
cyber:bot Educator
Workshop

Supporting slides for the
cyber:bot online tutorials on

http://learn.parallax.com

Agenda and Goals

Goals

■ Enjoy the day, laugh, and play
■ Use Parallax tutorials like a student
■ Write our own Python code
■ Break barriers about using software

and hardware
■ Develop basic electronic

troubleshooting skills
■ Understand hardware from the

inside, lower levels
■ Gain confidence to use cyber:bots

in classrooms
■ Identify other Python support

materials
■ See industry connections

Agenda

■ Introductions and Agenda (5 mins)
■ Software (1 hour)

○ Python / MicroPython
○ micro:bit Software Setup
○ Program micro:bit
○ Add cyberbot library

■ Build the cyber:bot (1 hour)
■ Build circuits, coding and running

our robots (5 hours)
○ LEDs and buttons
○ Touch Navigation (Whiskers)
○ Light Following Circuit
○ Infrared Object Avoidance
○ Infrared Remote Control

■ Support and Products

 Who really benefits?
Students!

ZakUak (subscribe on YouTube)
spent two days at the Parallax
booth at the USA Science and
Engineering Festival. He says
about cyber:bot in his video:

■ No black box, the real thing!
■ This makes coding interesting
■ Python is a fun programming

language

See what happens when you put
these robots in class. Tell us!

Discussion: is encouraged and appreciated!

Python and micro:bit

“There is no designated programming language for the course. Teachers can choose the programming language that is most appropriate for them and their students to use in the classroom.” - CollegeBoard

■ Beginner-friendly (reads like English - looks BASIC)
■ Object-oriented, structured language
■ Runs on embedded hardware (MicroPython)
■ Tons of examples freely available
■ Programming tool support (open source, all OSs, etc.)
■ Forces new programmers to use alignment/indentation for

legibility (good practice)
■ Not overly verbose - easier to "get at the heart" of the

concept you're teaching (no wading through a bunch of
meaningless syntax rules that obscure the instructional
intent)

■ Free / open source (no awkward licensing/copyright)

MicroPython - Python for Microcontrollers

MicroPython is a creation
of Damien George

micro:bit: Hardware Features

Python + Robotics

■ Students learn more when
they can “see” their
programs run

■ Competition-based
challenges make it fun

■ Basis for learning product
development, robotics, and
mechanical

■ Low-level skills further
creative vs. user-level
experience

■ https://nicerc.org/
■ Department of Homeland

Security funded
■ Create a cyber-ready

workforce
■ Produces a free curriculum

for American educators
■ Staff of 25

■ https://www.parallax.com
■ Established educational

robotic company since
1992

■ American manufacturer
from Rocklin, California

■ Staff of 25

cyber:bot is a joint project of NICERC and Parallax

https://nicerc.org/
https://www.parallax.com

Educational Resources

NICERC.org Cyber Fundamentals
Create a login for their micro:bit Python lessons

NICERC.org Cyber Fundamentals

micro:bit “Ideas”
https://microbit.org/ideas/python/

https://microbit.org/ideas/python/

BBC micro:bit Python Documentation
https://microbit-micropython.readthedocs.io/en/latest/

Hackster.io Educator Resources
The Hardware (1), JavaScript (2) and Python (3)

Learn.parallax.com

https://learn.parallax.com/
https://learn.parallax.com/

Software Setup

https://learn.parallax.com/tutorials/robot/cyberbot/software-setup-microbit
https://learn.parallax.com/tutorials/robot/cyberbot/software-setup-microbit

Connect micro:bit to Computer

Open https://python.microbit.org/v/beta

https://python.microbit.org/v/beta

Writing micro:bit
Programs

https://learn.parallax.com/tutorials/robot/cyberbot/add-modules-your-microbit
https://learn.parallax.com/tutorials/robot/cyberbot/add-modules-your-microbit

LED Matrix - Scrolling
#hello_goodbye.py

from microbit import *

display.scroll(‘Hello’, delay = 500)
display.scroll(‘Goodbye’, delay = 150)

● Change the text with your own message.
● Change the delays.
● Add more lines of code and Flash!

LED Matrix - Premade Images
#hello_goodbye.py

from microbit import *

display.show(Image.HEART)
sleep (500)
display.show(Image.HEART_SMALL)
sleep (500)

● Press the “reset” button to see it again.
● Try your own - Google “micro:bit MicroPython Images”

Custom Images

medium_box.py

from microbit import *

display.set_pixel(1, 1, 9)
display.set_pixel(1, 2, 9)
display.set_pixel(1, 3, 9)
display.set_pixel(2, 1, 9)
display.set_pixel(2, 3, 9)
display.set_pixel(3, 1, 9)
display.set_pixel(3, 2, 9)
display.set_pixel(3, 3, 9)

set_pixel
x y b

● Draw your own
shape.

● Change the
brightness.

display.set_pixel (x, y, b)

x and y are pixel position, b is brightness

Solve Math Problems
● assignment (=)
● addition (+)
● subtraction (-)
● multiplication (*)
● division (/)

#simple_math.py

from microbit import *

a = 89
b = 42
c = b + a

display.scroll(“a = b = ”)
display.scroll(c)

Make Decisions - If Else Statement

#simple_decision.py

from microbit import *

a = 89
b = 42
if a > b:

display.scroll(“a is greater than b”)
else:

display.scroll(“a is not greater than b”)

● compare-equals (==)
● greater than (>)
● less than (<)
● greater than or equal to (>=)
● less than or equal to (<=)

Count and Repeat
● Many robotic tasks involve repeating an action over and

over.
● For-range Loop repeats a process a number of times

#count_to_ten.py

from microbit import *

for counter in range (1, 11):
display.scroll(counter)

display.scroll(“All done!”)

Constants and Comments
● " " " is for block comments (docstrings) and allow many lines to

be commented as documentation.
● # is for line comments and explains subsequent line of code
"""
count_to_ten_documented.py
"""

from microbit import * #import the microbit library

START_VAL = 1 #set START_VAL to 1
STOP_VAL = 11 #set STOP_VAL to 11
STEP_VAL = 1 #set STEP_VAL to 1

#count from START_VAL to STOP_VAL incrementing by STEP_VAL
for counter in range(START_VAL, STOP_VAL, STEP_VAL):
 display.scroll(counter) #display the counter value

display.scroll("All Done!") #display message when done

Pushbuttons
● The micro:bit module can be programmed to respond to these

buttons being pressed.
● Each button exists as an object referred to as button_a and

button_b.

● Used to change program functions, start/stop, or play games.
● These are not the reset button, but there is a reset button too!

button_a button_b

Pushbuttons

#is_pressed.py
from microbit import *

while True:
 if button_a.is_pressed():
 display.show(Image.YES)
 else:
 display.show(Image.NO)

#was_pressed.py
from microbit import *

while True:
 sleep(5000)
 if button_a.was_pressed():
 display.show(Image.YES)
 else:
 display.show(Image.NO)

is_pressed() was_pressed()

Modules, Methods, Functions, and Objects
● Modules are code libraries that include the objects
● Methods are functions that belong to a specific object
● Functions are defined by a def statement. Functions can pass

parameters (arguments) - like robot speed, sensor states.

#smile.py

from microbit import *

def smile():
 display.show(Image.HAPPY)
 sleep(2000)

smile()

show method
belongs to
display object

display object
smile function

microbit module

Adding the cyberbot library (module)
● Two editor choices: online Python editor

(https://python.microbit.org/v/beta) or local installed Mu
editor (https://codewith.mu/)

● Use the online Python editor (less trouble with tabs/spaces)

online Python editor

local install Mu

https://python.microbit.org/v/beta
https://codewith.mu/

Adding the cyberbot library (module)

1. Download the cyberbot library archive to your desktop from
https://bit.ly/2XOgvGk or “Add modules to your micro:bit”

2. Extract the contents of the file to a new folder.
3. “Load” Python code or hex file using Load button

https://bit.ly/2XOgvGk

Adding the cyberbot library (module)

4. Check that the cyberbot.py file appears.

5. Close the window.

Adding cyberbot library with Mu editor

https://docs.google.com/file/d/1oGbmB3ZlC_AFpNEzdFbF2g86ibsCNq_M/preview

Cyberbot.py library contents
bot(pin).read_r(data) # retrieve returned value via I2C

bot(pin).digital_write(state) # set I/O pins high or low

bot(pin).analog_write(PWM) # set duty cycle to four available PWM channels

bot(pin).digital_read(state) # get I/O pin state high or low

bot(pin).states(states) # set binary pin states to multiple I/Os

bot(pin).directions(directions) # set I/O pin directions

bot(pin).qti(QTI values) # set and read four line follower sensors

bot(pin).pulse_out(pulsewidth) # set and maintain a pulse

bot(pin).pulse_in(pulsewidth) # measure pulse on I/O pin (accelerometers)

bot(pin).pulse_count(counts) # count pulses over duration of time

bot(pin).rc_time(time) # pseudo-analog R/C charge/discharge time on I/O pin

bot(pin).frequency_out(sound) # set frequency, duration to I/O pin

bot(pin).ir_detect(frequency) # generate IR pulse and get receiver value

bot(pin).servo_angle(angle) # set and hold servo in an angle (up to 14 servos)

bot(pin).servo_speed(speed) # set and hold servo speed (-100 to 100)

bot(pin).servo_disable(disable) # disable a servo

bot(pin).ping_distance(distance) # configure Ultrasonic or Laser Ping, receive distance

bot(pin).tv_remote(button) # decode pulses from Sony TV remote and return button number

Build your cyber:bot

https://learn.parallax.com/tutorials/robot/cyberbot/build-your-cyberbot
https://learn.parallax.com/tutorials/robot/cyberbot/build-your-cyberbot

Assemble your cyber:bot
https://learn.parallax.com

https://learn.parallax.com

Navigation

https://learn.parallax.com/tutorials/robot/cyberbot/navigation-cyberbot
https://learn.parallax.com/tutorials/robot/cyberbot/navigation-cyberbot

Center the Servos
servo_centering
from cyberbot import *

bot(18).servo_speed(0)
bot(19).servo_speed(0)

● Download above script
● cyber:bot switch in position 2
● Turn both potentiometers with

screwdriver until servos stop turning

Forward Motion
Means One Servo Turns Opposite Direction

Clockwise Rotation

 Counter-clockwise Rotation

left_servo_CW.py
from cyberbot import *

bot(18).servo_speed(-75)

left_servo_CCW.py
from cyberbot import *

bot(18).servo_speed(75)

Forward

from cyberbot import *

forward_three_seconds.py

bot(18).servo_speed(75)
bot(19).servo_speed(-75)
sleep (3000)

stop
bot(18).servo_speed(0)
bot(19).servo_speed(0)

Backward

from cyberbot import *

backward_three_seconds.py

bot(18).servo_speed(-75)
bot(19).servo_speed(75)
sleep (3000)

stop
bot(18).servo_speed(0)
bot(19).servo_speed(0)

Right

from cyberbot import *

right_three_seconds.py

bot(18).servo_speed(75)
bot(19).servo_speed(0)
sleep (3000)

stop
bot(18).servo_speed(0)
bot(19).servo_speed(0)

Left

from cyberbot import *

left_three_seconds.py

bot(18).servo_speed(0)
bot(19).servo_speed(-75)
sleep (3000)

stop
bot(18).servo_speed(0)
bot(19).servo_speed(0)

All Together Now

Left Motor
bot(18).servo_speed

Right Motor
bot(19).servo_speed

Forward 75 -75

Backward -75 75

Left 0 -75

Right 75 0

Square
Write a Python script for your cyber:bot

from cyberbot import *
square.py

straight
bot(18).servo_speed(75)
bot(19).servo_speed(-75)
sleep (3000)

right
bot(18).servo_speed(75)
bot(19).servo_speed(0)
sleep (2000)

you write the rest
of the script

from cyberbot import *
square_with_repeat

for y in range (0, 3):
straight
bot(18).servo_speed(75)
bot(19).servo_speed(-75)
sleep (3000)

right
bot(18).servo_speed(75)
bot(19).servo_speed(0)
sleep (2000)

Repeat Loops

1.

A square
consists of two
movements, four
times.

2.
3.

Functions Without
Arguments

• Simplified the drive
commands

• Functions “lock in” the
speed and duration

• Why not pass arguments
of speed and duration?

from cyberbot import *
functions without arguments

def straight():
 bot(18).servo_speed(75)
 bot(19).servo_speed(-75)
 sleep (3000)

def right():
 bot(18).servo_speed(75)
 bot(19).servo_speed(0)
 sleep (1100)

def stop():
 bot(18).servo_speed(0)
 bot(19).servo_speed(0)

straight()
right()
straight()
right()
stop()

Functions with
Arguments

• Use the functions and
pass values as
arguments

• Creates simplified code;
easier to read

• Write Python code and
use functions to draw a
triangle.

from cyberbot import *
functions with arguments

def straight(duration):
 bot(18).servo_speed(25)
 bot(19).servo_speed(-25)
 sleep (dur)

def right(duration):
 bot(18).servo_speed(25)
 bot(19).servo_speed(0)
 sleep (duration)

def stop(duration):
 bot(18).servo_speed(0)
 bot(19).servo_speed(0)
 sleep(duration)

straight(1000)
right(500)
straight(1000)
right(500)
stop(0)

Functions with Loops

Sounds

Place the Piezospeaker

● Find piezospeaker in
the Small Robot
Electronics
Component Pack.

● Peel off the “Remove
the seal after washing”
sticker if it has one.

● Plug into the cyber:bot
board

The Tone Command

sound_effect.py

from cyberbot import *

for freq in range (500, 3100, 100):
 bot(22).tone(freq, 100)

● Sounds are used in robotics for program feedback (sensor
actions), customizing behavior, or as alarms.

● Syntax for the tone command:
○ bot(22).tone(frequency, milliseconds)

● What will this script do? Hint, the loop counter has a step value!

Notes from Frequencies
Happy Birthday!

happy_birthday.py

from cyberbot import *

bot(22).tone(2349.3, 125) #D for an eighth
bot(22).tone(2349.3, 62) #D for a sixteenth
bot(22).tone(2637.0, 250) #E for a quarter
bot(22).tone(2349.3, 250) #C for a quarter
bot(22).tone(3136.0, 250) #G for a quarter
bot(22).tone(2793.8, 500) #F for a half

Circuits

http://learn.parallax.com/tutorials/robot/cyberbot/circuits-cyberbot
http://learn.parallax.com/tutorials/robot/cyberbot/circuits-cyberbot

Blink a Light: Using Built-in LEDs
● Pins 20 and 21 each have an LED connected directly.
● Modify the code to alternate with P21.
● Speed it up!

pin_20_blink.py

from cyberbot import *

while True:
 bot(20).write_digital(1)
 sleep(2000)
 bot(20).write_digital(0)
 sleep(1000)

Blink a Light: How it Works
● bot(20).write_digital(1) sets the pin to “output high”

and connects to the 3.3V power supply.
● bot(20).write_digital(0) sets the pin to “output low”

and connects the pin to ground.

Blink a Light: Breadboard Basics

● Position 0: use for
building circuits,
flashing scripts.

● Position 1: powers
breadboard,
Propeller.

● Position 2: powers
breadboard,
Propeller, and motors
(3-pin ports)

Blink a Light:
Breadboard Basics

• Electronic projects are
easily built on breadboards

• Read schematics and
pictorials to learn how to
place components

• Prototype, proof of concept
or student projects

Blink a Light: Resistors
● Resistor is a component that “resists” the

flow of electrical current
● Current is the flow of electricity
● Each resistor has a value that tells how

strongly it resists current flow.

Blink a Light: LED
● An LED has two terminals:

○ anode lead is labeled with the plus-sign (+), and it is the
wide part of the triangle in the schematic symbol.

○ cathode lead is labeled with a minus-sign (-), and it is the
line across the point of the triangle in the schematic
symbol

● Light-emitting diode
(LED) emits light
when current passes
through it.

Blink a Light: Build an LED Circuit

● Write a program to alternate blinks on these two LEDs.

Pushbuttons: Add to the LEDs on Breadboard
• Light LEDs on P20/P21 when buttons pressed

Pushbuttons: Add to the LEDs on Breadboard
• if-elif conditional statement
• P20 LED is on when button on P3 is pressed

pin_3_button_LED.py
from cyberbot import *

while True:
 if bot(3).read_digital() == 0:
 bot(20).write_digital(0)
 elif bot(3).read_digital() == 1:
 bot(20).write_digital(1)

• Modify code to control P21 LED with P4 button.
• Make P3 button control P20 LED and P4 button

control P21 LED

https://docs.google.com/file/d/1rDeF4-nRebJ-1gCSq1Utp1ECM7VzIfQB/preview

Touch Navigation

http://learn.parallax.com/tutorials/robot/cyberbot/touch-navigation-cyberbot
http://learn.parallax.com/tutorials/robot/cyberbot/touch-navigation-cyberbot

http://www.youtube.com/watch?v=yqMzRBF8b9g

Touch Navigation: Assembled Circuit

Touch Navigation: Circuit Build

Touch Navigation: Circuit Build

Touch Navigation: Pressed / Not Pressed

Touch Navigation: Testing Circuit
• LEDs show state of whiskers (code from tutorial)

Neither
pressed.

Left pressed. Right pressed. Both pressed.

Visible Light

https://learn.parallax.com/tutorials/robot/cyberbot/visible-light-navigation-cyberbot
https://learn.parallax.com/tutorials/robot/cyberbot/visible-light-navigation-cyberbot

http://www.youtube.com/watch?v=x9-hG4d3XGU

Visible Light Following: Circuit Build

Visible Light Following: Circuit Build

Infrared Light

https://learn.parallax.com/tutorials/robot/cyberbot/infrared-light-navigation-cyberbot
https://learn.parallax.com/tutorials/robot/cyberbot/infrared-light-navigation-cyberbot

http://www.youtube.com/watch?v=ygZHoSh493o

Infrared Object Avoidance: Circuit Build

Projects

https://learn.parallax.com/tutorials/robot/cyberbot/cyberbot-roaming-ping
https://learn.parallax.com/tutorials/robot/cyberbot/cyberbot-roaming-ping
https://learn.parallax.com/tutorials/robot/cyberbot/qti-line-follower-cyberbot
https://learn.parallax.com/tutorials/robot/cyberbot/qti-line-follower-cyberbot
https://learn.parallax.com/tutorials/robot/cyberbot/control-your-cyberbot-infrared-tv-remote
https://learn.parallax.com/tutorials/robot/cyberbot/control-your-cyberbot-infrared-tv-remote

Line Follower

Infrared Remote Control

Roaming with the Ping))) Ultrasonic Sensor

Support

Purchasing cyber:bot

• Educator Hotline open 12 hrs/day (916) 701-8625
• E-mail learn@parallax.com
• Sales (916) 624-8333
• Forums http://forums.parallax.com/
• Facebook

• Parallax https://www.facebook.com/ParallaxInc/
• Micro:bithttps://www.facebook.com/groups/1756471244599979/

mailto:learn@parallax.com
http://forums.parallax.com/
https://www.facebook.com/ParallaxInc/

Cyber:bot with micro:bit #32700
$200 ea. (qty 1-9)
$190 ea. (qty 10-19)
$180 ea. (qty 20+)

Cyber:bot 12-Pack Plus #32700
$3,396.12 (regular $4,043.00)

• (12) cyber:bots
• (12) micro:bits
• (12) QTI Line Followers
• (12) Ping))) Ultrasonic

sensors and servo
mounting brackets

• (12) Infrared remote
controls

• (5) battery chargers
• (60) NiMH batteries
• 2’x6’ class banner

