppose we are
provided a solution to the Schrödinger equation Ψt on
K-dimensional configuration space, and the initial con-
figurations of the N worlds, x1ð0Þ;x2ð0Þ;…;xNð0Þ are
approximately distributed according to the distribution
P0ðqÞ ¼ jΨ0ðqÞj2. Hence, at t ¼ 0 one has, for any smooth
function φ on configuration space,

hφiΨ0
≡

Z
dqjΨ0ðqÞj2φðqÞ

≈
1

N

XN
n¼1

φðxnð0ÞÞ ¼ hφðxÞiX0
;

with the approximation becoming arbitrarily good as
N → ∞ for φ sufficiently regular. Suppose further that
Ψt is such that at initial time t ¼ 0 the velocities of the
worlds fulfill Eq. (3). As a consequence of Eq. (9), the
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trajectory of the nth world generated by Eq. (11) should
stay close to the corresponding Bohmian trajectory gen-
erated by Eq. (5). Hence, by equivariance of the latter
trajectories, the world configurations x1ðtÞ;…;xNðtÞ at
time t will be approximately distributed according to the
distribution PtðxÞ ¼ jΨtðxÞj2. That is,

hφðxÞiΨt
¼

Z
dqjΨtðqÞj2φðqÞ

≈
1

N

XN
n¼1

φðxnðtÞÞ ¼ hφðxÞiXt
; ð13Þ

as desired.
In summary, the configuration-space expectation values

of the MIW approach should coincide with those for the
quantum state Ψt as N → ∞ provided that at some time τ
the following conditions are met:
(1) the worlds x1ðτÞ;…;xNðτÞ are jΨτj2-distributed,
(2) the velocities of the worlds fulfill Eq. (3) at t ¼ τ.

Since configuration space expectation values are all that is
required to establish empirical equivalence with orthodox
quantummechanics (just as in dBB [2]), this establishes the
viability of the MIW approach.
It is a remarkable feature of the MIW approach that only

a simple equal weighting of worlds, reflecting ignorance of
which world an observer occupies, appears to be sufficient
to reconstruct quantum statistics in a suitable limit.
Similarly, in this limit, the observer should see statistics
as predicted by quantum mechanics when carrying out a
sequence of experiments in his or her single world. In
particular, from the typicality analysis by Dürr et al. for the
dBB interpretation [18], it follows that Born’s rule holds for
dBB trajectories belonging to typical initial configurations,
where in dBB typical stands for almost all with respect to
the jΨtj2 measure. Hence, since the MIW trajectories are
expected to converge to dBB trajectories and the world
configurations are jΨtj2 distributed in the limit described
above, Born’s rule will hold for typical MIW worlds, where
we emphasize again that in our MIW approach typicality
simply means for the great majority of worlds, since each
world is equally weighted.

C. Which initial data give rise to quantum behavior?

We argue above that, given a solution to the Schrödinger
equation, one can generate corresponding initial data for
the MIW equations of motion [Eq. (11)] whose solution
approximates quantum theory as N → ∞. Suitable initial
data are as per conditions (1) and (2) above. This suggests a
converse question: given a solution,XðtÞ ¼ fx1;…;xNg to
the MIW equations of motion [Eq. (11)], is there is any
solution Ψt to the Schrödinger equation that can be
approximately generated by XðtÞ?

The sense in which an approximation ~Ψt ≈Ψt could be
generated is the following. Given the world configurations

XðtÞ, one can construct approximations j ~Ψtj2 for the
probability density as per Eq. (8). Further, from the
velocities _XðtÞ, approximations arg ~Φt for the phase can
be constructed via Eqs. (3) and (4). Thus, there are many
ways a quantum mechanical candidate for ~Ψt could be
constructed. The relevant measure of the quality of the
approximation at time t is then given by the L2 norm

∥ ~Ψt −Uðt − τÞ ~Ψτ∥2; ð14Þ

where UðtÞ denotes the corresponding Schrödinger evolu-
tion and τ is some initial time.
From the above discussion, it might seem obvious that to

obtain approximate quantum evolution (in this sense) one
must simply impose the velocity constraint [Eqs. (3) and
(4)] at the intial time t ¼ τ, for some Ψτ. However, on
further reflection, one realizes that this is no constraint at
all. For any finite numberN of worlds, there is always some
complex function ΦðqÞ such that setting ΨτðqÞ ¼ ΦðqÞ
will match the initial velocities at the positions of those
worlds. The point is that this Φ may fail to yield
an approximate solution at later times, so that ∥ ~Ψt−
Uðt − τÞΦ∥2 is not small, for any approximate
reconstruction ~Ψt and t − τ sufficiently large. Thus, a more
relevant constraint may be that the velocity constraint
[Eqs. (3) and (4)] holds for some Ψτ that is smoothly
varying on the scale of the maximum interworld distance in
configuration space. We emphasize, however, that it is not
completely obvious that such a constraint is necessary—
i.e., quantum behavior may be typical in the MIWapproach
as N → ∞—a point to which we return in Sec. VII (see
also Sec. IV).

D. Interworld interaction potential

The general MIW approach described in Sec. II A is
complete only when the form of the force rNðx;XÞ
between worlds, in Eq. (11), is specified. There are
different possible ways of doing so, each leading to a
different version of the approach. However, it is natural to
seek a formulation of the MIW approach in which the
interaction force between worlds is guaranteed to be
conservative, that is, a force of the form

rNðxn;XÞ ¼ −∇xnUNðXÞ; ð15Þ
for some potential function UNðXÞ defined on the N world
configurations X ¼ ðx1;…;xNÞ, where ∇xn denotes the
gradient vector with respect to xn.
If we have an interworld interaction potential UNðXÞ,

this immediately allows the equations of motion [Eq. (11)]
to be rewritten in the equivalent Hamiltonian form

_xn ¼ ∇pn
HNðX;PÞ; _pn ¼ −∇xn

HNðX;PÞ; ð16Þ
with all its attendant advantages. Here, P ¼ ðp1;…;pnÞ
defines the momenta of the worlds, with components
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pk
n ¼ mk _xkn; ð17Þ

and the Hamiltonian is given by

HNðX;PÞ ≔
XN
n¼1

XK
k¼1

ðpk
nÞ2

2mk þ
XN
n¼1

VðxnÞ þUNðXÞ: ð18Þ

We refer to UNðXÞ as the interworld interaction potential.
To motivate the form of suitable interworld potentials

UN , note that, to reproduce quantum mechanics in the limit
N → ∞, it is natural to require that the average energy per
world, hEiN ≡ N−1HNðX;PÞ, approaches the quantum
average energy in this limit. Note that we cannot associate
a definite energy with each world, because of the interworld
interaction. Note also that we have substituted the subscript
N for the subscript X (or X, P as would be needed in this
case), for ease of notation.
Now, if the configurations x1;…;xN sample the dis-

tribution jΨðxÞj2, the quantum average energy can be
written, using Ψ ¼ P1=2 exp½iS=ℏ�, as [2]

hEiΨ ¼
Z

dqPðqÞ
�XK
k¼1

1

2mk

� ∂S
∂qk

�
2

þ VðqÞ

þ
XK
k¼1

ℏ2

8mkP2

�∂P
∂qk

�
2
�

≈
1

N

XN
n¼1

�XK
k¼1

1

2mk

� ∂S
∂qk

�
2

þ VðqÞ

þ
XK
k¼1

ℏ2

8mkP2

�∂P
∂qk

�
2
�����

q¼xn

(for N sufficiently large). Moreover, the average energy per
world is given via Eq. (18) as

hEiN ¼ N−1HNðX;PÞ

¼ 1

N

XN
n¼1

�XK
k¼1

ðpk
nÞ2

2mk þ VðxnÞ
�
þ 1

N
UNðXÞ:

Assuming that the trajectories generated by the
Hamiltonian HN are close to the dBB trajectories for
sufficiently large N, then pk

n ¼ mk _xkn ≈ ∂SðxnÞ=∂xkn, and
comparing the two averages shows that UNðXÞ should be
chosen to be of the form

UNðXÞ ¼
XN
n¼1

XK
k¼1

1

2mk ½gkNðxn;XÞ�2; ð19Þ

where

gkNðq;XÞ ≈ ℏ
2

1

PðqÞ
∂PðqÞ
∂qk : ð20Þ

Here, the left-hand side is to be understood as an approxi-
mation of the right-hand side, obtained via a suitable
smoothing of the empirical density in Eq. (8), analogous
to the approximation of the quantum force rNðqÞ by
rNðx;XÞ in Eq. (9). It is important to note that a good
approximation of the quantum force (which is essential to
obtain quantum mechanics in the large N limit), via
Eqs. (15) and (19), is not guaranteed by a good approxi-
mation in Eq. (20). This is easy to see in the case that the
empirical density is smoothed using only members of a
(large) fixed subset of the N worlds, implying that the force
in Eq. (15) will vanish for all worlds not contained in this
subset. For example, in the K ¼ 1 case considered below,
one could choose the subset of odd-numbered worlds (i.e.,
n odd), in which case the even-numbered worlds would
behave classically. Thus, Eq. (20) is a guide only, and
Eq. (9) must also be checked.
The interworld potential UN in Eq. (19) is positive by

construction. This leads directly to the existence of a
minimum energy and a corresponding stationary configu-
ration for the N worlds, corresponding to the quantum
ground-state energy and (real) ground-state wave function
P−1=2ðqÞ in the limit N → ∞. Note that gkNðq;XÞ in
Eq. (20) approximates Nelson’s osmotic momentum [6],
suggesting that UN in Eq. (19) may be regarded as a sum of
nonclassical kinetic energies, as is explored in Sec. IV. The
quantity gkNðq;XÞ also approximates the imaginary part of
the “complex momentum” that appears in complexified
Bohmian mechanics [19,20].
Further connections between UNðXÞ, gNðq;XÞ, and

rNðx;XÞ are discussed in Appendix A.

III. SIMPLE EXAMPLE

A full specification of the MIW dynamics requires
generation of a suitable force function rNðxn;XÞ in
Eq. (11) or a suitable function gkNðq;XÞ in Eq. (19). As
discussed in the previous section, these may be viewed as
corresponding to approximations of −∇Q and ∇P=P,
respectively. One may obtain many candidates for inter-
world forces and potentials in this way, and it is a matter
of future interest to determine what may be the most
natural ones.
In this section, we demonstrate in the simplest case of

one dimension and one particle per world (K ¼ D ¼
J ¼ 1) how the proposed MIW approach can be math-
ematically substantiated, using a Hamiltonian formulation.
In Sec. IV, we show that this example provides a nice
toy model for successfully describing various quantum
phenomena.

A. One-dimensional toy model

For N one-dimensional worlds, it is convenient to
distinguish them from the general case by denoting the
configuration xn and momentum pn of each world by xn
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and pn, respectively. It is also convenient to label the
configurations such that x1 < x2 < � � � < xN (it will be
seen that this ordering is preserved by the repulsive nature
of the interaction between worlds). Similarly, we use X ¼
ðx1;…; xNÞ in place ofX, and P in place of P. Note that we
can thus consider X and P as vectors. The mass of each
one-dimensional world-particle is denoted by m.
The aim here is to obtain a simple form for the interworld

potential UN in Eq. (19). It is easiest to first approximate
the empirical distribution of worlds by a smooth probability
density PXðqÞ and use this to obtain a suitable form for
gkNðq;XÞ in Eq. (20).
Now, any smooth interpolation PXðqÞ of the empirical

density of the N worlds must satisfy

1

N

XN
n¼1

φðxnÞ ≈
Z

dqPXðqÞφðqÞ

≈
XN
n¼1

Z
xn

xn−1

dqPXðxnÞφðxnÞ

¼
XN
n¼1

ðxn − xn−1ÞPXðxnÞφðxnÞ

for sufficiently slowly varying functions φðxÞ and suffi-
ciently large N. This suggests the following ansatz,

PXðxnÞ ¼
1

Nðxn − xn−1Þ
≈

1

Nðxnþ1 − xnÞ
; ð21Þ

for the smoothed distribution PX at x ¼ xn, which relies on
an assumption that the interworld separation is slowly
varying. The success of this ansatz requires that the
dynamics we derive based upon it preserve this slow
variation, which appears to be the case from the simulations
in Sec. VI. Under this assumption, the two expressions in
Eq. (21) have a relative difference Oð1=NÞ. Further, for
large N, we can approximate the derivative of PXðqÞ at
q ¼ xn by

P0
XðxnÞ ≈

PXðxnþ1Þ − PXðxnÞ
xnþ1 − xn

: ð22Þ

Hence, ∇PX=PX is approximated by

P0
XðxnÞ

PXðxnÞ
≈ N½PXðxnþ1Þ − PXðxnÞ�

≈
1

xnþ1 − xn
−

1

xn − xn−1
:

It follows that one may take the interworld potential
UNðXÞ in Eq. (19) to have the rather simple form

UNðXÞ ¼
ℏ2

8m

XN
n¼1

�
1

xnþ1 − xn
−

1

xn − xn−1

�
2

: ð23Þ

To ensure that the summation is well defined for n ¼ 1 and
n ¼ N, we formally define x0 ¼ −∞ and xNþ1 ¼ ∞.

B. Basic properties of the toy model

The MIW toy model corresponding to Eq. (23) is defined
by the equations of motion [Eq. (16)] and the Hamiltonian
[Eq. (18)]. Since the total energy is conserved, two adjacent
worlds xn and xnþ1 cannot approach each other arbitrarily
closely, as the potential UN would become unbounded.
This implies a mutually repulsive force that acts between
neighboring worlds, which we show in Sec. IV to be
responsible for a number of generic quantum effects. Note
also that UN is invariant under translation of the configu-
rations. This leads directly to an analog of the quantum
Ehrenfest theorem, also shown in Sec. IV.
While of a simple form, the interworld potential UN in

Eq. (23) is seen to be a sum of three-body terms, rather than
the more usual two-body interactions found in physics.
Further, the corresponding force, acting on configuration
xn, may be evaluated as

rNðxn;XÞ ¼ −∂UNðXÞ=∂xn
¼ ℏ2

4m
½σnþ1ðXÞ − σnðXÞ�; ð24Þ

which actually involves five worlds, since σnðXÞ involves
four worlds:

σnðXÞ ¼
1

ðxn − xn−1Þ2
�

1

xnþ1 − xn
−

2

xn − xn−1

þ 1

xn−1 − xn−2

�
ð25Þ

(defining xn ¼ −∞ for n < 1 and ¼ ∞ for n > N).
It is shown in Appendix A that this force corresponds to

a particular approximation of the Bohmian force rtðxnÞ, as
per Eq. (9).

IV. QUANTUM PHENOMENA AS GENERIC
MIW EFFECTS

Here, we show that the MIW approach is capable of
reproducing some well-known quantum phenomena,
including Ehrenfest’s theorem, wave packet spreading,
barrier tunneling, zero-point energy, and a Heisenberg-like
uncertainty relation. We primarily use the toy model of
Sec. III for this purpose, although a number of the results,
such as the Ehrenfest theorem and wave packet spreading,
are shown to hold for broad classes of MIW potentials.

A. Ehrenfest theorem: Translation invariance

For any MIW potential UN in Eq. (18) that is invariant
under translations of the world configurations, such as the
toy model in Eq. (23), one has
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d
dt

hxiN ¼ 1

m
hpiN;

d
dt

hpiN ¼ −h∇ViN; ð26Þ

where hφðx;pÞiN ≔ N−1PN
n¼1 φðxn;pnÞ. Thus, the quan-

tum Ehrenfest theorem corresponds to the special case
N → ∞, with the more general result holding for any value
of N. For example, when VðxÞ is no more than quadratic
with respect to the components of x, the centroid of any
phase space trajectory follows the classical equations of
motion, irrespective of the number of worlds.
To prove the first part of Eq. (26), note from Eqs. (16)

and (18) that

d
dt
hxiN ¼ 1

N

XN
n¼1

_xn ¼ 1

N

XN
n¼1

∇pn
HN

¼ 1

N

XN
n¼1

1

m
pn¼

1

m
hpiN;

as required. To prove the second part, note that one also has
from Eqs. (16) and (18)

d
dt

hpiN ¼ −h∇ViN −
1

N

XN
n¼1

∇xnUNðXÞ:

Now, translation invariance is the condition

UNðx1 þ y;…;xN þ yÞ ¼ UNðx1;…;xNÞ; ð27Þ

and taking the gradient thereof with respect to y at y ¼ 0
yields

P
N
n¼1∇xnUNðXÞ ¼ 0. The second part of Eq. (26)

immediately follows.

B. Wave packet spreading: Inverse-square scaling

It is well known that the position variance of a free one-
dimensional quantum particle of mass m, with initial wave
function Ψ0, increases quadratically in time [21]:

VarΨt
x¼VarΨ0

xþ2t
m
CovΨ0

ðx;pÞþ2t2

m

�
hEiΨ0

−
hpi2Ψ0

2m

�
:

Here, hEiΨ and hpiΨ denote the average energy and
momentum, respectively, and CovΨðx; pÞ denotes
the position and momentum covariance, hΨjðxpþ
pxÞ=2jΨi − hxiΨhpiΨ. This is often referred to as the
spreading of the wave packet [21].
Here, we show that an equivalent result holds for N one-

dimensional worlds, for any interworld potential UN
satisfying translation invariance and the inverse-square
scaling property

UNðλx1;…; λxnÞ ¼ λ−2UNðx1;…; xNÞ; ð28Þ

such as the toy model in Eq. (23).

In particular, the position variance forN one-dimensional
worlds at time t may be written via Eq. (12) as

VNðtÞ ¼
1

N

XN
n¼1

x2n −
�
1

N

XN
n¼1

xn

�2
¼ 1

N
X · X − hxi2N:

Differentiatingwithrespect to timethengives,usingEqs.(16)
and(18)withVðxÞ≡ 0andnoting that ðd=dtÞhpiN ¼ 0 from
the Ehrenfest theorem (26),

_VN ¼ 2

m
½N−1X · P − hxiNhpiN � ¼

2

m
CovN;tðx; pÞ;

and

V̈N ¼ 2

mN

�
P · P
m

−
XN
n¼1

xn
∂UN

∂xn
�
−

2

m2
hpi2N:

Now, differentiating the scaling condition [Eq. (28)]
with respect to λ, and setting λ ¼ 1, givesP

N
n¼1 xnð∂UN=∂xnÞ ¼ −2UN . Hence, recalling that the

average energy per world is hEiN ¼ N−1HN , one obtains

V̈N ¼ 4

m
hEiN −

2

m2
hpi2N ¼ const:

Finally, integration yields the variance at time t to be

VNðtÞ ¼ VNð0Þ þ
2t
m
CovN;0ðx; pÞ þ

2t2

m

�
hEiN −

hpi2N
2m

�
;

ð29Þ

which is of precisely the same form as the quantum case
above.LikethegeneralizedEhrenfest theorem[Eq.(26)], this
result holds for any number of worlds N.
The spreading of variance per se is due to the repulsive

interaction between worlds having close configurations
(see previous section). The above result demonstrates that a
spreading that is quadratic in time is a simple consequence
of an inverse-square scaling property for the interworld
potential. Such a scaling is generic, since the quantum
potential in Eq. (7), which is replaced by UN in the MIW
approach, also has this property. Note that it is straightfor-
ward to generalize this result to configuration spaces of
arbitrary dimension K, with VN replaced by the K × K
tensor hX ·XTiN − hXiN · hXTiN. Here, the transpose
refers to the configuration space index k, while the dot
product refers to the world index n as previously.

C. Barrier tunneling: Mutual repulsion

In quantum mechanics, a wave packet incident on a
potential barrier will be partially reflected and partially
transmitted, irrespective of the height of the barrier. The
probabilities of reflection and transmission are dependent
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on the energy of the wave packet relative to the energy of
the barrier [21]. In the MIW formulation, the same
qualitative behavior arises as a generic consequence of
mutual repulsion between worlds having close configura-
tions. This is investigated here analytically for the toy
model in Sec. III, for the simplest possible case of just two
worlds, N ¼ 2.

1. Nonclassical transmission

Consider two one-dimensional worlds, the configura-
tions of which initially approach a potential barrier VðxÞ
from the same side, with kinetic energies less than the
height of the barrier (Fig. 1). In the absence of an
interaction between the worlds, the configurations will
undergo purely classical motion, and so will be unable to
penetrate the barrier. However, in the MIW approach, the
mutual repulsion between worlds will boost the speed of
the leading world. This boost can be sufficient for this
world to pass through the barrier region, with the other
world being reflected, in direct analogy to quantum
tunneling.
To demonstrate this analytically, consider the toy model

in Sec. III for N ¼ 2. The Hamiltonian simplifies via
Eqs. (18) and (23) to

H ¼ p2
1 þ p2

2

2m
þ Vðx1Þ þ Vðx2Þ þ

ℏ2

4mðx1 − x2Þ2
; ð30Þ

where VðxÞ ¼ 0 outside the barrier and has a maximum
value V0 > 0 in the barrier region. For simplicity, we
restrict our presentation to the case of equal initial veloc-
ities v0 in the direction of the barrier, with 1

2
mv20 < V0

(Fig. 1). Thus, in the classical limit ℏ ¼ 0, penetration of
the barrier is impossible.
Defining relative and center-of-mass coordinates by

q ≔ x2 − x1, ~q ≔ ðx2 þ x1Þ=2, with conjugate momenta
p ¼ ðp2 − p1Þ=2 and ~p ¼ p1 þ p2, respectively, then
while the configurations of each world are outside the
barrier region their evolution is governed by the
Hamiltonian

H0ðq; ~q; p; ~pÞ ¼
~p2

2M
þ p2

2μ
þ ℏ2

8μ

1

q2
;

with initial conditions pð0Þ ¼ 0 and ~pð0Þ ¼ Mv0, where
M ¼ 2m and μ ¼ m=2. Thus, the equations of motion for q
and ~q decouple, and may be integrated to give

~qðtÞ ¼ ~q0 þ v0t;
1

2
_q2 þ ℏ2

8μ

1

q2
¼ ℏ2

8μ

1

q20
; ð31Þ

where the 0 subscript indicates initial values. These are
valid up until one of the configurations reaches the barrier
region. The second equation may be further integrated to
give the exact solution

qðtÞ ¼ ½q20 þ ðℏt=mq0Þ2�1=2: ð32Þ

Note that this increasing mutual separation is in agreement
with Eq. (29), with V ¼ q2=4, and is solely due to the
inverse-square interaction between the worlds in Eq. (30).
It follows from Eq. (31) that the maximum possible

separation speed is _q∞ ≔ ℏ=ðmq0Þ, which can be arbitrar-
ily closely reached if the particles start sufficiently far to the
left of the barrier. In this case, the speed of the leading
particle is well approximated by

_x2 ¼ _~qþ 1

2
_q ≈ v0 þ ℏ=ð2mq0Þ

at the time it reaches the barrier region. Hence, transmission
through the barrier is always possible provided that the
corresponding kinetic energy is greater than V0, i.e., if

v0 þ
ℏ

2mq0
> vclassical ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0=m

p
; ð33Þ

where vclassical is the initial speed required for a classical
particle to penetrate the barrier.
Equation (33) clearly demonstrates that one world

configuration can pass through the barrier if the initial
separation between the worlds q0 is sufficiently small. In
terms of energy conservation, such a small separation gives
rise to a correspondingly large interworld potential energy
in Eq. (30), which is converted into a kinetic energy
sufficiently large for barrier transmission. Further, the
second configuration will suffer a corresponding loss of
kinetic energy, leading to its reflection by the barrier.
It is seen that even the simplest case of just two

interacting worlds provides a toy model for the phenome-
non of quantum tunneling, with an interpretation in terms
of the energy of repulsion between close configurations.
While this case can be treated analytically, the interactions
between N > 2 worlds are more complex. It would,
therefore, be of interest to investigate the general case
numerically, including tunneling delay times.

FIG. 1. Two one-dimensional worlds, with equal masses m and
initial speeds v0, approach a potential energy barrier of height V0.
Because of mutual repulsion the leading world can gain sufficient
kinetic energy to pass the barrier.
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2. Nonclassical reflection

The same toy model also captures the nonclassical
phenomenon that a barrier can reflect a portion of a
quantum wave packet, even when the incident wave packet
has a large average kinetic energy [21]. In particular,
consider the case where the initial kinetic energies of both
worlds are larger than the barrier height for the “toy”
Hamiltonian in Eq. (30), i.e., mv20=2 > V0. Hence, in the
classical limit ℏ ¼ 0 both configurations will pass through
the barrier region.
It follows from the above analysis that the leading

configuration is always transmitted—the kinetic energy
of this world is only further increased by the mutual
repulsion energy. However, choosing the initial distance
from the barrier to be large enough for the separation speed
to approach _q∞, it follows that the second configuration
will not be transmitted if

v0 −
ℏ

2mq0
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0=m

p
¼ vclassical: ð34Þ

Indeed, it will not even reach the barrier region if the left-
hand side is less than zero. This result demonstrates the
converse to Eq. (33): it is always possible for one
configuration to be reflected, if the initial separation
between the worlds is sufficiently small, as a consequence
of being slowed by the mutual repulsion between worlds.

D. Zero-point energy: Mutual exclusion

The classical ground-state energy of a confined system
corresponds to zero momentum and a configuration that
minimizes the classical potential VðxÞ. However, the
corresponding quantum ground-state energy is always
greater, with the difference referred to as the quantum
zero-point energy.
For example, for a one-dimensional quantum system,

the Heisenberg uncertainty relation ðΔxÞΨðΔpÞΨ ≥ ℏ=2
implies

hEiΨ ≥ hViΨ þ ℏ2

8mVarΨx
ð35Þ

for the average energy of any state Ψ (noting that
hp2iΨ ≥ VarΨp). Hence, for any state with finite average
energy, the system cannot be confined to a single point, as
this would imply VarΨx ¼ 0. In particular, it cannot be
confined to the classical ground-state position xmin,
corresponding to the classical ground-state energy
Vmin ¼ VðxminÞ, and therefore, hEiΨ > Vmin.
In the MIW formulation, a zero-point energy similarly

arises because no two worlds can be confined to the same
position—and to the classical ground-state configuration
xmin, in particular. This mutual exclusion of configurations
is a consequence of the repulsion between worlds, which
forces the interworld potential UN in Eq. (19) to be strictly

positive. For example, as shown in Appendix B, the
average energy per world for the toy model in Sec. III
satisfies

hEiN ≥ hViN þ
�
N − 1

N

�
2 ℏ2

8mVN
: ð36Þ

This is clearly very similar to the quantum bound in
Eq. (35), with the latter being precisely recovered in the
limit N → ∞.
Remarkably, both the quantum and the MIW lower

bounds are saturated by the ground state of a one-
dimensional oscillator. The quantum case is well known
[21]. For the toy model, the corresponding ground-state
energy is

hEiN;ground ¼
�
1 −

1

N

�
1

2
ℏω; ð37Þ

as demonstrated in Appendix C. Note that this vanishes in
the classical limit ℏ ¼ 0 (or, alternatively, N ¼ 1), and
approaches the quantum ground-state energy 1

2
ℏω in the

limit N → ∞, as expected.

E. Heisenberg-type uncertainty relation

In Sec. II D we noted that the interworld potential in
Eq. (19) has the form of a sum of nonclassical kinetic
energies, where the corresponding “nonclassical momen-
tum” of the nth world is given by pnc

n ≔ gNðxn;XÞ, with
the components of gN explicitly defined in Eq. (20). For the
toy model in Eq. (23), this nonclassical momentum has the
explicit form

pnc
n ¼ ℏ

2

�
1

xnþ1 − xn
−

1

xn − xn−1

�
ð38Þ

(defining x0 ¼ −∞ and xNþ1 ¼ ∞, as always).
It follows immediately that the average of the non-

classical momentum vanishes; i.e.,

hpnciN ¼ 1

N

XN
n¼1

pnc
n ¼ 0:

Hence, the energy bound for UN in Eq. (B1) can be
rewritten in the rather suggestive form

ðΔxÞNðΔpncÞN ≥
�
1 −

1

N

�
ℏ
2
; ð39Þ

reminiscent of the Heisenberg uncertainty relation for the
position and momentum of a quantum system. Indeed, a
nonclassical momentum observable pnc

Ψ may also be
defined for quantum systems, which satisfies the uncer-
tainty relation ΔΨxΔΨpnc

Ψ ≥ ℏ=2, and which implies the
usual Heisenberg uncertainty relation [22]. Thus, Eq. (39)
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has a corresponding quantum analog in the limit N → ∞. It
would be of interest to further investigate the role of the
nonclassical momentum in the MIW approach.

V. SIMULATING QUANTUM GROUND STATES

The MIWequations of motion [Eqs. (16) and (18)] in the
Hamiltonian formulation imply that the configurations of
the worlds are stationary if and only if

pn ¼ 0; ∇xn ½VðxnÞ þ UNðXÞ� ¼ 0; ð40Þ

for all n. In particular, the forces acting internally in any
world are balanced by the forces due to the configurations
of the other worlds.
Unlike quantum systems, the number of stationary states

in the MIW approach (with N finite) is typically finite. For
example, for two one-dimensional worlds as per Eq. (30),
with a classical potential VðxÞ symmetric about x ¼ 0,
Eq. (40) implies that the stationary configurations are given
by x1 ¼ −a and x2 ¼ a, where a is any positive solution of
V 0ðaÞ ¼ ℏ2=ð16ma3Þ. For the particular case of a harmonic
oscillator potential, VðxÞ ¼ ð1=2Þmω2x2, there is just one
stationary state, corresponding to a ¼ 1

2
ðℏ=mωÞ1=2. More

generally, the number of stationary state configurations will
increase with the number of worlds N.
The MIW formulation suggests a new approach for

numerically approximating the ground-state wave function
and corresponding ground-state energy for a given quan-
tum system. In particular, the ground-state probability
density is approximately determined by finding the global
minimum of

P
N
n¼1 VðxnÞ þ UNðXÞ, for suitably large N.

Below, we give and test a “dynamical” algorithm for doing
so. First, however, for the purposes of benchmarking this
algorithm, we calculate the exact ground-state configura-
tions for the toy model of Sec. III, for a harmonic oscillator
potential.

A. Oscillator ground states: Exact MIW calculation

For the one-dimensional toy model defined in Sec. III,
with harmonic oscillator potential VðxÞ ¼ ð1=2Þmω2x2, it
is convenient to define the dimensionless configuration
coordinates:

ξn ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mω=ℏ

p
xn: ð41Þ

As shown in Appendix C, the unique ground-state con-
figuration for N worlds is then determined by the recur-
rence relation

ξnþ1 ¼ ξn −
1

ξ1 þ � � � þ ξn
; ð42Þ

subject to the constraints

ξ1þ�� �þξN ¼ 0; ðξ1Þ2þ�� �þðξNÞ2 ¼N−1: ð43Þ

These equations are straightforward to solve for any
number of worlds.
As discussed in Appendix C, for small values of N, the

recurrence relation can be solved analytically, and, in
general, it can be efficiently solved numerically for any
given number of worlds N. For example, for N ¼ 11, one
obtains the configuration depicted in Fig. 2. The corre-
sponding Gaussian probability density for the exact quan-
tum ground state is also plotted as the smooth curve in
Fig. 2. It is seen that the ground-state configuration of just
11 worlds provides a good approximation to the quantum
ground state for many purposes. Note also that the
corresponding mean ground-state energy follows from
Eq. (37) as ð5=11Þℏω ≈ 0.45ℏω, which is reasonably close
to the quantum value of 0.5ℏω. The approximation
improves with increasing N.

B. Oscillator ground states: Dynamical MIW algorithm

The net force acting on each world is zero for a stationary
configuration of worlds, as per Eq. (40). We exploit this
fact in the following algorithm to compute a stationary
configuration.
Given an arbitrary configuration of N worlds Xð0Þ, we

iterate the following two-step algorithm. (1) Set the
velocities _Xð0Þ to zero, (2) integrate Eq. (11) over a small
time interval ½0;Δt�, and replace the initial configuration
Xð0Þ byXðΔtÞ. Note that each iteration tends to reduce the
total energy from its initial value, as the worlds move away
from maxima of the total potential energy, and the

1 2

0.1

0.2

0.3

0.4

P

FIG. 2. Oscillator ground state for N ¼ 11 worlds. The steps of
the stepped blue curve occur at the values q ¼ ξ1; ξ2;…; ξ11,
corresponding to the stationary world configurations
x1; x2;…; x11 via Eq. (41). The height of the step between ξn
and ξnþ1 is PNðξnÞ ≔ N−1ðξnþ1 − ξnÞ−1, which from Eq. (21) is
expected to approximate the quantum ground-state distribution
for a one-dimensional oscillator, PΨ0

ðξÞ ¼ ð2πÞ−1=2e−ξ2=2, for
large N. The latter distribution is plotted for comparison (smooth
magenta curve). All quantities are dimensionless.
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velocities are reset to zero in each iteration. The fixed
points of this iterative map are clearly the stationary states
of the MIW equations. Hence, after a sufficient number of
iterations, the configuration will converge to a stationary
configuration. An alternative algorithm could, instead of
setting velocities to zero, add a viscous term to the
evolution, in analogy to the dBB-trajectory-based algo-
rithm of Maddox and Bittner [23].
We test this dynamical algorithm for the case of the one-

dimensional harmonic oscillator. We slightly modify the
interworld force in Eq. (24) by placing auxiliary worlds in
fixed positions on either side of the configurations
x1 < xx < � � � < xN , with two auxiliary worlds to the far
left and two to the far right, rather than at −∞ and ∞. The
auxiliary worlds have only a tiny effect on the computa-
tions, but ensure the interworld force is well defined for
n ¼ 1; 2…; N. We take advantage of the symmetry of the
oscillator potential VðxÞ to choose an initial configuration
symmetric about x ¼ 0.

Convergence of the algorithm was found to be extremely
rapid; see Figs. 3 and 4. For example, on a laptop computer
running a simple Mathematica implementation of the
algorithm, it takes only 30 sec to converge to the
ground-state configuration for the case of N ¼ 11 worlds,
with a corresponding ground-state energy accurate to one
part in 1010 in comparison to the exact ground-state energy
ð5=11Þℏω following from Eq. (37).
This dynamical algorithm can be employed to compute

ground states for all Hamiltonians for which the ground-
state wave function has a constant phase. The numerical
advantage over contemporary techniques to compute
ground-state wave functions is evident when considering
higher-dimensional problems, i.e., K ¼ DJ > 1. Instead of
solving the partial differential equation (PDE) HΨg ¼
EgΨg that lives on a K-dimensional configuration space
(which memorywise starts to become unfeasible already for
three particles in three dimensions), one only needs to solve
for the stationary state of K × N coupled ordinary differ-
ential equations. The quantum distribution jΨgj2 and
energy Eg of the ground state can then be approximated
from the stationary distribution of worlds.

VI. SIMULATING QUANTUM EVOLUTION

Given the apparent success of the MIW approach as a
tool for simulating stationary quantum states (Sec. V), it is
of considerable interest to also investigate whether this
approach can provide a similarly useful controlled approxi-
mation of the Schrödinger time evolution and, in particular,
whether it is capable of describing quantum interference,
which is one of the most striking quantum phenomena.
Here, we offer evidence that it can, at least for the canonical
“double-slit” problem.
In its simplest form, the double-slit scenario comprises the

free evolution of a one-dimensional wave functionΨt for an
initial value Ψ0 given by a symmetric superposition of two
identical separated wave packets. We choose real, Gaussian

5000 10 000 15 000
step

2

4

n

FIG. 3. Convergence of the ensemble of world-particles xn ¼
ðx1;…; xNÞ for N ¼ 11 towards the ground-state configuration as
a function of the step number in the iteration algorithm described
in the text. Here, dimensionless positions are used,
ξn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mω=ℏ

p
xn, as per Eq. (41), and the temporal step size

isΔt ¼ 5 × 10−2ω−1. As the plot shows, convergence is complete
by step number 6000, at which the distribution of worlds is close
to the Gaussian quantum ground state.

FIG. 4. Average energy (solid blue line) for the ensemble of
worlds, as a function of iteration step. Details as in Fig. 3. Note
that convergence to the exact value for MIW is ð1 − 1=NÞℏω=2
(red dotted line), which coincides with the quantum mechanical
value of ℏω=2 (green dashed line) for N → ∞.
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FIG. 5. A density plot of jΨtj2 for the exact quantum evolution
of two identical initial Gaussian wave packets in units of the
initial spread (i.e., σ ¼ 1); time is given in units of ℏ=ð2mÞ.
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wave packets with spread σ ¼ 1 and initial separation of 4
units; see Fig 5. As described in Sec. II B, the corresponding
initial values for the MIW approach are N worlds,
Xð0Þ ¼ ½x1ð0Þ;…; xNð0Þ�, distributed according to jΨ0j2
with zero initial velocities. In order to numerically integrate
the MIW equations of motion [Eq. (11)] to find the
corresponding world-particle trajectories XðtÞ, we employ
a standard Verlet integration scheme [24]. In our example,
we useN ¼ 41. The computed trajectoriesXðtÞ are shown in
the top two plots of Figs. 6 and 7 using a linearly smoothed
density and histogram plot. For the comparison with the
exact quantum solution Ψt, we compute the corresponding
Bohmian trajectory xdBBi ðtÞ according to Eq. (3) for each
initial world configuration xi for i ¼ 1; 2;…; N. These
trajectories are shown in two bottom plots again using a
linearly smoothed density and histogram plot. Note that,
due to equivariance, the Bohmian configurations xdBB

i ðtÞ are
distributed according to jΨtj2 for all times t as the xdBB

i ð0Þ
are distributed according to jΨ0j2. Therefore, the bottom
density plot in Fig. 6 is a discretized plot of jΨtj2, as shown
in Fig. 5 (this discretization, corresponding to using just
N ¼ 41 Bohmian worlds and linear smoothing, is respon-
sible for the blurriness relative to Fig. 5).

By comparison of the plots, we conclude that the MIW
approach is at least qualitatively able to reproduce quantum
interference phenomena. Furthermore, it should be stressed
that with respect to usual numerical PDE techniques on
grids the MIW approach could have several substantial
computational advantages: As in dBB, the worlds XðtÞ
should remain approximately jΨtj2 distributed for all times
t, which implies that without increasing N, the density is
naturally well sampled in regions of high density even
when the support of Ψt becomes very large. The computa-
tional effort is then automatically focused on high-density
regions of configuration space, i.e., on the crucial regions
where numerical errors have to be minimized to ensure
convergence in the physically relevant L2 norm.
Furthermore, transmission and reflection coefficients
can be computed simply by counting worlds. These
advantages also hold true for methods of integration in
the Schrödinger equation on comoving grids as, e.g.,
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FIG. 6. Trajectory and (smoothed) density plots of the com-
puted MIW (top) and dBB (bottom) world trajectories for two
identical initial Gaussian wave packets in units of the initial
spread (i.e., σ ¼ 1) and N ¼ 41 worlds; time is given in units
of ℏ=ð2mÞ.
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FIG. 7. Smoothed histogram plots of the computed MIW (top)
and dBB (bottom) world trajectories for two identical initial
Gaussian wave packets in units of the initial spread (i.e., σ ¼ 1)
and N ¼ 41 worlds; time is given in units of ℏ=ð2mÞ.
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proposed by Wyatt [20]. However, there are reasons to
expect that the MIW approach may be numerically more
stable (see Ref. [25] for a discussion of such numerical
instabilities in conventional approaches) and less perfor-
mance intensive.
There is much work to be done on the question of time

evolution using our MIW approach. Even in the example
above, the convergence as a function of N, the number of
worlds, remains to be investigated. Also, there is the issue
of wave functions with nodes (or even finite regions of
zero values). These allow for different wave functions
Ψ0ðqÞ having identical P0ðqÞ, and identical ∇S0ðqÞ
everywhere that P0ðqÞ ≠ 0. From Sec. II B, these different
wave functions will all generate the same initial
conditions for our ensemble of many worlds, for any
finite value of N, and thus are indistinguishable in the
MIW approach, contrary to quantum predictions (see
also Sec. X of Ref. [12]). For example, the wave
functions Φ0ðqÞ and jΦ0ðqÞj are of this type, where
Φ0ðqÞ is any real wave function that takes both positive
and negative values.
However, it is plausible that restricting the moments of

the quantum energy to be finite would typically eliminate
all, or all but one, of such wave functions, by enforcing the
continuity of ∇Ψ0 everywhere [26,27]. Finally, beyond the
toy model, there is the question of whether the general
approach of many interacting worlds allows successful
numerical treatments of more general situations, with
common potentials and K ¼ DJ > 1.

VII. CONCLUSIONS

We introduce an approach to quantum phenomena in
which all quantum effects are due to interactions between a
large but finite number N of worlds, and probabilities arise
from assigning an equal weighting to each world. A
number of generic quantum effects, including wave packet
spreading, tunneling, zero-point energies, and interference,
are shown to be consequences of the mutual repulsion
between worlds (Sec. IV). This alternative realistic inter-
pretation of quantum phenomena is also of interest in not
requiring the concept of a wave function. The wave
function does not exist other than as an epiphenomenon
in the notional limit that the initial distribution of worlds
approaches jΨ0ðxÞj2 and the initial velocity of each world
approaches Eq. (3) as N → ∞.
For finite N, our MIW approach can only ever give an

approximation to quantum mechanics, but since quantum
mechanics is such an accurate theory for our observations,
we require this approximation to be very good. In this
context, it is worth revisiting the question raised in
Sec. II C: What restrictions must one place on the initial
distribution of world configurations and velocities so that
nearly quantum behavior (that is, observations consistent
with quantum mechanics for some wave function) will be
experienced bymacroscopic observers in almost all worlds?

The answer may depend on the details of the interworld
potential, but we can suggest directions to explore.
As discussed in Sec. II C, it may be necessary to impose

the quantum velocity condition of Eqs. (3) and (4) using
some smoothly varying (on the scale of the separation
between nearby worlds) single-valued complex function
Ψτ on configuration space. However, it is conceivable that
other (perhaps even most, by some measure of typicality)
initial conditions would relax, under our interacting-world
dynamics, to conditions approximating quantumbehavior, at
least at the scale that can be probed by a macroscopic
observer. This is one of the big questions that remains to be
investigated. One might think that this idea would never
work, because the velocities would relax to some type of
randomMaxwellian distribution.However, thismaywell not
be the case, because the many-body interaction potentials
and forces in our MIWapproach—which generically repro-
duce various quantum phenomena as per Secs. IV–VI—are
very different from those assumed in classical statistical
mechanics (see also the “gas” example discussed in Sec. I A).
Other matters for future investigation include how spin

and entanglement phenomena such as teleportation and
Bell-inequality violation are modeled in theMIWapproach.
The latter will require studying the case of worlds with
configuration spaces of at least two dimensions (correspond-
ing to two one-dimensional systems), and will also allow
analysis of the quantum measurement problem (where one
system acts as an “apparatus” for the other). This may help
clarify the ontology and epistemology of any fundamental
new theory based upon the MIW approach to quantum
mechanics.
In the context of entanglement, it is worth comparing our

MIWapproach with conventional many-worlds approaches.
The latter are often motivated by the desire, first, to restrict
reality to only the wave function, and second, to avoid the
explicit nonlocality that arises from entanglement in other
realist versions of quantum mechanics. Our approach is, by
contrast, motivated by the desire to eliminate the wave
function. It furthermore elevates the nonlocality of quantum
mechanics to a kind of “supernonlocality”: particles in
different worlds are nonlocally connected through the
proposed MIW interaction, thus leading, indirectly, to
nonlocal interactions between particles in the same world.
Turning from questions of foundations and interpreta-

tions to applied science, the MIW approach provides a
promising controlled approximation for simulating quan-
tum ground states and the time-dependent Schrödinger
equation, as discussed in Secs. V and VI. In particular, we
show that it is able to reproduce quantum interference
phenomena, at least qualitatively. Quantitative comparisons
with different initial conditions, convergence as a function
of the number of worlds N, and generalizations to higher
dimensions, are a matter for immediate future work.
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APPENDIX A: CONNECTION OF BOHMIAN
FORCE WITH THE HAMILTONIAN

FORMULATION OF MIW

We briefly note here how the interworld potential UN in
Sec. II C is related to a corresponding approximation of the
quantum potential Q in Sec. II A. We also exhibit a direct
correspondence between the interworld force rNðq;XtÞ
and the Bohmian force rtðqÞ for the case of the toy 1D
model defined in Sec. III.
For any particular wave function ΨtðqÞ, the dBB

equation of motion [Eq. (5)] for the world-particle is
generated by the Hamiltonian

HΨtðx;pÞ ≔
XK
k¼1

ðpkÞ2
2mk þ VðxÞ þQtðxÞ;

where QðqÞ is the quantum potential corresponding to
ΨtðqÞ [identifying the momentum component pk with the
right-hand side of Eq. (3)]. Hence, the evolution of N
Bohmian world-particles, each guided by ΨtðqÞ, is pre-
cisely described via the time-dependent Hamiltonian

HΨt
N ðX;PÞ ≔

XN
n¼1

HΨtðxn;pnÞ

¼
XN
n¼1

XK
k¼1

ðpk
nÞ2

2mk þ
XN
n¼1

VðxnÞ þ
XN
n¼1

QtðxnÞ:

Thus, if QtðqÞ (and its gradient) can be approximated
by some function ~Qðq;XtÞ, depending on the configura-
tions Xt of the N worlds [assumed to sample jΨtðqÞj2],
then one immediately has a suitable corresponding
Hamiltonian formulation of the MIW approach, with an
interworld potential UN in Eq. (18) of the alternative
form

UNðXÞ ¼
XN
n¼1

~Qðxn;XÞ ðA1Þ

to that in Eq. (19).
To show how the above form is related to the positive-

definite form in Eq. (19), consider the relation

Z
dxjΨðqÞj2QðqÞ ¼

Z
dqjΨðqÞj2

XK
k¼1

ℏ2

8mkP2

�∂P
∂qk

�
2

following from integration by parts and Eq. (7) [2]. In
particular, since the N world-particles have configurations
sampled according to jΨðqÞj2, it immediately follows that

1

N

XN
n¼1

QðxnÞ ≈
1

N

XN
n¼1

XK
k¼1

ℏ2

8mkP2

�∂P
∂qk

�
2
����
qk¼xkn

:

Hence,UN in Eq. (A1) may alternatively be replaced by the
form in Eq. (19), corresponding to a suitable approximation
of P and its derivatives in terms of the configurations of the
N worlds. Here “suitable” means that we must check that
the corresponding MIW force is given by rNðxn;XÞ ¼
−∇xnUNðXÞ in the limit N → ∞.
For the toy MIW model of Sec. III, we can demonstrate

directly that the force in Eq. (24) is an approximation of the
Bohmian force, as per Eq. (9) of Sec. II. To do so, we first
note that, for the one-dimensional case, the derivative of
any regular function φðxÞ can be approximated at x ¼ xn
by either of

φ0ðxnÞ ≈
φðxnþ1Þ − φðxnÞ

xnþ1 − xn
≈
φðxnÞ − φðxn−1Þ

xn − xn−1
;

for sufficiently large N. Hence, using Eq. (21), one obtains

�
1

PðxnÞ
d
dx

�
φðxnÞ ≈ NDþφðxnÞ ≈ ND−φðxnÞ; ðA2Þ

where the difference operators D� are defined by

Dþφn ≔ φnþ1 − φn; D−φn ≔ φn − φn−1

for any sequence fφng.
Now, as may be checked by explicit calculation from the

definition of the quantum potential in Eq. (7), for a one-
dimensional particle, the Bohmian force in Eq. (6) can be
written in the form

rt ¼ ðℏ2=4mÞð1=PÞ½PðP0=PÞ0�0; ðA3Þ

i.e.,

rtðqÞ ¼
ℏ2

4m

�
1

PðqÞ
d
dq

�
PðqÞ2

�
1

PðqÞ
d
dq

�
2

PðqÞ;

where the derivative operators act on all terms to their right.
Applying Eq. (A2) then gives

rtðxnÞ ≈
ℏ2

4m
N3Dþ½PðxnÞ2DþD−PðxnÞ�

≈
ℏ2

4m
Dþ

�
1

ðxn − xn−1Þ2
DþD−

1

xn − xn−1

�

¼ rNðxn;XÞ; ðA4Þ
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as desired, where the second line uses Eq. (21), and the
last line follows by expansion and direct comparison
with Eq. (24).

APPENDIX B: LOWER BOUND FOR THE
INTERWORLD POTENTIAL

To obtain the bound in Eq. (36), first let f1;…; fN and
g0; g1;…; gN be two sequences of real numbers such that
g0 ¼ gN ¼ 0. It follows that

XN
n¼1

fnðgn − gn−1Þ ¼ −
XN−1

n¼1

ðfnþ1 − fnÞgn;

as may be checked by explicit expansion. Further, the
Schwarz inequality gives

�XN
n¼1

fnðgn − gn−1Þ
�2

≤
�XN
n¼1

ðfnÞ2
��XN

n¼1

ðgn − gn−1Þ2
�
;

with equality if and only if fn ¼ αðgn − gn−1Þ for some α.
Combining these results then yields

XN
n¼1

ðgn − gn−1Þ2 ≥
½PN−1

n¼1 ðfnþ1 − fnÞgn�2P
N
n¼1ðfnÞ2

:

The particular choices fn¼xn−hxiN and gn¼1=ðxnþ1−xnÞ
(with x0 ¼ −∞ and xNþ1 ¼ ∞) immediately yield, using
the definition of UN in Eq. (23), the lower bound

UN ≥
ℏ2

8m
½PN−1

n¼1 1�2P
N
n¼1ðxn − hxiNÞ2

¼ ðN − 1Þ2
N

ℏ2

8m
1

VN
; ðB1Þ

for the interworld potential energy, with equality if and only
if the Schwarz inequality saturation condition

xn − hxiN ¼ α

xnþ1 − xn
−

α

xn − xn−1
ðB2Þ

is satisfied. Equation (36) then follows via Eq. (18), as
desired.
Similar bounds can be obtained for other choices of the

interworld potential, but are not discussed here.

APPENDIX C: GROUND-STATE ENERGY
AND CONFIGURATION OF TOY

MODEL OSCILLATOR

To derive the ground-state energy in Eq. (37), for the 1D
toy model oscillator, note first that for a harmonic oscillator
potential VðxÞ ¼ ð1=2Þmω2x2, one has

hEiN ¼ N−1HN ≥ N−1
XN
n¼1

VðxnÞ þ N−1UNðxÞ

≥
1

2
mω2VN þ

�
N − 1

N

�
2 ℏ2

8m
1

VN

¼ N − 1

N
ℏω
4

�
2NmωVN

ðN − 1Þℏ þ ðN − 1Þℏ
2NmωVN

�

≥
N − 1

N
ℏω
2

:

The second line follows via hx2iN ≥ VN and inequality
(B1), and the last line via zþ 1=z ≥ 2.
To show that this inequality chain can be saturated, as per

Eq. (37), the conditions for equality must be checked at
each step. It follows that the lower bound is achievable if
and only if (i) the momentum of each world vanishes, i.e.,
p1 ¼ � � � ¼ pN ¼ 0, and (ii) the configuration satisfies
both

hxiN ¼ 0; VN ¼ N − 1

N
ℏ

2mω
ðC1Þ

and the Schwarz inequality saturation condition

xn ¼
α

xnþ1 − xn
−

α

xn − xn−1
ðC2Þ

from Eq. (B2), for some constant α (using hxiN ¼ 0). These
conditions generate a second-order recurrence relation with
fixed boundary conditions, yielding a unique solution for
any given number of worlds N. The corresponding unique
ground-state configurations converge to the quantum
Gaussian ground-state wave function for N → ∞, as
discussed in Secs. II C and VA.
To determine the ground-state configuration, for a given

number of worlds N, note that summing each side of
Eq. (C2) from n ¼ 1 up to any n < N gives

1

xnþ1 − xn
¼ x1 þ � � � þ xn

α
: ðC3Þ

This is also satisfied for n ¼ N (defining xNþ1 ¼ ∞
as usual), since x1 þ � � � þ xN ¼ 0 from Eq. (C1).
Further, noting that x1< � � �<xN and ðx1 þ � � � þ xnÞ=n ≤
hxi ¼ 0, it follows from Eq. (C3) that α < 0. Hence, since
summing the squares of each side of Eq. (C2) over n gives

NVN ¼ 8mα2

ℏ2
UN;

and inequality (B1) is saturated by the ground state, it
follows via Eq. (C1) that
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α ¼ −
NVN

N − 1
¼ −

ℏ
2mω

: ðC4Þ

Defining the dimensionless configuration coordinates

ξn ≔ ð−αÞ−1=2xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mω=ℏ

p
xn; ðC5Þ

conditions (C1), (C2), and (C3) then simplify to

ξ1þ���þξN ¼ 0; ðξ1Þ2þ�� �þðξNÞ2¼N−1; ðC6Þ

ξnþ1 ¼ ξn −
1

ξ1 þ � � � þ ξn
: ðC7Þ

Since these equations are invariant under ξn → −ξn, the
symmetry property

ξn ¼ −ξNþ1−n ðC8Þ

follows from the uniqueness of the ground state.
For N ∈ f2; 3; 4; 5g, the recurrence relation [Eq. (C7)]

reduces to solving an equation no more than quadratic in
ðξ1Þ2, allowing the ground state to be obtained analytically.
For example, for N ¼ 3, one finds

ξ1 ¼ −1; ξ2 ¼ 0; ξ3 ¼ 1;

while for N ¼ 4, one obtains

ξ1 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7þ ffiffiffiffiffi

17
pp

2
ffiffiffi
2

p ¼ −ξ4;

ξ2 ¼ ξ1 þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 −

ffiffiffiffiffi
17

pq
¼ −ξ3:

More generally, it may be used to express ξ2;…; ξ½N=2� in
terms of ξ1, where ½z� denotes the integer part of z. The
ground-state configuration may then be numerically deter-
mined by solving the condition ðξ1Þ2 þ � � � þ ðξ½N=2�Þ2 ¼
ðN − 1Þ=2 for ξ1 [following from Eq. (C6) and the above
symmetry property].
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