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Proximate Kitaev quantum spin liquid behaviour in
a honeycomb magnet
A. Banerjee1*, C. A. Bridges2, J.-Q. Yan3,4, A. A. Aczel1, L. Li5, M. B. Stone1, G. E. Granroth1,6,
M. D. Lumsden1, Y. Yiu5, J. Knolle7, S. Bhattacharjee8,9, D. L. Kovrizhin7, R. Moessner8, D. A. Tennant10,
D. G. Mandrus3,4 and S. E. Nagler1,11*

Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to
protect quantum information from decoherence.Whereas their featureless ground states have precluded their straightforward
experimental identification, excited states are more revealing and particularly interesting owing to the emergence of
fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering
experiments. These we report here for a ruthenium-based material, α-RuCl3, continuing a major search (so far concentrated
on iridium materials) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm the
requisite strong spin–orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We
find stacking faults, inherent to the highly two-dimensional nature of the material, resolve an outstanding puzzle. Crucially,
dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement
physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations andMajorana
fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl3 as a prime candidate for fractionalized
Kitaev physics.

Exotic physics associated with frustrated quantum magnets
is an enduring theme in condensed matter research. The
formation of quantum spin liquids (QSLs) in such systems can

give rise to topological states of matter with fractional excitations1–4.
Fractionalization describes the counterintuitive phenomenon
where an electron breaks apart into well-defined independent
quasiparticles. The realization of this physics in real materials is
an exciting prospect that may provide a path to a robust quantum
computing technology5. Fractional excitations in the form of pairs
of S= 1/2 spinons are observed in quasi-one-dimensional (1D)
materials containing S=1/2 Heisenberg antiferromagnetic chains6.
Recent evidence for the 2D QSL state, in the form of possible
spinon excitations, has been found in quantum antiferromagnets
on triangular3 and Kagome7 lattices. The exactly solvable Kitaev
model on the honeycomb lattice8 represents a class of 2D QSL
that supports two different emergent fractionalized excitations:
Majorana fermions and gauge fluxes9,10. The comparatively simple
gauge flux can be visualized as a spin–orbit coupled version of
a plaquette observable like a resonance energy. The Majorana
fermions, by contrast, do not have a straightforward real-space
representation because they are not associated with any real-space
spin or charge density. At best, an idea of their nature can be gleaned
in the strongly anisotropic limit of weakly coupled Ising dimers,
where they can be thought of as excitations taking the form of a
misaligned nearest-neighbour spin pair on top of a ground state

consisting of a coherent superposition of satisfied dimers. How to
observe such ephemeral entities is one of the central challenges of
condensed matter and materials physics today. It has turned out
that the signature of the Majorana fermion in the response function
measured by means of inelastic neutron scattering is perhaps one
of the most direct ways of pinning down the excitation’s existence10.
This manuscript reports precisely such a measurement.

The Kitaev model consists of a set of spin-1/2 moments {Si}

arrayed on a honeycomb lattice. The Kitaev couplings, of strength
K in equation (1), are highly anisotropic with a different spin
component interacting for each of the three bonds of the honeycomb
lattice. In actual materials, a Heisenberg interaction (J ) is also
generally expected to be present, giving rise to the Heisenberg–
Kitaev (H–K) Hamiltonian11,12.

H=
∑
i,j

(
KSmi S

m
j + JSi·Sj

)
(1)

where m is the component of the spin directed along the bond
connecting spins (i,j). The QSL phase of the pure Kitaev model
(J = 0), for both ferromagnetic and antiferromagnetic K , is stable
for weak Heisenberg perturbations.

Remarkably, the Hamiltonian (1) has been proposed to
accurately describe edge-shared octahedrally coordinated magnetic
systems, shown in Fig. 1a, with dominant spin–orbit coupling11,12.

1Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA. 2Chemical Sciences Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, USA. 3Material Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37830, USA. 4Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA. 5Department of
Physics, University of Tennessee, Knoxville, Tennessee 37996, USA. 6Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak
Ridge, Tennessee 37830, USA. 7Department of Physics, Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, UK. 8Max Planck Institute for
the Physics of Complex Systems, D-01187 Dresden, Germany. 9International Center for Theoretical Sciences, TIFR, Bangalore 560012, India. 10Neutron
Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA. 11Bredesen Center, University of Tennessee, Knoxville,
Tennessee 37966, USA. *e-mail: banerjeea@ornl.gov; naglerse@ornl.gov

NATURE MATERIALS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturematerials 1

© 2016 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nmat4604
mailto:banerjeea@ornl.gov
mailto:naglerse@ornl.gov
www.nature.com/naturematerials
http://sci-hub.io/10.1038/nmat4604


ARTICLES NATUREMATERIALS DOI: 10.1038/NMAT4604

α–RuCl3

0

20

40
C p (

J m
ol

−1
 K

−1
)

Cp, H = 0
60

T (K)

24

23

25

26a e

fb d

Co
un

ts
 s

−1
Co

un
ts

 s
−1

0.7

1.0

1.5

2.0

T (K)

0 6 12 18
0

3

0 50 100 150 200 3 6 9 12 15 18

T (K)

(1/2 0 1)
(1/2 0 3/2)

3 6 9 12

Powder
Q = 0.81 Å−1

15 18

(1/2 0 3/2)

3 mm

a

b

β γ

α

c

c = 17.2 Å

a b
c

Ru
Cl

a 

b 

Figure 1 | Structure and bulk properties of 2D layered α-RuCl3. a–c, The structure of α-RuCl3 (space group no. 151, P3112). a, In-plane honeycomb structure
showing edge-sharing RuCl6 octahedra and the unit cell of the honeycomb lattice. b, View along the c axis showing the stacking of honeycomb layers in the
unit cell, with Ru atoms in each layer denoted by the colours red, blue or green. The di�erent intralayer Ru–Ru bonds, corresponding to the index ‘m’ in
equation (1), are labelled in the red layer as α, β , or γ , each with distance a/

√
3. The 2D zigzag magnetic structure is illustrated by the black spins on the

red layer. c, Side view of the unit cell showing the o�sets along the c axis. Values noted are for room-temperature lattice constants. d, Specific heat of
powder α-RuCl3. The solid red line is a fit of the data following the 2D Debye model Cp(T)=ANk(T/θD)2 ∫ θD/T

0 (x2/ex
− 1)dx for T> 16 K, and for T< 16 K an

empirical function describing the anomaly associated with magnetic order. The inset in d shows a close-up of the anomaly associated with the
low-temperature magnetic ordering transition at TN≈ 14 K in powder samples. (See Supplementary Fig. 1 for more details of thermodynamic
measurements.) The error bars include statistical and systematic uncertainties of the physical property measurement system (PPMS) measurement.
e, Order parameter plot of the (1/2 0 3/2) magnetic Bragg peak (Q=0.81 Å−1) in powder samples measured using neutron di�raction (see Methods). The
solid blue line is a power-law fit to the data above 9 K, yielding TN= 14.6(3) K, with β=0.37(3). f, Similar plot for single crystals showing two coexisting
ordering wavevectors (1/2 0 1), with TN1=7.6(2) K (green), and (1/2 0 3/2), with TN2= 14.2(8) K (blue). Note that the (1/2 0 1) peak loses intensity
sharply, as compared to the (1/2 0 3/2) peak. Inset: picture of the single crystal (22.5 mg) used in these measurements. Signals in e,f, are normalized to
counts s−1 and the error bars represent 1 s.d. (σ ), assuming Poisson counting statistics.

The focus so far has centred largely on Ir4+ compounds13–19;
however, attempts to measure the dynamical response15 by means
of inelastic neutron scattering (INS) have met with limited success,
owing to the unfavourable magnetic form factor and strong
absorption cross-section of the Ir ions. Resonant inelastic X-ray
scattering (RIXS) has provided important information concerning
higher-energy excitations in the iridates18, but cannot provide the
meV energy resolution necessary to provide a robust experimental
signature of collective fractional excitations that are expected to
occur at energy scales of the order of 1–10meV (ref. 15).

An alternative approach is to explore materials with Ru3+

ions20. The realization that the material α-RuCl3 (refs 20–22)
also has the requisite honeycomb lattice and strong spin–orbit
coupling has stimulated a groundswell of recent investigations23–29.
Although these studies lend support to the material as a potential
Kitaev material, conflicting results centring on the low-temperature
magnetic properties have hindered progress. To resolve this, we
undertake a comprehensive evaluation of the magnetic and spin–
orbit properties of α-RuCl3, and further measure the dynamical
response, establishing this material as proximate to the widely
sought QSL.

We begin by investigating the crystal and magnetic structure of
α-RuCl3. Samples were synthesized and characterized as described
in Methods. The layered structure of the material is shown in
Fig. 1a. Figure 1b,c shows the ABCABC stacking arrangement of
the layers expected in the trigonal structure (space group P3112).
That the layers are weakly bonded to each other, similar to graphite,

is demonstrated by the lattice specific heat (shown for a powder
in Fig. 1d). This exhibits a tell-tale T2 behaviour characteristic of
highly 2D bonded systems30, rather than the usual T3 observed in
conventional 3D solids. Because the 2D layers are weakly coupled,
the interlayer magnetic exchanges will also be rather weak. In
addition, stacking faults are formed easily and significant regions
of the sample can crystallize in alternative stacking structures, for
example ABAB (ref. 25) (see Supplementary Fig. 2).

Neutron diffraction (see Methods) shows low-temperature
magnetic order. The temperature dependence of the strongest
magnetic powder peak, with TN ≈ 14K, is shown in Fig. 1e.
Figure 1f shows the temperature dependence of magnetic peaks in
one 22.5mg single crystal, revealing two ordered phases. The first,
which orders below TN ≈ 14K, is characterized by a wavevector
q1 = (1/2 0 3/2) (indexed according to the trigonal structure),
whereas the other phase (q2 = (1/2 0 1)) orders below 8K
(see also Supplementary Fig. 3). These temperatures correspond
precisely to anomalies observed in the specific heat and magnetic
susceptibility25,26,29 (Supplementary Fig. 1). This is readily explained,
as the observed L= 3/2 phase corresponds naturally to a stacking
order of ABAB type along the c-axis, and the L= 1 corresponds
to ABCABC stacking. Indeed, the difference in 3D transitions
is a residual effect of different interlayer bonding influencing
the ordering. Further, a comparison of intensities at (1/2 0 L)
with (3/2 0 L)16 shows both phases share identical zigzag (ZZ)
spin ordering in the honeycomb layers; a phase of the H–K
model adjacent to the spin liquid11 (see Supplementary Table 1).
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Figure 2 | Spin–orbit coupling mode in α-RuCl3, measured using inelastic neutron scattering at T=5 K with incident energy Ei =1.5 eV. a, Di�erence
between data integrated over the ranges Q=[2.5,4.0] Å−1 and [4.5, 6.0] Å−1 shown in Supplementary Fig. 4, subtracted point by point, illustrating the
enhanced signal at low Q. The solid line is a fit to a background plus a Gaussian peak centred at 195± 11 meV with HWHM 48±6 meV. With the settings
used for the measurement, the width is resolution limited. Error bars represent 1σ (see Methods). b, Intensity for various values of wavevector integrated
over the energy range [150, 250] meV (each point represents a summation in Q over 0.5 Å−1, except for the first point, which is over 0.26 Å−1). The solid
line shows a two-parameter fit of the data to the equation A

∣∣fmag(Q)
∣∣2+B, where fmag(Q) is the Ru3+ magnetic form factor in the spherical approximation.

The shaded area represents the contribution arising from magnetic scattering. Inset: a schematic of the single-ion energy levels for d5 electrons in the
strong octahedral field (that is, low spin) limit with spin–orbit coupling showing the J1/2 to J3/2 transition at energy 3λ/2.

By calibrating to structural Bragg peaks, the ordered moments
are measured to be exceptionally low, with an upper bound of
µ= 0.4± 0.1µB. This is at most only 35% of the full moment
determined from bulk measurements22,25,27, suggesting strong spin
fluctuations consistent with a near-liquid-like quantum state in the
material. (See Supplementary Information for more detail.)

Having established the structural and magnetic properties of
α-RuCl3, we probe the nature of the single-ion states to confirm
the presence of strong spin–orbit coupling, which is required to
generate theKitaev termK in equation (1). Using INS (seeMethods)
with Ei= 1.5 eV incident neutrons to measure the transition from
the Ru3+ electronic ground state to its excited state, the spin–orbit
coupling λ is extracted. In the octahedral environment shown in
Fig. 1, the ground state is a low-spin (J = 1/2) state. The next
excited state (J = 3/2) is separated by 3λ/2. Neutrons can activate
it by a spin-flip process, and the transition is seen in Fig. 2 at
195±11meV, implying that λ≈ 130meV (also see Supplementary
Fig. 4 and Supplementary Information). This is close to the expected
free-ion value (λfree≈ 150 meV; refs 20,31) and the predictions of
recent ab initio calculations26. The J = 3/2 state will be split into
two Kramers doublets by small distortions of the octahedron32,33.
The resolution-limited linewidth suggests that such a splitting is
relatively small, certainly less than the half-width at half-maximum
(HWHM) of 48meV. In any case, as the higher levels are too
energetic to play any role, only the lowest lying doublet needs to
be considered. Projecting the inter-Ru3+ couplings into this doublet
results in Kitaev terms as included in equation (1).

The above results indicate that the H–K Hamiltonian (1)
can indeed satisfactorily capture the interactions between Ru3+

moments. If this is the case, then given the highly reduced ordered
moment and the extended QSL region close to the observed
zigzag AFM phase, it is tempting to speculate that signatures of
fractionalization characteristic of QSLs will be manifest in the
collectivemagnetic excitations. Figure 3 shows INS data forα-RuCl3
powder measured using neutrons of Ei= 25meV (more details in
Methods). The scattering in the magnetically ordered state is shown
in Fig. 3a for T = 5K. Two distinct features are clearly visible,

spanning different energy ranges. The lower among them, M1, is
centred near 4meV and shows a minimum near Q= 0.62Å−1,
which notably corresponds to theM point of the honeycomb lattice,
as expected for a quasi-2D magnetic system (for 3D behaviour a
wavevector Q= 0.81Å−1 is anticipated). The white arrow draws
attention to the concave shape of the edge of the scattering, which
is expected for magnon excitations in a ZZ ordered state15. This
firmly establishes the nature of magnetic order and differentiates it
from other potential states, such as a stripy ground state. The second
feature is at a higher energy,M2, centred near 6.5meV.

Both features, M1 and M2, correspond to powder-averaged
modes which are of magnetic origin, as identified by their
wavevector and temperature dependence. The thermal behaviour
of these magnetic modes differs significantly from one to the other.
Figure 3b shows the scattering at T =15K, just above TN. It is seen
that M1 softens markedly and the intensity shifts towards Q= 0.
Conversely, M2 is essentially unaffected. Constant-Q cuts through
the data are shown in Fig. 3c. The centres are at the positions
indicated by the labelled dashed lines in Fig. 3a,b. Comparing cuts
(A,B) with (C,D) reinforces the collapse and shift of intensity for
M1 above TN. Cut B clearly shows two peaks, implying that the
density of states sampled by the powder average at T =5K has two
maxima. The average peak energies determined by fits of the data to
Gaussian peaks are given by E1=4.1(1)meV and E2=6.5(1)meV.
Figure 3d shows constant-energy cuts integrated over the range
[2.5, 3.0] meV, near the lower edge of M1. It is seen that, at low
temperature, M1 is structured with low-energy features showing
up as peaks in cut E. These are centred at Q1 = 0.62(3)Å−1 and
Q2=1.7(1)Å−1. Above TN this structure disappears, and the broad
scattering shifts markedly to lower Q. Fitting the T = 15K data
(cut F) to a Lorentzianwith the centre fixed atQ=0 yields aHWHM
of roughly 0.6 Å−1, suggesting that, above TN, spatial correlations of
the spin fluctuations are extremely short ranged.

To gain further insight into the magnetic couplings we compare
the INS data to the solution of (1) using conventional linear
spin wave theory (SWT) for ZZ order34,35. The SWT provides a
quasi-classical approximation which works reasonably well when

NATURE MATERIALS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturematerials

© 2016 Macmillan Publishers Limited. All rights reserved

3

http://dx.doi.org/10.1038/nmat4604
www.nature.com/naturematerials


ARTICLES NATUREMATERIALS DOI: 10.1038/NMAT4604

E 
(m

eV
)

Q (Å−1)

Q (Å−1)

Intensity (a.u.)

35

30

25

20

15

10

5

0

P

E

F

E 
(m

eV
)

10

8

6

4

2

0

Intensity (a.u.)

35

30

25

20

15

10

5

0

T = 5 K

T = 15 K

7.5

10

20

30

35
T = 5 K

D
C

15 K

A

C

B

D

B
A

E (meV)

In
te

ns
ity

 (a
.u

.)

0.3 0.8 1.3 1.8 2.2

In
te

ns
ity

 (a
.u

.)

E : T = 5 K

10a c

d

b

8

6

4

2

0
2.01.51.00.5

A B

C D

0.0

Q (Å−1)

0.0 2.01.51.00.5

2 4 6 8

5

10

20

30

40

F : T = 15 K

F

E

Figure 3 | Collective magnetic modes measured with inelastic neutron scattering using 25 meV incident neutrons. a, False colour plot of the data at
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T= 15 K shows that M1 has disappeared, leaving strong quasi-elastic scattering at lower values of Q and E. c, Constant-Q cuts through the scattering
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through all the cuts A–F are guides to the eye. The error bars represent 1σ (see Methods).

quantum fluctuations are weak. Although strictly speaking it is
inapplicable for strongly quantum fluctuating systems, it provides
a first starting point for estimating the approximate and relative
strengths of the couplings. In the honeycomb lattice appropriate for
α-RuCl3, SWT predicts four branches, two of which disperse from
zero energy at the M point (1/2, 0) to doubly degenerate energies
ω1 =

√
K (K + J ) and ω2 = |J |

√
2, respectively, at the 0 point

(0,0) (ref. 34). A large density of states in the form of van Hove
singularities is expected near ω1 and ω2. Figure 4a shows the SWT
and Fig. 4b the calculated powder-averaged neutron scattering.
Equating ω1 and ω2 with the peaks E1 and E2 yields K and J values
of (K =7.0, J=−4.6) meV (shown in Fig. 4) or (K =8.1, J =−2.9)
meV (shown in Supplementary Fig. 5), depending on whether ω1
corresponds to E1 or E2. These two possibilities lie on either side
of the symmetric point K =−2J , where ω1 = ω2. The inset of
Fig. 4d shows each of these possibilities on theH–Kphase diagram34.
Either way, the Kitaev term is stronger and antiferromagnetic,
whereas theHeisenberg term is ferromagnetic; again consistent with
ab initio calculations26.

We note that the M1 mode has a gap of at least 1.7meV near
the M point (see Fig. 5a) that is not exhibited in the above SWT

calculations. Although such a gapless spectrum is a known artefact
of linear SWT for theH–Kmodel34, the experimentally observed gap
is too large to be accounted for within systematic 1/S corrections.
Extending the Hamiltonian to include further terms can lead to a
gap formingwithin SWT.However, calculations of the SWspectrum
(see Supplementary Fig. 5 and Supplementary Information) with
additional terms in theHamiltonian (such as0 and/or0’ terms35–39),
when sufficient to generate the observed gap, show features in
the powder-averaged scattering that are inconsistent with the
observations. Within the SW approximation, a gap can also be
generated by adding an additional Ising-like anisotropy, perhaps
at the level of 15% of J , which is also equivalent to an anisotropic
Kitaev interaction. As discussed below, the resulting SWT is still
incompatible with the data.

Although the SWTcalculation reproducesmany of the features of
the observed dynamical response, crucial qualitative disagreements
remain.Most importantly, the observed dependence of theM2 mode
on temperature and energy is incompatible with linear SWT. The
constant-wavevector cuts shown in Fig. 3c show thatM2 maintains
a totally consistent peak shape and intensity above and below TN.
Moreover, for temperatures well above TN, to at least 40K, the

4

© 2016 Macmillan Publishers Limited. All rights reserved

NATURE MATERIALS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturematerials

http://dx.doi.org/10.1038/nmat4604
www.nature.com/naturematerials


NATUREMATERIALS DOI: 10.1038/NMAT4604 ARTICLES

0 1 2 3 4 5 6 7
10

20

30

40

50

60

70
Ei = 25 meV
T = 5 K 0.4

〈Q〉 (Å−1)

0.6

0.8
1.0

80

E (meV)

In
te

ns
ity

E (meV)

In
te

ns
ity

Intensity (a.u.)

0.0 0.5 1.0 1.5

Q (Å−1)

2.0
0

(−1,0) (0,0) M (0,0)(0,1)

Momentum transfer (r.l.u.)

(−0.5,1)

2

4

6

En
er

gy
 tr

an
sf

er
 (m

eV
)

8

a b

c d

10
SW, zigzag
K = 7.0 meV
J = −4.6 meV

Re(Sxx(   , Q) + Syy (   , Q))

0

2

4

6

En
er

gy
 tr

an
sf

er
 (m

eV
)

8

10

0

2

4

6

8

10

0 1 2 3 4 5 6 7

ω ω

SL

ZZ

FM

SL
ST

J

K

AFM

0

10

20

30

40

50

60

70

Figure 4 | Spin wave theory calculations. a, Spin wave simulation for the H–K model with (K, J)= (7.0,−4.6) meV with a ZZ ground state. The lattice is the
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zone-centre spin wave mode energies.

intensity for all measured wavevectors is essentially unchanged, as
shown by Fig. 5b, which is a plot of theM2 intensity as a function of
Q for several temperatures. In fact a well-defined M2 peak persists
with a similar Q dependence up to at least 70K, corresponding
to T ∼ 5TN. This is in sharp contrast to the typical behaviour
of spin waves in conventional magnets, which generally exhibit a
pronounced decrease of intensity above the ordering temperature.
It should also be noted that in the ordered state the energy width
of M2 is much broader than the SW calculation over the observed
range of Q. Figure 5c shows a constant-Q cut around the M2
mode (blue triangles). The red line shows the equivalent powder-
averaged SWT calculation (Fig. 4b), broadened by the instrumental
energy resolution (marked ‘R’) and scaled so that the intensity
matches the height of theM2 scattering. The low-energy side of the
calculation is affected by the lower mode, and therefore cannot be
directly compared with the data; however, it is clear from the high-
energy side that there is considerable extra scattering (indicated
by the shading) that is not captured by SWT. As discussed in the
Supplementary Information, the smooth drop off of intensity on
the high-energy side of the M2 peak is evidence against the extra
width arising from additional features in the spin wave spectrum
that can be achieved by adding extra terms to equation (1). Finally,
as discussed in the Supplementary Information, for temperatures

above TN, the detailed wavevector dependence of the scattering is
not what is expected from conventional SWT.

The SWT is a quantization of harmonic excitations from classical
order. Moreover, the low-ordered moment observed in α-RuCl3
indicates that linear SWT is inadequate. Indeed, we argue that
the behaviour of the observed higher-energy mode M2—which
because of its short timescale is least sensitive to 3D couplings—
is naturally accounted for through the QSL phase proximate in the
H–K phase diagram40.

This QSL viewpoint has the strong quantum limit as its starting
point. It can avail itself of the recently computed exact dynamical
structure factor of the pure Kitaev model, in which spin excitations
fractionalize into static Ising fluxes and propagating Majorana
fermions minimally coupled to a Z2 gauge field10. Powder-
averaged results of the scattering10 expected for the isotropic
antiferromagnetic Kitaev model are shown in Fig. 5d. Although the
QSL is gapless, the structure factor of its excitations shown in Fig. 5d
does show a gap. This is due to the fact that a spin flip always excites
both quasiparticles—gapless Majorana fermions and a pair of Ising
fluxes, the latter with a non-zero excitation gap10. This results in a
low-energy band from 0.125 to 0.5 K, with a peak of intensity near
the M point in the Brillouin zone for an antiferromagnetic K .
Most interestingly, in addition, a second very broad and
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Figure 5 | Disagreements with classical SWT and agreement with QSL calculations. a, Scattering from mode M1 measured using INS at T=5 K using
Ei=8 meV. Lower panel shows constant-energy cuts over the energy ranges shown, centred at the locations labelled (G,H) in the upper panel. The absence
of structured scattering below 2 meV confirms the gap in the magnetic excitation spectrum. b, Constant-E cuts of the data through the upper mode at four
di�erent temperatures, of which one curve at T=5 K is below TN (red squares) and rest above TN. The lines are guides to the eye. c, A constant-Q cut of
the Ei=25 meV, T=5 K data in the Q range shown. The blue triangles show the M2 portion of the cut B in Fig. 3c, but with the linear background term
subtracted, and the blue line is a fit to a Gaussian peak. As discussed in the text, the red line shows simulated SWT scattering and the green line shows the
scattering calculated from a Kitaev QSL response function. The shaded area represents magnetic scattering that is not captured by the SWT. The
double-ended arrow marked ‘R’ shows the full-width at half-maximum (FWHM) of the instrumental resolution of 0.5 meV at 6.5 meV. In panels a–c, the
error bars represent 1σ (see Methods). d, The powder-averaged scattering calculated from a 2D isotropic Kitaev model, with antiferromagnetic K, using the
results of ref. 10, including the magnetic form factor. The upper feature is broad in energy and decreases in strength largely monotonically as Q increases.

non-dispersing high-energy band appears, centred at an energy
that corresponds approximately to the Kitaev exchange scale, K .
(For a similar calculation on the ferromagnetic Kitaev model, and
a general discussion, see Supplementary Fig. 6 and Supplementary
Information) The intensity of the upper band is strongest at Q=0,
and decreases with increasing Q.

With the Kitaev interaction dominant it is reasonable to expect
that α-RuCl3 is proximate to the QSL phase. The additional non-
Kitaev interactions lead to long-range order at low temperatures,
and strongly affect the low-energy excitations, which then exhibit
spin wave behaviour. Conversely, the high-energy spin fluctuations
native to the proximate quantum ground state are more immune,
and can persist even in the ordered state. This behaviour is well
known in coupled S= 1/2 antiferromagnetic Heisenberg chains6,
where at energies large compared to the interchain coupling the

spectrum of fractionalized excitations (spinons) of the pure chain
dominates the response above and below the magnetic ordering
temperature. This leads to a natural interpretation of the M2 mode
as having the same origin as the upper mode of the Kitaev QSL.
The broad width of the M2 mode as seen in the measurements
can be naturally explained in terms of the fractionalized Majorana
fermion excitations. The green line in Fig. 5c shows the calculated
powder-averaged QSL scattering, including the effects of instru-
mental resolution, with the value K =5.5meV chosen to match the
experimental peak position of M2 and the overall height chosen to
match the observed scattering. The calculatedQSL scattering profile
is wellmatched to the observed additional width of theM2 scattering
on the high-energy side. This value of K is slightly smaller than
that inferred from SWT, but it is very reasonable to expect that the
quantum description requires a renormalized parameter. The large
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energy width is expected for a fractionalized system, because several
excitations are excited in a single spin-flip process. Moreover, the Q
dependence of the intensity of the M2 mode (Fig. 5b) strikingly re-
sembles that of the upper band in the pure Kitaevmodel. The feature
is broad in momentum, because the real-space spin correlations of a
QSL are short ranged. For convenience, a side-by-side comparison
of the Q dependence of the data and the scattering calculated for
SWT and a pure Kitaev model is presented in Supplementary Fig. 7.

The fact thatM2 survives well above TN, even ifM1 is completely
washed out, indicates that the M2 mode is not directly connected
to the existence of long-range magnetic order. In the strictly 2D
Kitaev model there is no true phase transition from the QSL
to the high-temperature paramagnet41. However, recent Monte
Carlo calculations at finite temperature suggest that high-energy
Majorana fermions, thus the M2 mode, remain stable up to the
highest crossover temperature at an energy scale of K (ref. 42),
consistent with the observations reported here.

Taken together, the qualitative features from a complete quantum
calculation using a Majorana fermion treatment can successfully
provide a broadly consistent account of the inelastic neutron
scattering data. This makes α-RuCl3 a prime candidate for realizing
Kitaev and QSL physics. Further support for the presence of
Kitaev QSL physics in α-RuCl3 is seen in recent Raman scattering
measurements24 which show a broad response similar to that
calculated for the pure Kitaev model17, with a value of K =8meV,
of the same order as that derived here. The Raman continuum
also persists to temperatures well above TN. Much more detailed
information on the structure of the response functions will
require INS in single crystals of both α-RuCl3 and other relevant
compounds, some of which are 3D (refs 43,44). Themost instructive
measurements on α-RuCl3 should use single crystals free of the
complications induced by stacking faults.

Ideally, a single, fully quantum theoretical treatment should
capture the microscopic behaviour across all energy and length
scales; however, such a treatment is unavailable for the full
Hamiltonian describing the magnetic properties of α-RuCl3. Here,
we have used the insight that the high-energy short-range spin-
liquid physics iswell captured by a pureKitaevmodel, which permits
an analytic treatment, but misses the weak ordering tendency
owing to perturbations to the simple model Hamiltonian. These,
however, and their concomitant low-energy spin wave excitations
can be approximately captured by SWT. Considering the usual
renormalizations inherent in semiclassical descriptions of quantum
excitations, these two approximation schemes for different parts of
the spectrum can be described by similar microscopic parameters,
suggesting that the absence of a full treatment of the complete H–K
model is a technical rather than a conceptual issue.

Looking forward, it will also be of great interest to systematically
investigate the effects of disorder and doping in these materials45,
and there is also the hope of generating a genuinely 2D system by
exfoliation techniques.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Synthesis and bulk measurements. Commercial-RuCl3 powder was purified in
house to a mixture of α-RuCl3 and β-RuCl3, and converted to 99.9% phase-pure
α-RuCl3 by annealing at 500 ◦C. Single crystals of α-RuCl3 were grown using
vapour transport with TeCl4 as the transport agent. The crystals exhibit an
anisotropic mosaic for in-plane peaks, indicative of stacking faults, as shown in
Supplementary Fig. 2. Samples were characterized by standard bulk techniques (see
Supplementary Fig. 1). X-ray powder diffraction was carried out at room
temperature using a Panalytical Empyrean diffractometer employing
Cu Kα radiation.

The structure was found to be consistent with the trigonal space group P3112
(No. 151), with room-temperature lattice constants a=b=5.9783(2)Å,
c=17.170(1)Å, with χ 2

=13.7 and wRp= 5.16. For C2/m the corresponding fits
are worse, with a=5.982(1), b=10.3530(7), c=6.0611(5), β=109.177(7), with
χ 2
=16.9, wRp= 6.33. In addition, powder neutron diffraction was carried out at

10K. For the fit and the lattice constants at T=10K refer to Supplementary Fig. 2
and Supplementary Table 2. Magnetic properties were measured with a Quantum
Design (QD) Magnetic Property Measurement System in the temperature interval
1.8 K≤T ≤300K. Temperature-dependent specific heat data were collected using a
14 T QD Physical Property Measurement System (PPMS) in the temperature range
from 1.9 to 200K. Our measurements of the susceptibility (see Supplementary
Fig. 1) are consistent with existing literature22,25,27. The magnetic susceptibility of
powders fits a Curie–Weiss law over the range above 150K, with a temperature
intercept of θ≈32K and a single-ion Ru effective moment of 2.2µB. Magnetic order
appears for T ≤15K, leading to a broad specific heat anomaly. The detailed specific
heat of single-crystal specimens is sample dependent, but consistent with other
groups25,27,29, and shows the onset of a broad anomaly near 14K, and a sharper peak
near 8K, possibly with additional structure between those temperatures. This
complicated behaviour is a consequence of stacking faults (see main text).

Neutron diffraction. Neutron diffraction data for structural refinement on a 5.1 g
powder sample of α-RuCl3 were collected at the POWGEN beamline at the
Spallation Neutron Source (SNS), at Oak Ridge National Laboratory (ORNL). The
sample was loaded in a vanadium sample can under helium, and measured at
T≈10K. Neutron diffraction measurements to characterize the magnetic Bragg
peaks in both powder and single crystals were performed at the HB-1A Fixed
Incident Energy (FIE-TAX, Ei=14.68meV) triple-axis instrument at the
High-Flux Isotope Reactor at ORNL. For powder diffraction, 4.7 g of powder was
packed into a cylindrical aluminium canister. For single-crystal diffraction, one
∼0.7×1.0 cm2, 22.5mg crystal was attached to a flat aluminium shim using
Cytop-M glue. It was then sealed with indium into an aluminium canister with
helium exchange gas, then aligned and confirmed to be a single-domain sample

using neutrons. This was attached to the cold finger of a 4K closed-cycle
refrigerator for performing the temperature scans.

Inelastic neutron scattering (INS). Inelastic neutron scattering of powder α-RuCl3
was performed using the SEQUOIA chopper spectrometer at the SNS (ref. 46). The
sample (5.3 g) was sealed at room temperature in a 5×5×0.2 cm3 flat aluminium
sample can using helium exchange gas for thermal contact. This was mounted to
the cold finger of a closed-cycle helium refrigerator for temperature control. Empty
can measurements were performed under the same conditions as the sample
measurements. The neutron detector efficiencies were calibrated using vanadium
standards, and the neutron counts were normalized to the accumulated incident
proton charge. The data presented have the empty can background subtracted, and
the uncertainties were calculated assuming Poisson counting statistics with
conventional propagation of error calculations. Measurements were made with
incident neutron energies Ei=8, 25 and 1,500meV. The Ei=8 and 25 meV
measurements were performed using the fine-resolution 100meV Fermi chopper
slit package spinning at 180Hz and the T0 chopper spinning at 30Hz. The
Ei=1,500meV measurements used the 700meV coarse-resolution Fermi chopper
spinning at 600Hz and the T0 chopper spinning at 180Hz (ref. 47). The
Ei=1,500meV configuration yields a calculated full-width at half-maximum
(FWHM) energy resolution of approximately 97meV at 200 meV energy transfer.
The FWHM elastic energy resolution is calculated to be 0.19 and 0.64meV for the
Ei=8 and 25meV configurations, respectively. Care was taken to minimize the
exposure of the sample to air, and after every exposure the sample was pumped for
at least 30min to remove adsorbed moisture. Structural refinements confirmed the
purity of the powder sample. Spin wave simulations were performed using SpinW
codes48 (Version 235) and used the nominal symmetric honeycomb structure for
α-RuCl3 (refs 21,22). The SWT powder average was performed with 3,000 random
points distributed over the Brillouin zone. The Ru3+ form factor utilized was
interpolated using the results of relativistic Dirac–Slater wave functions49.
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