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Abstract

The discovery of the fact that black holes radiate particles and eventually evaporate
led Hawking to pose the well-known information loss paradox. This paradox caused a long
and serious debate since it claims that the fundamental laws of quantum mechanics may
be violated. A possible cure appeared recently from superstring theory, a consistent theory
of quantum gravity: if the holographic description of a quantum black hole based on the
gauge/gravity duality is correct, the information is not lost and quantum mechanics remains
valid. Here we test this gauge/gravity duality on a computer at the level of quantum gravity
for the first time. The black hole mass obtained by Monte Carlo simulation of the dual gauge
theory reproduces precisely the quantum gravity effects in an evaporating black hole. This
result opens up totally new perspectives towards quantum gravity since one can simulate
quantum black holes through dual gauge theories.
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Introduction

In 1974 Hawking realized that a black hole should radiate particles as a perfect blackbody
due to quantum effects in the surrounding space, and that the black hole should eventually
evaporate completely [1, 2]. This discovery made more accurate the close analogy between
the laws of black hole physics and those of thermodynamics, which was pointed out origi-
nally by Bekenstein [3]. However, it also caused a long scientific debate (see, for instance,
refs [4] and [5]) concerning the information loss paradox [6, 7], which can be described
roughly as follows. Suppose one throws a book into a black hole. While the black hole
evaporates, all we observe is the blackbody radiation. Therefore, the information contained
in the book is lost forever. This statement sharply conflicts with a basic consequence of
the law of quantum mechanics that the information of the initial state should never disap-
pear. Then the question is whether the law of quantum mechanics is violated or Hawking’s
argument should somehow be modified if full quantum effects of gravity are taken into
account.

In order to resolve this paradox, it is necessary to construct microscopic states of the
black hole and to give a statistical-mechanical explanation for the black hole entropy. This
seems quite difficult within general relativity because of the no-hair theorem, which states
that black holes are characterized by only a few parameters. In the mid 1990s, however,
superstring theory succeeded in explaining the entropy of “extremal black holes”, a special
class of black holes, which do not evaporate [8]. Superstring theory contains not only strings
but also solitons called D-branes [9] as fundamental objects. Bound states of D-branes can
be so heavy that they look like “black objects” from a distant observer. In fact there
are many bound states, which look like the same black hole. These bound states can be
interpreted as the microscopic states of the black hole, and the number of such states has
been shown to explain precisely the black hole entropy.

However, the paradox still remains since a complete description of an evaporating black
hole has not yet been established. A key to really resolve the paradox is provided by Mal-
dacena’s gauge/gravity duality conjecture [10] (Fig. 1), which may be viewed as a concrete
realization of the holographic principle proposed by ’t Hooft [11] and Susskind [12]. This
conjecture relates various black holes made of D-branes in superstring theory to strongly
coupled gauge theories, in which the absence of information loss is manifest. In this arti-
cle we provide the first quantitative evidence for the gauge/gravity duality at the level of
quantum gravity. We perform Monte Carlo simulation of the dual gauge theory in the pa-
rameter regime that corresponds to a quantum black hole. Our results agree precisely with
a prediction for an evaporating black hole including quantum gravity corrections. Thus
we find that the dual gauge theory indeed provides a complete description of the quantum
nature of the evaporating black hole.
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Figure 1: The gauge/gravity duality conjecture. Black holes in superstring theory
are conjectured to be described by the dual gauge theory.

D-particles and the gauge/gravity duality

Superstring theory is a promising candidate for the theory of everything, which unifies the
standard model of particle physics and gravity. In particular, it provides a consistent theory
of quantum gravity, which is otherwise difficult to formulate due to non-renormalizable
divergences at short distances. The theory contains two kinds of strings; closed strings
and open strings. The former mediates gravitational force, while the latter mediates gauge
interactions such as the electromagnetic force. Superstring theory also contains solitonic
objects called D-branes [9], on which open strings can end. The dynamical property of
D-branes including the oscillation of open strings is described by a gauge theory [13], which
is a generalization of quantum electrodynamics.

Theoretical consistency requires that superstring theory should be defined in ten-dimensional
space-time. In order to realize our four-dimensional space-time, one can choose the size of
extra six dimensions to be very small. This procedure is called “compactification”. In
fact there are many ways to do it without spoiling the consistency, and by choosing the
internal structure of the compactified extra dimensions appropriately, one can explain the
variety of particles in four dimensions. However, since we are now interested in quantum
effects of gravity, which become important at very short distances, we consider superstring
theory without compactification. As a particular type of D-branes, we consider D-particles,
which look like point-like objects in nine-dimensional space. It is known that a bunch of N
D-particles is described by a gauge theory, in which all the fields are expressed as N × N
matrices depending on time [13–15].

Superstring theory contains only one dimensionful parameter, which is conventionally
written as α′ = `2, where ` is the string length. In the low-energy limit, or equivalently in
the α′ → 0 limit, the oscillation of closed strings is dominated by the lowest energy states
such as gravitons. If one further neglects quantum effects, the full superstring theory can
be well approximated by supergravity, a generalized version of Einstein’s gravity theory,
which describes gravity in terms of the curvature associated with the space-time geometry.
In supergravity, a bunch of N D-particles is expressed as an extremal black hole, which is
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stable and does not cause Hawking radiation. At finite temperature, the same system can
be expressed as a non-extremal black hole. Since it has a positive specific heat, it cools
down as it loses energy through Hawking radiation, and it eventually stabilizes into an
extremal black hole at T = 0.

When N , the number of D-particles, is large, the size of the black hole is large and
the geometry is weakly curved compared with the typical scale of quantum gravity. Hence
quantum gravity effects can indeed be neglected. On the other hand, quantum gravity
effects become important as N becomes small. In fact such effects can make the specific
heat negative. In that case, the black hole heats up as it loses energy through Hawking
radiation, and it will eventually evaporate completely. Thus this system at small N is
relevant to the information loss paradox.

Unfortunately the full quantum nature of superstring theory has not yet been under-
stood. However, according to the gauge/gravity duality conjecture, superstring theory in
the presence of the black hole made of D-particles is equivalent to the gauge theory that
describes the system of D-particles [16]. Since the gauge theory is well defined at arbitrary
N , it captures the full quantum nature of superstring theory if the conjecture is correct.
Furthermore, since the gauge theory is based on principles of quantum mechanics, it is clear
that the information loss does not occur during the evaporation of the black hole. While
there are many pieces of evidence for the gauge/gravity duality at N =∞, where classical
approximation is fully justified on the gravity side (See, for instance, ref [17]), very little is
known about it at the level of quantum gravity.

Analysis on the gravity side

Let us start with an analysis on the gravity side. Readers who are not familiar with general
relativity may jump directly to eq. (3), which represents the outcome of this analysis. The
black hole, which is made of N D-particles in superstring theory, is described by a curved
ten-dimensional space-time, which can be obtained as a solution to the classical equation of
motion (or the “Einstein equation”) for supergravity. The geometry is spherically symmet-
ric in the nine-dimensional space, and the black hole is surrounded by an eight-dimensional
surface called “event horizon”. Once some object goes beyond the horizon from outside, it
can never come out even with the speed of light. In particular, the metric near the horizon
is given by [18,19]

ds2 = α′
(
− 1√

H
Fdt2 +

√
H

1

F
dU2 +

√
H U2dΩ2

8

)
, (1)

where U represents the radial coordinate and dΩ2
8 represents the line element of an eight-

dimensional unit sphere. We have introduced the functionsH(U) = 240π5λ/U7 and F (U) =
1− U7

0/U
7, where the two parameters λ and U0 are related to the mass and charge of the

black hole. Since F (U) flips its sign at U = U0, one finds that the horizon is located at
U = U0.
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Now we consider quantum corrections to the classical geometry (1). Since superstring
theory is defined perturbatively, one can calculate the leading quantum corrections to the
geometry, which correspond to the 1/N2 corrections. It is well-known that the scattering
amplitude involving four gravitons as asymptotic states gives nontrivial quantum correc-
tions to the supergravity action at the leading order, which include quartic terms of the
Riemann tensor [20]. By solving the equations of motion for supergravity including such
corrections, one obtains the metric near the horizon as (Y. H., in preparation)

ds2 = α′
(
−
√
H2

H1

F1 dt
2 +

√
H2

1

F1

dU2 +
√
H2 U

2dΩ2
8

)
, (2)

where Hi = H + 5π11λ3hi/(24U13
0 N

2) for i = 1, 2 and F1 = F + π6λ2f1/(1152U6
0N

2). Here
hi and f1 are functions of U/U0, which can be determined uniquely. Note that the metric
(2) reduces to (1) as N →∞, which corresponds to the limit of classical gravity. From this
expression (2) for the metric, one finds that the position of the horizon is slightly shifted
due to quantum effects. One also finds that a test particle feels a repulsive force near the
horizon, which can be interpreted as the back-reaction of the Hawking radiation.

Given the geometry (2), one can evaluate the “energy” Ẽ of the black hole as a function
of temperature. (Strictly speaking, we evaluate the difference of the mass of the thermal
non-extremal black hole from that of the extremal one. This quantity corresponds to the
internal energy in the dual gauge theory, hence we use the word “energy”.) For that we first
calculate the entropy S of the black hole using Wald’s formula, and obtain the “energy” Ẽ
by integrating the first law of thermodynamics, dẼ = T̃ dS. Here T̃ denotes the Hawking
temperature, which can be derived from the geometry (2). Thus the “energy” of the black
hole is evaluated as

1

N2
Egravity = 7.41T 2.8 − 5.77T 0.4 1

N2
, (3)

up to O(1/N4) terms, where we have introduced dimensionless parameters Egravity ≡ λ−1/3Ẽ
and T ≡ λ−1/3T̃ . In what follows, we call the energy normalized by λ1/3 “effective energy”.
The first term in (3) can actually be obtained [21] at the classical level from the metric
(1), and the second term represents quantum gravity corrections at the leading order. One
finds that the specific heat C = dE/dT becomes negative at sufficiently low T due to the
second term. This means that the black hole becomes unstable due to the quantum gravity
effects, and it actually evaporates.

In the above analysis, we have ignored the so-called α′ corrections, which represent the
effects due to the oscillation of strings. One can include these corrections to eq. (3) as has
been done in ref [22] at N =∞. Eq. (3) then becomes

1

N2
E

(full)
gravity = (7.41T 2.8 + a T 4.6 + · · · ) + (−5.77T 0.4 + b T 2.2 + · · · ) 1

N2
+O

(
1

N4

)
, (4)
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where a and b are unknown constants. The power of T for each term can be deter-
mined from dimensional analysis using some known results in superstring theory [23]. The
gauge/gravity duality claims that eq. (4) should be reproduced by the dual gauge the-
ory [16]. This has been tested at N = ∞, where the results from the gauge theory in the
range 0.5 ≤ T ≤ 0.7 can indeed be nicely fitted by the first two O(N0) terms in eq. (4) with
a = −5.58(1), thus confirming the gauge/gravity duality at the level of classical gravity [22]
(See also refs [24–26] for related works.). The goal of our study is to see whether the gauge
theory can reproduce the quantum gravity effects represented by the 1/N2 corrections in
eq. (4).

Analysis on the gauge theory side

Let us turn to the analysis on the gauge theory side. The gauge theory that describes a
bunch of N D-particles is defined by the action [14,15]

S =
N

λ

∫ β

0

dt tr

{
1

2
(DtXi)

2 − 1

4
[Xi, Xj]

2 +
1

2
ψαDtψα −

1

2
ψα(γi)αβ[Xi, ψβ]

}
, (5)

where we have introduced the fields Xi(t) (i = 1, 2, · · · , 9) and ψα(t) (α = 1, 2, · · · , 16),
which are N×N bosonic and fermionic Hermitian matrices depending on time t. Intuitively,
the diagonal elements of Xi describe the positions of N D-particles in nine spacial directions,
and the off-diagonal elements correspond to strings connecting different D-particles. The
brackets [ · , · ] represent the so-called commutator, which is defined by [M1,M2] = M1M2−
M2M1 for arbitrary matrices M1 and M2. We have also defined the covariant derivative
Dt = ∂t − i [At, · ], where At is the gauge field represented by an N × N Hermitian
matrix. The gamma matrices γi (i = 1, · · · , 9) are 16 × 16 Hermitian matrices satisfying
γiγj + γjγi = 2 δij. As is usually done in studying thermal properties of gauge theories,
the time coordinate t in eq. (5) actually represents “imaginary time”, which is related to
the real time t̃ through t̃ = −it, and it is restricted to 0 ≤ t ≤ β ≡ 1/T̃ , where T̃ is the
temperature, which should be identified with the Hawking temperature on the gravity side.
The boundary conditions are taken to be periodic At(t + β) = At(t), Xi(t + β) = Xi(t)
for bosonic matrices, and anti-periodic ψα(t + β) = −ψα(t) for fermionic matrices. The
partition function Z is defined as the sum of the Boltzmann factors exp(−S) for all field
configurations, and the basic quantity we calculate is the internal energy, which is defined
by Ẽ = −(∂/∂β) logZ.

We put the system (5) on a computer as we have done in our previous works [22,25]. We
make a Fourier transform of each field with respect to time t, and introduce a cutoff Λ on
the frequency. (Strictly speaking, we need to fix the gauge symmetry appropriately before
we introduce a cutoff.) This method has practical advantage [27] over a more conventional
method using lattice discretization [26], in which the matrices Xi and ψα are put on the sites
of the lattice, whereas the gauge fields are put on the links connecting the sites. As far as
the number of degrees of freedom is concerned, putting the frequency cutoff Λ corresponds
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to introducing a lattice with (2Λ + 1) sites. In order to obtain a value in the continuum
limit, we make an extrapolation to Λ = ∞. Although the fermionic matrices make the
effective Boltzmann weight complex, we simply take the absolute value, which is shown to
be a valid approximation in the present case [28].

In this work we focus on small values of N such as N = 3, 4 and 5 in order to probe
the quantum gravity effects, which correspond to 1/N2 corrections. This causes a new
technical difficulty, which was absent in previous works [22,25] at large N such as N = 17.
We observe that the eigenvalues of the bosonic matrices Xi start to diverge while we are
sampling important field configurations that contribute to the partition function. This
instability, however, can be interpreted as a physical one. It actually corresponds to the
Hawking radiation of the black hole on the gravity side since the black hole is microscopically
described by bound states of D-particles, and the positions of D-particles are represented
by the eigenvalues of the bosonic matrices Xi in the gauge theory description. When N
is sufficiently large, such bound states are stable [22, 25], which reflects the stability of the
black hole in the absence of quantum gravity effects. When N becomes small, quantum
gravity effects destabilize the black hole. Correspondingly, on the gauge theory side, we
observe that the cluster of the eigenvalues becomes metastable as N becomes small.

In order to identify the metastable bound states, we first define a quantity

R2 =
1

Nβ

∫ β

0

dt
9∑
i=1

trXi(t)
2 , (6)

which represents the extent of the eigenvalue distribution of Xi. In Fig. 2, we show the
histogram of R2 for N = 4, T = 0.10, Λ = 16. A clear peak around R2 ∼ 3.5 confirms the
existence of metastable bound states, while the non-vanishing tail at 4 . R2 . 4.2 reflects
a run-away behavior associated with the instability.

This motivates us to calculate the effective internal energy by using only the configura-
tions satisfying R2 < x for some x. We denote such a quantity E(x)/N2 and plot it also
in Fig. 2. We observe a clear “plateau” at the tail of the distribution of R2. Therefore we
use the height of this plateau as a sensible estimate of the effective internal energy of the
metastable bound states.

In actual simulation we need to suppress the instability by adding a potential term
Vpot = c |R2 −R2

cut| for R2 > R2
cut to the action (5), where c should be sufficiently large to

kill the instability. Note that the result for E(x)/N2 presented in Fig. 2 does not depend
on R2

cut as far as x < R2
cut. We choose R2

cut to be large enough to see the plateau behavior
in E(x)/N2. For instance, Fig. 2 is obtained with c = 100 and R2

cut = 4.2.
We repeat this analysis for all the parameter sets (N, T,Λ). We use T = 0.08, 0.09,

0.10, 0.11, 0.12 for N = 3, T = 0.07, 0.08, 0.09, 0.10, 0.11, 0.12 for N = 4 and T = 0.08,
0.09, 0.10, 0.11 for N = 5. Fitting the results E obtained for finite Λ using the ansatz
E = Egauge + const./Λ, we obtain Egauge, which represents the effective internal energy
in the continuum limit. The fitting was made with Λ = 8, 10, 12, 14, 16 for T ≥ 0.10,
Λ = 10, 12, 14, 16 for T = 0.09, 0.08 and Λ = 12, 14, 16 for T = 0.07.
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Figure 2: The histogram of R2 and the effective internal energy E(x)/N2 obtained
with configurations satisfying R2 < x. We show the results for N = 4, T = 0.10, Λ = 10
with the choice R2

cut = 4.2 and c = 100 for the cutoff potential. The peak of the histogram
around R2 ∼ 3.5 represents the existence of the metastable bound states. The plateau
behavior in E(x)/N2 gives us a sensible estimate of the effective internal energy of the
metastable bound states.
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In Fig. 3 we plot our results for the effective internal energy in the continuum limit as
a function of T for N = 3, 4, 5. (In the small box we show the extrapolation to Λ = ∞
for N = 4 and T = 0.10 as an example.) The curves represent the fits to the behaviors
expected from the gravity side, which shall be explained later. We find that the internal
energy increases as temperature decreases, which implies that the specific heat is negative.
Such a behavior is possible since we are measuring the energy of the metastable bound
states.

Figure 3: The effective internal energy Egauge/N
2 obtained for the metastable

bound states in the continuum limit as a function of T . Results for N = 3 (squares),
N = 4 (circles) and N = 5 (diamonds) are shown. The curves represent the fits to the
behaviors expected from the gravity side, which shall be explained later. The data points
and the fitting curve for N = 5 are slightly shifted along the horizontal axis so that the
data points and the error bars for N = 4 and N = 5 do not overlap. In the small box, we
show an extrapolation to Λ =∞ for N = 4 and T = 0.10.

Testing the gauge/gravity duality

Now we can test the gauge/gravity duality by comparing the results on the gauge theory
side shown in Fig. 3 with the results on the gravity side represented by eq. (4). In the
temperature regime 0.07 ≤ T ≤ 0.12 investigated here, the terms with the coefficients a
and b, which represent the α′ corrections, can be neglected unless |a| � 700 and |b| � 500.
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(As we mentioned earlier, a is obtained as a = −5.58(1) by fitting the results from the gauge
theory side [22] in the temperature regime 0.5 ≤ T ≤ 0.7.) Therefore, we can actually test
eq. (3) directly. In Fig. 4 we plot (Egauge − Egravity)/N

2 against 1/N4 for T = 0.08 and
T = 0.11. Our data are nicely fitted by straight lines passing through the origin. This
implies that our result obtained on the gauge theory side is indeed consistent with the
result (3) obtained on the gravity side including quantum gravity corrections. In the small
box of the same figure, we plot Egauge/N

2 against 1/N2. The curves represent the fits to
the behavior Egauge/N

2 = 7.41T 2.8 − 5.77T 0.4/N2 + const./N4 expected from the gravity
side. We find that the O(1/N4) term is comparable to the O(1/N2) term. The fact that
the O(1/N6) term is not visible from our data is therefore quite nontrivial and worth being
understood from the gravity side. The agreement of similar accuracy is observed at other
values of T .

Figure 4: The difference (Egauge − Egravity)/N2 as a function of 1/N4. We show the
results for T = 0.08 (squares) and T = 0.11 (circles). The data points can be nicely fitted
by straight lines passing through the origin for each T . In the small box, we plot Egauge/N

2

against 1/N2 for T = 0.08 and T = 0.11. The curves represent the fits to the behavior
Egauge/N

2 = 7.41T 2.8 − 5.77T 0.4/N2 + const./N4 expected from the gravity side.

As a further consistency check, we have also fitted our results for each T by Egauge/N
2 =

7.41T 2.8 + c1/N
2 + c2/N

4 leaving c1 and c2 as fitting parameters. In Fig. 5, we plot c1
obtained by the two-parameter fit against T , which agrees well with c1 = −5.77T 0.4.

As for the coefficient c2 of the O(1/N4) terms, the prediction from the gravity side is
given by c2 = c T−2.6 + · · · , where c is an unknown constant. In fact c2 can be fitted, for
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Figure 5: The coefficient c1 of the O(1/N2) term as a function of T . Our results are
consistent with the prediction c1 = −5.77T 0.4 from the gravity side (the dotted line). The
data point at T = 0.12 does not have an error bar since only two data points (N = 3, 4)
were available for making a two-parameter fit.
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instance, by c2 = c T−2.6 + c̃ T p with c = 0.0340(12), c̃ = 0.17(23) × 106 and p = 4.30(62).
(The value for c̃ looks huge, but it is actually compensated by the high power of T within
the temperature region investigated here.) Therefore we consider that the T dependence of
c2 is also consistent with the prediction from the gravity side. The curves in Fig. 3 represent
Egauge/N

2 = Egravity/N
2 + (c T−2.6 + c̃ T p)/N4 with the fitting parameters obtained above.

Summary and discussions

In this article we have given quantitative evidence for the gauge/gravity duality at the
level of quantum gravity. In particular, we find that an evaporating black hole can be
described by the dual gauge theory, which is based on fundamental principles of quantum
mechanics. This provides us with an explicit example in which the information is not lost
in an evaporating black hole.

Our work suggests a new approach to the quantum nature of gravity. Since the gauge/gravity
duality is confirmed including quantum gravity effects, we can study various issues involv-
ing quantum gravity by using Monte Carlo simulation of the dual gauge theory. Thus
the situation has become quite close to the studies of the strong interaction by simulating
Quantum Chromodynamics on the lattice, which successfully explained the mass spectrum
of hadrons [29] and the nuclear force [30] recently. We can now apply essentially the same
method to study quantum gravity.
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