
© 2020 Icalia Labs 1

Security Policies

Abstract
Security has become one of the most valuable application concerns for online access. From data 
privacy, secured communication channels, continuous integration, and more, to customer-trust and 
developer’s confidence, all are dependencies on how secure an online application is. Access from 
an uncountable number of devices is a reality, and we strive to provide a foolproof security system. 

This document outlines some of the security measures we take in consideration while building an 
online application, starting from basic core design principles, so we can move into different techniques 
and more advanced practices, that will ensure a high armored security system. It is important to say 
that most of these techniques are based on documentation and best practices out there, and depending 
on the application to build, we may adapt to provide the best experience regarding security. 



Index

03   Online applications

04   Core security concerns

05   Key security concerns and how we tackle them

07   Key considerations for every application

08   User management on applications

© 2020 Icalia Labs 2



© 2020 Icalia Labs 3

Nowadays most of the applications we have to work on are performing fi-
nancial transactions, storing sensitive data on the databases, integrating 
multiple providers, and even connecting to legacy applications through 
a service layer. Hence security is a main software attribute for the whole 
organization, as being online opens a number of threats we need to be 
prepared for, such as session hijacking, password cracking, man-in-the-
middle which affects directly into user trust, and therefore revenue.

As the applications grow, they require more sensitive information from 
the users, security numbers, financial data, government-related infor-
mation and so much more in order to provide a better and integrated 
experience, and even user-specific features, such as customized dash-
boards, reports and in more sophisticated applications the growing 
trend of Artificial Intelligence (AI). We are committed to this by always 
improving our practices, to continuously review our software code for 
security holes, through our streamlined automated process.

Online applications

“We are always improving our practices, to contin-
uously review our software code for security holes, 
through our streamlined automated process.”



© 2020 Icalia Labs 4

All of the applications developed at Icalia Labs have a set 
of key security concerns ensuring a basic but strong secure 
layer for the online applications whether it is a startup or 
an enterprise.

We also consider that alongside The Twelve-Factor App 
practices, Test-Driven Development and the usage of Docker 
through our whole pipeline enables the teams to deliver 
features, hot-fixes, and bugs on-demand and with confi-
dence, which impacts directly on the end-user experience 
and therefore the business outcomes. 
(See Development Pipeline below)

Core security concerns
Key security included:  

	L Password encryption

	L Secure connections with Secure Socket Layers (SSL)

	L Role-based access

	L Automated security checks and patches on dependencies

	L SQL injection prevention

	L Cross-site scripting (XSS) protection 

	L Logs data obfuscation for sensitive data 

	L Usage of environment variables for access.

https://12factor.net


© 2020 Icalia Labs 5

Man-in-the-middle-attacks

Under this type of attack, the hacker intercepts the 
traffic between the browser and the application, in 
other words retrieving information from the user. To 
prevent this it is necessary to secure the communication 
channel by using a secure transport layer such as HTTPS 
via SSL. This also applies to mobile applications and 
communication with third-party services. By using this 
approach we ensure the safe data exchange by encrypt-
ing during transit and decrypting on arrival on any end.

Session hijacking

This vulnerability allows the attacker to act as any user 
with an open session by stealing the cookie that appli-
cations commonly use to recover the current session. 
In order to prevent this concern, we encrypt all of the 
cookies by using HTTPS, disabling any attacker from 
getting the plain value of them.
 
Cross-site request forgery

The attacker can build a script to make the application 
think the request is coming from a legit source. For 
example, the attacker can gain access to parameters 
or massively submit forms and perform actions on the 
system. To prevent this, we include on every page and 
form loaded, a security token that is validated on every 
request and by the server itself.

Password encryption

In some cases, we have encountered applications that save the user 
passwords without encryption, which enables the attacker to know all 
the access from every user and act like them. At Icalia Labs we encrypt 
passwords using the bcrypt algorithm, which creates an obfuscated 
string from the input password making it irreversible and not under-
standable by humans. We talk more about this further on the document.

Dependencies automated security checks

Every modern application is built on top of libraries, plugins, or frame-
works which enhance the development experience, but as the secu-
rity attacks grow, some of the dependencies may outdate really fast, 
whether for performance patches, but most importantly security con-
cerns. To deal with this, we have bots that perform automated depen-
dencies checks on every project keeping the code healthy and safe.

Injection attacks

This attacking technique happens when untrusted or unsanitized data is 
sent to an interpreter to work as part of a query or command. The most 
common injection attacks are SQL, NoSQL, OS, and LDAP injection. In 
our case and due to the nature of most of the applications we build, we 
focus only on the first and third one, which can be mitigated by:

1.	 Sanitize every input that comes from forms before passing it to the 
SQL interpreter.

2.	 Encode or remove SQL reserved characters.

3.	 Run automated and continuous checks to solve this while developing.

4.	 Usage of object-relational mapping (ORM) tools, like the one included 
in most of the modern frameworks.

Key security concerns and how we tackle them.
Based on our experience, we have crafted a list of the most common and core security vulnerabilities every 
online application should address, and how we are tackling them.



© 2020 Icalia Labs 6

Logging & monitoring

The exploitation of insufficient logging and monitoring is the bedrock 
of nearly every major incident.

Attackers rely on the lack of monitoring and timely response to achieve 
their goals without being detected. The most common concerns are:

•	 Auditable events, such as logins, failed logins, and high-value 
transactions are not logged.

•	 Warnings and errors generate no, inadequate, or unclear log messages.

•	 Logs of applications and APIs are not monitored for suspicious activity.

•	 Logs are only stored locally.

In order to prevent this, we at Icalia Labs:

•	 Integrate New Relic to track events on every application, primary 
for performance issues.

•	 Integrate Sentry for error monitoring, so the whole team is always 
aware if something happened after performing a deployment.

•	 Centralize all the logs with DataDog for later usage, analysis or 
contingency measures

•	 Filter sensitive information from the logs, such as passwords, 
credit card numbers, social security numbers and more.

•	 Implementation of Castle to monitor the users activity on the site, 
to detect suspicious access for example.

Docker enabled pipeline

Since 2016 we have adopted Docker as a platform to 
build our whole development process, in order to en-
able each team to deliver software with confidence and 
securely. By implementing Docker within the core of  
our development process: 

1.	 We enforce developers to care about the code they 
are building, but also the delivery of it.

2.	 We can easily migrate from one cloud to another, in 
case of an attack or emergency from an outrage

3.	  Homogenizes the development environment, for 
engineers and designers.

4.	 Allow us to have a zero downtime during deployment, 
and easily rollback in case of emergency, while updat-
ing the whole infrastructure.

Key security concerns and how we tackle them.

https://www.datadoghq.com/dg/apm/benefits-os/
https://sentry.io/welcome/
https://www.datadoghq.com/dg/logs/benefits/
https://castle.io/


© 2020 Icalia Labs 7

When building a web-based application, we take into account several considerations that do not directly impact 
the final product, but they certainly help our engineers to better design applications for the long run.

Key considerations for every application

Unit and system automated testing are the core of every 
application we build at Icalia Labs. This enables the team 
to integrate code with the confidence no previous func-
tionality has been compromised with the integration of 
new code. We strive for 70% of test coverage.

Set up the infrastructure to deliver new features on-de-
mand, by integrating a continuous integration and delivery 
approach. Tools such as Semaphore CI allow us to manage 
multiple environments, workflows, and delivery of the 
code, this way we keep a seamless deployment for every 
application.

We take code quality very seriously at Icalia Labs, and that 
is why we have dedicated engineers in charge of perform-
ing pair programming with team members as well as con-
tinuously review the code we are delivering, to ensure we 
have another pair of eyes watching for the code health.

As open source contributors and consumers, we love open 
standards-based technology and integrations, this includes 
using standards using HTML, CSS, but also linters for Ruby, 
Javascript, just to name a few.

Automated checks being done by bots, for instance:
•	 Static code analysis to reduce technical debt
•	 Security checks on application dependencies
•	 SQL injection vulnerabilities checks
•	 SQL performance concerns, such as N+1 problem









A layered architecture using MVC. This pattern provides a 
clear separation between the components that conform 
the application, losing coupling, separation of concerns, 
which helps to maintain the source code in the future.

An automated process to provide new features. We have 
a bot that helps the development team to build or scaf-
fold recurring functionalities, enabling them to focus on 
the product core, but also will profoundly impact on the 
developer productivity, happiness, time-to-market, and 
quality increase.

Performance is tackled since day one of development as 
we provide lean Docker images and continuous checks 
to provide immediate feedback for the developer to take 
action. Depending on the requirements for the application 
being built, we can take some other actions for this con-
cern, such as caching, data structures, and so on.

Scalability is something we build with time, in other 
words, we start as lean as possible, and from there we 
scale the platform with many different techniques, such 
as serverless, clustering, caching, load balancing sched-
uling, background jobs, etc. This approach helps the 
client to pay no more than the infrastructure needed.









https://github.com/IcaliaLabs


© 2020 Icalia Labs 8

Authentication

Authentication is merely allowing the user to access an application 
based on their username/email and password. But a lot happens on 
this process, and we do not just validate for access credentials.

Authorization

For every application, we establish access policies for each action 
on every controller, for every user role, but also where necessary we 
provide fine-grained access control to other resources, such as view 
components, methods, and pages.

•	 We have a centralized access manager that out of the box blacklists 
all the application resources for every role, this way if a new role is 
added we enforce all the policies and rules

•	 In some cases we also define authorization from the routes dis-
patcher, to provide an extra layer of resource access from the ap-
plications, an API endpoint namespace, the back office module, and 
authenticated users routes.

•	 Access to third-party services, such as the database, email provid-
er, or any other is handled by the application using environment 
variables, and the users don’t have access to them.

Password Policy

We will guide you into how encryption works, and how we implement 
it at Icalia Labs to protect and ensure passwords are properly obfus-
cated from the naked eyes. SHA and MD5 are some of the most com-
mon algorithms to encrypt passwords and save them to the database. 
It is important to recognize that for now, it is impossible to decrypt 
the encrypted passwords from these algorithms, but there are always 
ways for attackers to exploit them. The most simple one is the brute 
force attack, which is based on a trial-error method to decode the 
encrypted data. Rainbow tables is a recurrent tool for attackers to 
perform an automated match and gain access.

Even though this vulnerability seems simple to crack, by creating 
strong password policies for your site users, it becomes harder for 
hackers to crack encrypted credentials. Some measures to increase 
the score for securing passwords are:

•	 Usage of special characters such as !,@,?,&
•	 Minimum of 8 characters 
•	 At least one capital letter
•	 Usage of at least 1 number

Depending on the security concern for our clients, we build combina-
tions from these options to meet the desired security level.

At Icalia Labs we salt passwords using bcrypt as mentioned earlier 
which encodes the data by generating different encryption values 
from the same password input in this case. For more information on 
how this works, you can check this link.

User management on applications
We understand that managing users and authorization is always a concern for our clients, so that is why we dedi-
cate the next section only to provide a comprehensive guide on how we achieve this for every single application.

https://en.wikipedia.org/wiki/Rainbow_table
https://en.wikipedia.org/wiki/Bcrypt#:~:text=bcrypt%20is%20a%20password%2Dhashing,presented%20at%20USENIX%20in%201999.


© 2020 Icalia Labs 9

Two-factor authentication is playing a primary role in providing us-
ers an additional layer of security to guarantee access to almost any 
modern application, in some cases this feature is mandatory to per-
form some data sensitive data transactions. This security concern can 
be implemented by several mechanisms, such as:

•	 OTP (One Time Password) - this is one of the most common ways 
out there. The application server requests an auto-generated 
password (commonly digits) to an SMS gateway to send the OTP to 
the user’s device. Once the password is input, it is validated by the 
application, and only if the OTP matches, the user is allowed into 
the system.

•	 Security questions - In some cases, some applications ask several 
security questions that only the user can answer, so once they are 
answered correctly and validated, the user is allowed into the system.

•	 Authenticator app - a more modern approach would be to use 
an authenticator app, which continuously generates new tokens 
to grant access to the application, so when the user is prompt to 
provide a new token, he/she just needs to open the application 
and type in the current token. The token is validated and the user 
is allowed to perform the action.

User management on applications


	03   Online applications

