
From extortion to generosity, evolution in the Iterated
Prisoner’s Dilemma
Alexander J. Stewart and Joshua B. Plotkin1

Department of Biology, University of Pennsylvania, Philadelphia, PA 19104

Edited* by William H. Press, University of Texas at Austin, Austin, TX, and approved July 25, 2013 (received for review April 3, 2013)

Recent work has revealed a new class of “zero-determinant” (ZD)
strategies for iterated, two-player games. ZD strategies allow a
player to unilaterally enforce a linear relationship between her
score and her opponent’s score, and thus to achieve an unusual
degree of control over both players’ long-term payoffs. Although
originally conceived in the context of classical two-player game the-
ory, ZD strategies also have consequences in evolving populations
of players. Here,we explore the evolutionary prospects for ZD strat-
egies in the Iterated Prisoner’s Dilemma (IPD). Several recent studies
have focused on the evolution of “extortion strategies,” a subset of
ZD strategies, and have found them to be unsuccessful in popula-
tions. Nevertheless, we identify a different subset of ZD strategies,
called “generous ZD strategies,” that forgive defecting opponents
but nonetheless dominate in evolving populations. For all but the
smallest population sizes, generous ZD strategies are not only ro-
bust to being replaced by other strategies but can selectively replace
any noncooperative ZD strategy. Generous strategies can be gener-
alized beyond the space of ZD strategies, and they remain robust to
invasion. When evolution occurs on the full set of all IPD strategies,
selection disproportionately favors these generous strategies. In some
regimes, generous strategies outperform even the most successful
of the well-known IPD strategies, including win-stay-lose-shift.
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Press and Dyson (1) recently revealed a remarkable class of
strategies, called “zero-determinant” (ZD) strategies, for

iterated two-player games. ZD strategies are of particular interest
in the Iterated Prisoner’s Dilemma (IPD), the canonical game
used to study the emergence of cooperation among rational
individuals (2–9). By allowing a player to unilaterally enforce
a linear relationship between her payoff and her opponent’s pay-
off, Press and Dyson (1) argue, ZD strategies provide a sentient
player unprecedented control over the long-term outcome of
IPD games. In particular, Press and Dyson (1) highlighted a subset
of ZD strategies, called “extortion strategies,” that grants the
extorting player a disproportionately high payoff when employed
against a naive opponent who blindly adjusts his strategy to max-
imize his own payoff.
A natural response to Press and Dyson (1) is to ask: What are

the implications of ZD strategies for an evolving population of
players (10)? Although several recent studies have begun to ex-
plore this question (11, 12), they have focused almost exclusively
on extortion strategies. Extortion strategies are not successful in
evolving populations unless the population size is very small. Like
all strategies that prefer to defect rather than to cooperate, ex-
tortion strategies are vulnerable to strategies that reward co-
operation but punish defection. However, there is more to ZD
strategies than just extortion, and recent work has uncovered some
ZD strategies that promote cooperation in two-player games
(10, 13). Here, we consider the full range of ZD strategies in a
population setting and show that when it comes to evolutionary
success, it is generosity, not extortion, that rules.
We begin our analysis by considering populations restricted to the

space of ZD strategies. We show that evolution within ZD always
leads to a special subset of strategies, which we call “generous” ZD.
Generous ZD strategies reward cooperation but punish defection

only mildly, and they tend to score lower payoffs than those of
defecting opponents. Next, we build on recent work by Akin (13),
who identified generous strategies beyond those contained within
ZD. We demonstrate that a large proportion of these generous
strategies are robust to replacement in an evolving population. At
worst, the robust generous strategies can be replaced neutrally.
Conversely, we demonstrate that most generous strategies can
readily replace resident nongenerous strategies in a population. As
a result, generous strategies are just as, or sometimes even more,
successful than themost successful of well-known IPD strategies in
evolving populations. Finally, we show that populations evolving
on the full set of IPD strategies spend a disproportionate amount
of time near generous strategies, indicating that they are favored
by evolution.

Methods and Results
In the Prisoner’s Dilemma, two players, X and Y, must simulta-
neously choose whether to cooperate (c) or defect (d). If both
players cooperate (cc), they each receive payoff R. If X cooper-
ates and Y defects (cd), X loses out and receives the smallest
possible payoff, S, whereas Y receives the largest possible payoff,
T. If both players defect (dd), both players receive payoff P. Pay-
offs are specified so that the reward for mutual defection is less
than the reward for mutual cooperation (i.e., T >R>P> S). It is
typically assumed that 2R>T + S, so that it is not possible for
total payoff received by both players to exceed 2R. In what follows,
we will consider the payoffs T =B, R=B−C, P= 0, and S= −C,
which comprise the so-called “donation game” (12).
The IPD consists of infinitely many successive rounds of the

Prisoner’s Dilemma. Press and Dyson (1) showed that it is sufficient
to consider only the space of memory-1 strategies (i.e., strategies
that specify the probability of a player cooperating in each round
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in terms of the payoff she received in the previous round.Memory-
1 strategies consist of four probabilities, p= fpcc; pcd; pdc; pddg. In
particular, Press and Dyson (1) showed that the long-term payoff
to a memory-1 player pitted against an arbitrary opponent is the
same as her payoff would be against some other memory-1 op-
ponent. Thus, we limit our analysis to memory-1 players without
loss of generality (Materials and Methods).

Evolutionary Game Theory. In the context of evolutionary game
theory, we consider a population of N individuals who are each
characterized by a strategy p. We say strategy p receives long-term
payoff πðp; qÞ against an opponent with strategy q. The success of
a strategy depends on its payoff when pitted against all individuals
in the population (14–17). Traditionally, the evolutionary out-
come in such a population has been understood in terms of
evolutionary stable strategies (ESSs). A strategy p is an ESS if its
long-term payoffs satisfy πðp; pÞ> πðp; qÞ, or πðp; pÞ= πðp; qÞ and
πðp; qÞ> πðq; qÞ, for all opponents q≠p.
The ESS condition provides a useful notion of stability in the

context of an infinite population. However, in a finite population,
the concept must be generalized to consider whether selection
favors both invasion and replacement of a resident strategy by
a mutant strategy (18, 19). In a finite, homogeneous population of
size N, a newly introduced neutral mutation (i.e., a mutation that
does not change the payoff to either player) will eventually replace
the entire population with probability ρ= 1=N. A deleterious
mutation, which is opposed by selection, will fix with probability
ρ< 1=N, whereas an advantageous mutation, which is favored by
selection, will fix with probability ρ> 1=N. We say that a resident
strategy p in a finite population of size N is “evolutionary robust”
against a mutant strategy q if the probability of replacement sat-
isfies ρ≤ 1=N; in other words, the robust strategy cannot be se-
lectively replaced by the mutant strategy. In the limit of infinite
population size, N→∞, the condition ρ< 1=N reduces to the
ESS condition.
When selection is weak (σ � 1; Materials and Methods), we

can write down an explicit criterion for robustness: A resident
Y is evolutionary robust against a mutant X if and only if

sxxðN − 2Þ+ sxyð2N − 1Þ≤ syxðN + 1Þ+ 2syyðN − 2Þ; [1]

where we denote the long-term payoff of player X against player
Y by sxy. We restrict our analysis to memory-1 players. In the two-
player setting, this restriction does not sacrifice generality because,
as per Press and Dyson (1), the payoff received by a memory-1
strategy Y can be determined independent of an opponent’s mem-
ory. However, in an evolutionary setting, Y ’s success depends
also on the payoff her opponent receives against himself. None-
theless, we will show that our results for generous strategies hold
against all opponents, no matter how long their memories, pro-
vided the standard IPD assumption 2R>T + S holds.

Zero-Determinant Strategies, Extortion, and Generosity. Among the
space of all memory-1 IPD strategies, Press and Dyson (1) iden-
tified a subspace of ZD strategies that ensure a fixed, linear re-
lationship between two players’ long-term payoffs. If player Y
facing player X employs a ZD strategy of the form

pcc = 1−ϕð1− χÞðB−C− κÞ
pdc = 1−ϕ½ χC+B− ð1− χÞκ�
pcd =ϕ½ χB+C+ ð1− χÞκ�
pdd =ϕð1− χÞκ;

their payoffs will satisfy the linear relationship

ϕ
�
sxy − χsyx − ð1− χÞκ�= 0: [2]

The parameters χ and κ must lie in the range 0≤ κ≤B−C and
max

�
κ−B
κ+C;

κ +C
κ−B

�
≤ χ ≤ 1 to produce a feasible strategy. Eq. 2 defines

the full space of ZD strategies introduced by Press and Dyson (1).
Within this space, two particular subsets are of special interest:
the extortion strategies, described by Press and Dyson (1), for
which κ=P= 0 and χ > 0, and the generous strategies, described
in our commentary (10), for which κ=R=B−C and χ > 0.

Extortion strategies ensure that either the extortioner Y receives
a higher payoff than her opponent X, syx > sxy, or that both players
otherwise receive the payoff for mutual defection, syx = sxy = 0. In
contrast, generous strategies ensure that both players receive the
payoff for mutual cooperation, syx = sxy =B−C, or that the gen-
erous player Y otherwise receives a lower payoff than her oppo-
nent, syx < sxy.
Recent work has focused on the evolutionary prospects of

extortioners (11, 12) and has found that such strategies are un-
successful, except in very small populations. In fact, as we will show
below, selection favors replacement of extortioners by generous
strategies, and generous strategies are robust to replacement by
extortioners. Moreover, the success of generous strategies persists
when evolution proceeds within the full space of IPD strategies.

Evolution of Generosity Within ZD Strategies.We start by identifying
the subset of ZD strategies that is evolutionary robust against all
IPD strategies in a population of size N. Substituting Eq. 2 into
Eq. 1 shows that a resident ZD strategy Y with κy =B−C is robust
against any mutant IPD strategy X if and only if χy ≥ ðN + 1Þ=
ð2N − 1Þ (Materials and Methods). Conversely, provided that N > 2,
any resident ZD strategy Y with κy <B−C can be selectively re-
placed by another strategy, namely, by a ZD strategy with κx =
B−C and χx > ðN + 1Þ=ð2N − 1Þ (Materials and Methods). Hence,
those ZD strategies with κ=B−C and χ ≥ ðN + 1Þ=ð2N − 1Þ are
precisely the ZD strategies that are evolutionary robust against all
IPD strategies. We denote this set of robust ZD strategies as ZDR:

ZDR =
�
ðκ; χ;ϕÞjκ=B−C; 1> χ ≥

N + 1
2N − 1

�
:

Here, ϕ is left unconstrained, but it must lie in the range required
to produce a feasible strategy, 0<ϕ≤ χB=ðχC+BÞ.

The robust ZD strategies are what we call “cooperative,”
meaning they satisfy κ=B−C. Any cooperative player will agree
to mutual cooperation when facing another cooperative player,
and so they each receive payoff B−C. If a cooperative strategy
further satisfies the condition χ > 0, we say that the strategy is
generous, meaning that any deviation from mutual cooperation
causes the generous player’s payoff to decline more than that of
her opponent. The robust ZD strategies are all generous.
We now consider evolution in a population of N > 2 players

restricted to the space of ZD strategies. Because selection favors
replacement of any noncooperative ZD strategy by some member
of ZDR, we expect evolution within the space of ZD strategies to
tend towards generous strategies, and thereafter to remain at
generous strategies, because ZDR is robust. This expectation is
confirmed by Monte Carlo simulations of well-mixed populations
of IPD players (Fig. 1). Following Hilbe et al. (12) and Traulsen
et al. (20), we modeled evolution as a process in which individuals
copy successful strategies with a probability that depends on their
relative payoffs (Materials and Methods). As Fig. 1 shows, evolu-
tion within the set of ZD strategies proceeds from extortion (κ= 0
and χ > 0) to generosity (κ=B−C and χ > 0). In fact, even pop-
ulations initiated with χ < 0 evolve to generosity (Fig. S1).

Good Strategies. The generous ZD strategies identified above are
best understood by comparison with the space of “good” strategies
recently introduced by Akin (13). A good strategy stabilizes co-
operative behavior in the two-player IPD: By definition, if both
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players adopt good strategies, each receives payoff B−C and nei-
ther player can gain by unilaterally changing strategy. All good
strategies are cooperative (i.e., they have κ=B−C). Moreover,
the generous ZD strategies described above are precisely the
intersection of good strategies (13) and ZD strategies (1) (Fig. 2).

We can identify the space of memory-1 good strategies as
those of the form

pcc = 1−ϕð1− χÞðB−C− κÞ
pdc = 1−ϕ½ χC+B− ð1− χÞκ+ λ�
pcd =ϕ½ χB+C+ ð1− χÞκ− λ�
pdd =ϕð1− χÞκ;

where −1≤ χ ≤ 1 and −ðχB+CÞ≤ λ≤ ðB+ χCÞ are required to
produce a feasible strategy. Sufficient conditions for set G of
good strategies are (SI Text):

G={ðκ; χ;ϕ; λÞj
κ ¼ B−C; λ> − ðB−CÞχ; λ> − ðBþ CÞχ};

where the parameter ϕ is left unconstrained except that it must
produce a feasible strategy. Numerics indicate these sufficient con-
ditions are also necessary (SI Text). Note that the good strategies
with λ= 0 correspond precisely to the generous ZD strategies.
It is interesting to note that in addition to tit-for-tat and gen-

erous tit-for-tat, which are ZD, the set of good strategies con-
tains win-lose-stay-shift, which is widely known as one of the most
evolutionary successful IPD strategies (7). Nonetheless, even though
win-lose-stay-shift is good, it is not generous (it has χ =−C=B< 0;
Fig. 3). Because it lacks generosity, win-lose-stay-shift can, in fact,
be outcompeted in evolving populations, as we shall see below.

Evolutionary of Generosity Within Good Strategies. In this section,
we ask which good strategies are evolutionary robust, and we find
that the robust good strategies are always generous (i.e., have
χ > 0, regardless of λ). In the case of ZD, the conditions for evo-
lutionary robustness do not depend on the parameter ϕ. Similarly,
we will derive conditions for the robustness of good strategies that
hold regardless of ϕ.
Application of Eq. 1 allows us to derive the conditions for a

good strategy to be evolutionary robust against all IPD strategies
in a population of size N (SI Text). The resulting set, GR, of
evolutionary robust good strategies satisfies

GR ¼ {ðκ; χ;ϕ; λÞjκ ¼ B−C; χ < 1;

λ> B−C
3N ½N þ 1− ð2N − 1Þχ�;

 λ> BþC
N − 2 ½N þ 1− ð2N − 1Þχ�}:

[3]

Here, ϕ is left unconstrained, except that it must produce a fea-
sible strategy. These analytical conditions for robustness are con-
firmed by Monte Carlo simulations (Fig. S2). Setting λ= 0 in the
equation above recovers the conditions we previously derived for
the robustness of ZD strategies. As in the case of ZD, the robust
good strategies are exclusively limited to generous strategies (i.e.,
strategies with κ=B−C and χ > 0; Fig. 3).
Interestingly, the strategy win-stay-lose-shift does not lie within

the region of robust good strategies (Fig. 3). As a concrete dem-
onstration of this result, we have identified a specific strategy that
selectively replaces win-lose-stay-shift in a finite population (SI
Text and Fig. S3). Furthermore, even under strong selection, and
under increased mutation rates, win-stay-lose-shift can be dom-
inated by some strategies (Fig. S3).

Evolutionary Success of Generosity. We have shown that generous
strategies are evolutionarily robust, and eventually dominate in
a population, when players are confined to the space of ZD
strategies. We have also shown that among the good strategies,
which stabilize cooperative behavior, the evolutionary robust
strategies, GR, are also generous. To complement these results,
we now systematically query the evolutionary success of generous
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Fig. 1. Evolution from extortion to generosity within the space of ZD
strategies. Populations were simulated in the regime of weak mutation. The
figure shows the ensemble mean value of κ in the population, plotted over
time. The expression κ= 0 corresponds to the extortion strategies of Press
and Dyson (1), whereas κ=B−C corresponds to the generous ZD strategies.
Each population was initialized at an extortion strategy Eχ , with χ drawn
uniformly from the range χ ∈ ð0,1�. Given a resident strategy in the pop-
ulation, mutations to κ were proposed as normal deviates of the resident
strategy, truncated to constrain κ∈ ½0,B−C�, whereas mutations to fχ,ϕg
were drawn uniformly from max
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≤ χ ≤ 1 with ϕ drawn uni-

formly within the feasible range, given κ and χ. A proposed mutant strategy
replaces the resident strategy with a fixation probability dependent on their
respective payoffs, as in the work of Hilbe et al. (12) and Traulsen et al. (20).
The mean κ among 103 replicate populations is plotted as a function of time.
Parameters are B= 3, C = 1, N= 100, and selection strength σ = 1.
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gies. Not all good strategies are generous. As a result, only a strict subset of
good strategies is evolutionary robust, just as a strict subset of ZD strategies
is evolutionary robust. Extortion strategies are neither generous nor evolu-
tionary robust. Also shown are the locations of the classic IPD strategies (19)
win-stay-lose-shift, tit-for-tat, and generous tit-for-tat.

Stewart and Plotkin PNAS Early Edition | 3 of 6

EV
O
LU

TI
O
N

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1306246110/-/DCSupplemental/pnas.201306246SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1306246110/-/DCSupplemental/pnas.201306246SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1306246110/-/DCSupplemental/pnas.201306246SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1306246110/-/DCSupplemental/pnas.201306246SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1306246110/-/DCSupplemental/pnas.201306246SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1306246110/-/DCSupplemental/pnas.201306246SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1306246110/-/DCSupplemental/pnas.201306246SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1306246110/-/DCSupplemental/pnas.201306246SI.pdf?targetid=nameddest=SF3


strategies in general by allowing a population to explore the full
set of memory-1 strategies p= fpcc; pcd; pdc; pddg and quantifying
how much time the population spends near generosity.
Following Hilbe et al. (12) and Imhof and Nowak (21), we per-

formed simulations in the regime of weak mutation, so that the
population is monomorphic for a single strategy at all times. Mutant
strategies, drawn uniformly from the space fpcc; pcd; pdc; pddg, are
proposed at rate μ. A proposed mutant either immediately fixes or
is immediately lost from the population, according to its fixation
probability calculated relative to the current strategy in the pop-
ulation (12, 20). Over the course of this simulation, we quantified
how much time the population spends in a δ-neighborhood of ZD,
ZDR, G, and GR strategies, as well as extortion strategies (Fig. 4).
The δ-neighborhood of a strategy set is defined as those strategies
within Euclidean distance δ of it, among the space of all memory-1
strategies. If the proportion of time spent in the δ-neighborhood is

greater than would be expected by random chance (which is pro-
portional to the volume of the δ-neighborhood), evolution is said
to favor that set of strategies.
It is already known that except for very small populations, a

population spends far less time near extortion strategies than
expected by random chance and that the same is true for the set
of all ZD strategies (11, 12). Thus, in general, extortion and ZD
strategies are disfavored by evolution in populations. This has led
to the view that ZD strategies are of importance only in the
setting of classical two-player game theory, and not in evolving
populations (11, 22). In Fig. 4, we repeat this analysis but additionally
report the δ-neighborhoods ofZDR,G, andGR strategies. We find
that, except in very small populations, selection strongly favorsG,
GR, and especially ZDR strategies. In particular, the population
spends more than 100-fold longer in the neighborhood of ZDR
strategies than expected by random chance. Thus, ZD contains a
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Fig. 3. Space of all cooperative IPD strategies, projected onto the parameters χ and λ. The boundary of the simplex delineates the set of feasible strategies with
κ=B−C. Strategies colored light blue or dark blue are good, whereas strategies colored dark blue are both good and evolutionary robust, under weak selection.
Setting λ= 0 recovers the space of cooperative ZD strategies (red line). Note that all robust strategies are generous (i.e., χ >0, κ=B−C). Each point in the figure,
fχ,λg, has an associated range ofϕ values, and thus corresponds tomultiple IPD strategies. However, the evolutionary robust good strategies resist replacement by
any other strategy, regardless of the choice of ϕ. The figure illustrates the robust region for a large population size, whereas Eq. 3 gives the exact N-dependent
conditions for robustness. Also shown are the locations of several classic IPD strategies. Tit-for-tat ðχ = 1Þ and generous tit-for-tat ðχ = 0Þ are limiting cases of
generous ZD strategies, but they are not robust. Likewise, win-stay-lose-shift is good but not robust.
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subset of strategies that is remarkably successful in evolving
populations, in contrast to the claims of Adami and Hintze (11).
We also analyzed the time spent near each individual good

strategy, under both weak and strong selection. We found that
the strategies most strongly favored by selection are virtually all
generous (Fig. S4). The remaining good strategies are typically
moderately favored by selection, with the exception of those near
win-stay-lose-shift, which are also strongly favored.

Success of Generous Strategies Against Classic IPD Strategies. To
complement the weak-mutation studies described above, we also
compared the performance of generous ZD strategies against
several classic IPD strategies, in a finite population of players (12,
18–20), assuming either strong or weak mutation (i.e., high or low
mutation rates). We performed Monte Carlo simulations of pop-
ulations constrained to different subsets of strategies, similar to
those of Hilbe et al. (12). In these simulations, a pair of individuals
is chosen from the population at each time step, and the first in-
dividual copies the strategy of the second with a probability that
depends on their respective payoffs (Table S1), as above. Muta-
tions also occur, with probability μ, so that the mutated individual
randomly adopts another strategy from the set of strategies being
considered. We ran simulations at a variety of populations sizes,
ranging from from N = 2 to N = 1;000.
At very small population sizes, defector strategies tend to dom-

inate (Fig. S5), reflecting the fact that extortion pays in the classic
two-player setting (1). However, as the population size increases,
good strategies, such as win-stay-lose-shift, and generous ZD
quickly begin to dominate (Fig. S5). Which strategy does best
depends on the population size, the mutation rate, and the set of
available strategies (Figs. S5 and S6). In some regimes, generous
ZD strategies even outperform win-stay-lose-shift (Fig. S5).

Discussion
We have shown that generous strategies tend to dominate in
evolving populations of IPD players. This is a surprising result

because, when faced with a defector strategy, generous strategies
must, by definition, suffer a greater reduction in payoff than their
opponent suffers. One might expect such strategies to be vulner-
able to replacement by defector strategies, whereas, in fact, we
have shown that the reverse is true. Likewise, one might expect
generous strategies to be unsuccessful at displacing resident
strategies in a population. However, simulations reveal (Figs. S7
and S8) that most generous strategies can selectively replace al-
most all other IPD strategies.
How can we account for the remarkable evolutionary success of

generosity? First, it is important to note that the most successful
generous strategies are not too generous. For example, in a large
population, evolutionary robust ZD strategies must have χ > 1=2;
that is, they must reduce their payoff when faced with a defector
opponent but not by too much. Second, although generous strat-
egies score less than defector strategies in head-to-head matches,
they are able to limit the difference between their own payoff and
their opponent’s payoff (Materials and Methods). As a result, they
tend to have a consistent probability ρ> 1=N of replacing a di-
versity of resident IPD strategies (Fig. S8), allowing them to suc-
ceed in an evolutionary setting.
We found that generous ZD strategies are particularly suc-

cessful when mutations arise at an appreciable rate. Under such
circumstances, ZDR strategies can dominate even win-stay-lose-
shift, a perennial favorite in evolving populations (7, 11, 23, 24).
Overall, selection strongly favors generous ZD strategies when
evolution proceeds in the full space of memory-1 strategies. These
results strongly contravene the view that ZD strategies are of little
evolutionary importance (11, 22). In fact, we have shown that
a subset of ZD strategies, the generous ones, is strongly favored in
the evolutionary setting.
The discovery and elegant definition of ZD strategies remains

a remarkable achievement, especially in light of decades worth of
prior research on the Prisoner’s Dilemma in both the two-player
and evolutionary settings. ZD strategies comprise a variety of new
ways to play the IPD, and Akin’s generalization of cooperative ZD
to good strategies (13) provides novel insight into how cooperation
between two rational players can be stabilized. However, in an
evolutionary setting, among both ZD and good strategies, it is the
generous ones that are most successful.

Materials and Methods
Notation. For ease of analysis, the parameter χ we use throughout is the in-
verse of that used by Press and Dyson (1). In addition, to avoid confusion with
δ-neighborhoods, we use λ in place of Akin’s δ (13).

Evolutionary Simulations. We simulated a well-mixed population in which
selection follows an “imitation” process (12, 20). At each discrete time step,
a pair of individuals ðX,YÞ is chosen at random. X switches its strategy to
imitate Y with probability fx→y :

fx→y =
1

1+ exp
�
σ
�
sx − sy

��,

where sx and sy denote the average IPD payoffs of players X and Y against
the entire population and σ denotes the strength of selection. When a mu-
tant strategy X is introduced to a population otherwise consisting of a resi-
dent strategy Y, its probability of fixation, ρ, is given by

ρ=
1PN−1

i= 0∏
i
j =1e

σ½ðj−1Þsyy+ðN−jÞsyx−jsxy−ðN−j−1Þsxx �: [4]

Taylor expansion to first order about σ= 0 gives Eq. 1, the condition for
selective replacement of Y by X under weak selection.

Evolutionary Robustness of Cooperative ZD Strategies. Suppose that a resident
strategy Y is cooperative and ZD. We will show that Y is evolutionary robust
if and only if χ ≥ ðN+ 1Þ=ð2N− 1Þ. From Eq. 1, we deduce that Y is robust
against any mutant IPD strategy X if their payoffs satisfy
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Fig. 4. Generous strategies are favored by selection in evolving populations.
We simulated a population under weak mutation, proposing mutant strate-
gies drawn uniformly from the full set of memory-1 IPD strategies. We cal-
culated the time spent in the δ-neighborhood (12) of ZD and extortion
strategies, as well as robust ZD strategies, good strategies, and robust good
strategies, relative to their random (neutral) expectation. For small pop-
ulation sizes, extortioners are abundant and generous strategies are nearly
absent. As population size increases, the frequency of generous strategies
and good strategies is strongly amplified by selection, whereas extortion
strategies, and ZD strategies in general, are disfavored, as previously reported
(12). Simulations were run until the population fixed 107 mutations. Param-
eters are B= 3, C = 1, δ= 0:05, and selection strength Nσ = 100.
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sxy ð2N− 1Þ≤ syxðN+ 1Þ+ ðB−CÞðN− 2Þ:

Using Eq. 2 to substitute for syx yields the equivalent condition
�ðB−CÞ− sxy

�ðχð2N− 1Þ− ðN+ 1ÞÞ≥ 0:

Furthermore, we know that B−C ≥ sxy for any mutant X (because, otherwise,
Eq. 2 would imply that both syx and sxy exceed B−C, which contradicts the
assumption 2R> T + S). Therefore, the cooperative ZD strategy Y is robust if
and only if χ ≥ ðN+ 1Þ=ð2N− 1Þ.

Noncooperative ZD Strategies Can Be Selectively Replaced. Here, we show that
a resident ZD strategy Ywith κy <B−C is selectively replaced by a ZD strategy
X with κx =B−C and χx > ðN+ 1Þ=ð2N− 1Þ. Because both players are ZD, their
payoffs satisfy the equations

χxsxy − χxκx = syx − κx
χy syx − χyκy = sxy − κy ,

which result in the payoff matrix

X Y

X κx



1− χy

�
κy + χyð1− χxÞκx

1− χyχx

� :

Y
ð1− χxÞκx + χx



1− χy

�
κy


1− χyχx

� κy

Substituting these payoffs into Eq. 1 shows that X can selectively replace Y if
h


2
�
1− χx

��
1+ χy −Nχy

�
+
�
1− χy

��
1+ χx −Nχx

�i
×
�
κx − κy

�
< 0: [5]

By our assumptions on X and Y, κx − κy > 0 and χx > 1=ðN−1Þ. If χy > 1=ðN− 1Þ,
inequality 5 is satisfied, and so X is selected to replace Y. If χy < 1=ðN− 1Þ, to
determine the conditions for which X is selected to replace Y, we make the
coordinate transformations χy*= χy − 1

N− 1 and χx*= χx − 1
N−1, so that χx*> 0

and χy*< 0. The inequality 5 is then satisfied provided

−2
�
1− χx*−

1
N− 1

	
χy*−

�
1− χy*−

1
N− 1

	
χx*< 0:

Rearranging this gives

χx*>
−2

�
1− 1

N− 1

�
χy*


1− 3χy*− 1
N−1

� ,

which is hardest to satisfy when χy* is at its minimum (i.e., χy*= − 1− 1
N− 1).

This results in the inequality

χx >
N+ 1
2N− 1

[6]

as a sufficient condition for X to replace Y selectively. This sufficient con-
dition is met by our assumption on X. Thus, noncooperative ZD strategies
can always be selectively replaced, provided N> 2.

Generous Strategies Limit the Difference Between Their Payoff and Their
Opponent’s Payoff. Consider Eq. 2 for a generous ZD strategy Y facing an
arbitrary opponent X:

ϕ
�
sxy − χsyx − ð1− χÞðB−CÞ�= 0:

Rearranging this expression gives the difference in the players’ payoffs:

sxy − syx = ð1− χÞ�ðB−CÞ− syx
�
:

Increasing χ reduces the difference between two players’ payoffs, regardless
of the opponent’s strategy. This is also true for generous good strategies,
which satisfy

sxy − syx = ð1− χÞ�ðB−CÞ− syx
�
− λðvcd + vdcÞ,

where vcd denotes the equilibrium rate of the play ðcdÞ and vdc the equi-
librium rate of the play ðdcÞ (13). The ability of generous strategies to limit
the difference in payoffs with arbitrary opponents accounts for their re-
markable consistency as invaders, as exemplified in Fig. S8. On the other
hand, a nongenerous strategy, such as win-stay-lose-shift, is subject to larger
differences between one player’s payoff and her opponent’s payoff, leading
to less consistent success as an invader (Fig. S8).

Long-Memory Strategies. Our results for the evolutionary success of generous
strategies inafinitepopulationalsoholdagainst longermemoryopponents.As
per Press and Dyson (1), from the perspective of a memory-1 player, a long-
memory opponent is equivalent to amemory-1 opponent. Thus, the payoff sxy
can be determined by considering only the set of memory-1 strategies. How-
ever, the payoff a long-memory opponent receives against itself, sxx , may
depend on its memory capacity. Nonetheless, under the standard IPD as-
sumption 2R> T + S, the highest total payoff for any pair of players in the
IPD is 2R; thus, sxx ≤R. This condition on sxx is the only condition required to
derive our results on the robustness of ZD and good strategies (SI Text), and
so our results continue to hold even against long-memory invaders.
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