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Decision-making involves the selection of goals or actions, but it 
also requires determination of the timing of action. When there is a 
stimulus or cue to react to, the problem of when to act is constrained 
by sensory and motor requirements and may involve balancing of 
speed versus accuracy and other facets of sensorimotor coordination, 
which have been intensively studied1. In reaction time tasks, decisions 
are associated with trial-to-trial variations in response time. These 
fluctuations have been theorized to arise from the integration of noisy 
sensory signals by a neural integrator, whose crossing of activation 
threshold triggers an action2–4. In support of this theory, neurons 
in the primate frontal cortex, parietal cortex and superior colliculus 
show gradual increases in neural activity after presentation of visual 
stimuli, reaching a constant activity threshold at which a saccadic 
eye movement is generated; reaction times are correlated with rates 
of such ramping activity5–7.

In the absence of immediate sensory stimuli, the timing of more 
‘spontaneous’ actions is also important. Action initiation may be 
affected by internal state (for example, urgency signals) but, as with 
reaction times, contains variability. An important instance of spon-
taneous action generation is deciding when to give up waiting for 
an anticipated event whose occurrence or timing is uncertain. This 
form of inter-temporal choice8—between waiting and giving up—is 
relevant in the context of impulsivity. Humans often choose to wait 
for future events, but subsequently succumb to an immediately avail-
able option while waiting9,10. Some of the neural substrates of choices 
between immediate and delayed rewards have been identified11,12, 
but comparatively little is known about the timing of decisions to 
terminate waiting during a delay.

Insight into spontaneous actions comes from studies of volitional 
or self-initiated actions, which have used what are essentially wait-
ing tasks with low time pressure. Classical studies identified evoked 
readiness potentials in the midline higher motor, parietal and  

prefrontal cortices that precede actions, with a slow building potential 
even preceding the subject’s reported intention to move13,14. Single 
units have been recorded during such tasks, revealing slow ramping 
activity peaking around the time of action initiation15–18.

Together, these studies are consistent with the hypothesis that an 
integration-to-bound mechanism, commonly used to explain per-
ceptual decisions and reaction times, might also be a mechanism for 
spontaneous action timing. We sought to substantiate this hypothesis 
by providing more rigorous evidence for the existence of a population 
of neurons displaying ramping activity resembling the decision vari-
ables or integrated evidence observed in the lateral intraparietal area.  
A further critical issue in the case of spontaneous decisions is the 
origin of the signals that drive the input integrator when there is no 
sensory cue or evidence to accumulate. The putative input neurons 
would contribute causally to the determination of action timing, being 
partly predictive, but individual neurons would need to cooperate to 
reach threshold for a decision. As no such input neurons for spontane-
ous decisions have been described to date, identifying their properties 
would be important.

To test these hypotheses, we devised a waiting task in which a small 
reward was available immediately, but a large reward was signaled 
after a longer, randomized delay. Rats tested on this task frequently 
aborted waiting, and the timing of these aborts varied greatly across 
trials, with relatively minor contributions of trial history. We focused 
our study on the rostral secondary motor cortex (M2, the anterior 
region of medial agranular cortex) an area associated with action 
planning and spontaneous action initiation19–21, which is considered 
to be homologous to primate supplementary motor areas22,23. Using 
multi-electrode recording from M2, we first identified a population 
of neurons with ramping activity that met strict criteria associated 
with the output of putative neural integrators, but not previously 
described in rodents. Furthermore, we identified a second population 
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of transiently active neurons whose rates fluctuated substantially from 
trial-to-trial in a manner that correlated with waiting time. Using a 
simple quantitative model, we estimated that to match the observed 
strength and frequency of correlation between individual transient 
neurons and waiting time, substantial correlations would have to exist 
between pairs of transient neurons. Trial-by-trial correlation analysis 
of simultaneously recorded pairs confirmed this prediction. Thus, a 
parsimonious account of our data suggests that the origin of the vari-
able timing of spontaneous actions reflects, in part, neural transients 
in M2 that are integrated to produce ramping activity. The results 
reinforce the generality of the neural integration-to-bound theory 
of decision-making and identify a previously unknown population 
of neurons in the motor system itself participating in self-initiated 
actions. Furthermore, they help to clarify the interpretation of well-
known experiments conducted in human subjects concerning the 
neural antecedents of conscious decisions to act14.

RESULTS
Behavior
In the waiting task (Fig. 1a and Online Methods), a rat initiated wait-
ing by inserting its snout into the waiting port. Shortly thereafter  
(T1 delay = 0.4 s), the first tone (tone 1) was played, after which the 
rat could garner a small amount of water reward at the reward port. If 
the rat waited for a second tone (tone 2), with a delay drawn randomly 
from an exponential distribution (T2 delay), it could garner a larger 

reward (two- to fourfold larger than the small reward). Thus, a rat wait-
ing past tone 1 experienced an ongoing conflict between continuing  
to wait for tone 2 and leaving the port to collect a small reward.  
A value of T2 delay was chosen so that subjects performed with an 
~30% success rate in waiting trials (Online Methods).

Trials could be classified into three types (Fig. 1a–c). In a small 
fraction of trials, rats left the port before tone 1 (short-poke trials, 
8.3 ± 4.6%, mean ± s.d., n = 37 rats). In a second class of trials, the 
rat responded after tone 2 (patient trials, 32.9 ± 1.4%). In the third 
class, rats left the port after tone 1, but before tone 2 (impatient trials,  
58.8 ± 3.9%). Notably, in the impatient trials, the waiting time showed 
substantial trial-to-trial variability, as indexed by the difference 
between the 90th and 10th percentiles waiting time (∆WT [0.1–0.9]: 
median = 1.31 s, range = 0.59–3.06 s; Fig. 1c,d) and the average  
difference in waiting times from tone 1 of two consecutive impa-
tient trials normalized by a sum (CV2, 0.63 ± 0.11; Online Methods 
and Fig. 1e). Median waiting time was highly correlated with ∆WT 
[0.1–0.9] (R = 0.86, P < 10−10).

In impatient trials, rats did not usually respond promptly to tone 1,  
but often stopped waiting after hundreds of milliseconds or sec-
onds, but before tone 2. Two observations indicate that, in impatient 
trials, rats intended to wait for the large reward and were not sim-
ply responding slowly to the first tone and understood the rules of 
the task. First, when rats succeeded in waiting for the second tone, 
they responded promptly (167 ms, median across rats, comparable to  
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Figure 1  The waiting task and the behavioral results. (a) Schematic 
of trial events in the waiting task (top). In each trial, after 
waiting for a certain period at the waiting port, the rat received a tone(s), 
moved to the reward port and received a water reward, the size of which 
depended on the number of the tones presented. Inset, probability 
distributions of the delays to tone 1 (T1, light green) and tone 2 
(T2, dark green). Bottom, timeline of the task events and the definition 
of the behavior parameters. The light green rectangle indicates the 
presentation of tone 1, the dark green rectangle represents tone 2 and 
the light blue rectangle indicates reward. Tone 2 is represented by a 
hatched rectangle to indicate it was not played in the impatient trials. 
(b) Snapshot of the waiting behavior. The waiting period in each trial is indicated as a gray bar. Light green ticks represent a presentation of tone 1 and 
dark green ticks represent tone 2. (c) Waiting time histograms of short poke trials (gray), impatient trials (red) and patient trials (blue) of an example rat. 
The histograms show data pooled across sessions. Inset, cumulative histogram of waiting times in impatient trials from this rat. The arrow indicates the 
range from 10th to 90th percentile waiting times (∆WT [0.1–0.9]). (d) Distribution of ∆WT[0.1–0.9] across rats. Filled bars indicate electrophysiology rats.  
(e) Distribution of CV2 across rats. Filled bars indicate rats used for electrophysiology. (f) A histogram of response time to tone 2 of an example rat 
(dark blue, n = 1,501 trials). Light blue–shaded area indicates 95% range of response time histograms from shuffled data. The peak response time is 
indicated by an arrowhead. (g) Distribution of peak response time across rats. Significant peak is shown in dark blue and non-significant peak in black. 
Filled bars indicate rats used for electrophysiology (all were significant).
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100–200 ms in an auditory response task24; Fig. 1f,g and 
Supplementary Fig. 1). Second, rats moved more quickly to the water 
port on patient than on impatient trials (Fig. 2), indicating that impa-
tient and patient trials of similar waiting times were associated with 
different reward expectations25.

Ramp-to-threshold activity in M2
To determine specific computations performed by M2 for waiting 
time decisions, we next used chronic tetrode arrays to record neuronal 
activity while rats performed the waiting task. We recorded a total 
of 385 neurons in 8 rats from M2. A large fraction of neurons in M2 
showed task-modulated activity in different phases of the waiting 
task (Supplementary Fig. 2). We mainly focused on impatient trials 
because, in those trials, the rats decided when to leave the port (stop 
waiting), independent of overt cues. The high trial-to-trial variability 
of waiting time in impatient trials provided a strong signal with which 
to correlate with neural activity.

We first searched for neurons with ramp-to-threshold activity that 
might serve as an internal trigger for initiating a response. We selected 
for neurons meeting two criteria: the firing rate reached a constant 

threshold before movement initiation and the timing of threshold cross-
ing was correlated with waiting time with a regression slope close to 
unity (Online Methods). An example neuron meeting these criteria is  
shown in Figure 3. The firing rate of this neuron gradually ramped 
up during the waiting period (Fig. 3a), reaching the same firing rate 
just before the poke out (Fig. 3b). The time for the firing rate to cross  
a 57 spikes per s threshold, the highest threshold level we tested for  
this neuron, was highly correlated with the waiting time of the rat  
(Fig. 3c and Online Methods). The regression slope was close to unity, 
suggesting that the latency to the poke out from the threshold crossing 
time was constant.

We focused on 105 of 385 recorded neurons that showed reliable 
activation (48) or suppression (57) at the poke-out periods (Online 
Methods). Among this population, 27 neurons (20 of 48 activated 
neurons, 7 of 57 suppressed neurons, 7.0% of all recorded) met the 
criteria for a ramp-to-threshold neuron (threshold crossing time 
correlated with waiting time with regression slope close to unity) 
(Supplementary Fig. 3). By comparing the observed fraction of 
ramp-to-threshold neurons (7.0%) to that obtained when ran-
domly permuting the waiting times and neural data across trials,  
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Figure 2  Difference in movement times in impatient and patient trials. (a) A scatter plot 
indicating median movement time in the impatient and the patient trials of different sessions 
of an example rat. Each gray circle indicates median movement time of the impatient trials  
and that of the patient trials from one session. The black circle indicates the mean of the 
median movement times of the impatient trials and that of the patient trials. Error bar 
represent ±s.e.m. (b) Normalized mean movement times for impatient (red) and patient  
(blue) trials. For each rat, the movement time is normalized with movement time of 
the impatient trial. Error bar represents ±s.e.m. Gray circles represent the normalized 
movement times of the patient trials of individual rats. Filled circles indicate rats used 
for electrophysiology. Movement time in patient trials was significantly faster than that in 
impatient trials (Wilcoxon signed-rank test, P < 0.001, n = 37 rats).
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Figure 3  Ramp-to-threshold type predictive 
activity. (a–f) Example M2 neuron with 
ramp-to-threshold type activity. (a) Perievent 
time histograms (PETHs) for an M2 neuron in 
different waiting time trials, aligned to poke 
in and smoothed with a Gaussian filter 
(s.d. = 50 ms). Impatient trials are grouped 
according to the waiting time, indicated by 
the color scale in b, and consistent throughout 
the figure. Dashed lines in PETHs indicate  
times at which a rat already left the port in 
some of the trials in that group. Threshold 
(57 spikes per s) is indicated by the horizontal 
solid line. (b) PETHs for the neuron presented 
in a, aligned to poke out. (c) Time to cross a 
threshold firing as a function of mean waiting 
time. The analyses with the highest and 
lowest thresholds with significant correlation 
(57 spikes per s (triangle) and 16 spikes per 
s (inverted triangle), respectively) are shown. 
R = 0.99, P < 0.001, n = 9 for the 57 spikes 
per s threshold; R = 0.86, P = 0.001, n = 10 
for the 16 spikes per s threshold. Dashed lines 
indicate the regression line. (d) The rate of 
ramping activity as a function of mean waiting 
time. The dashed line indicates the regression 
line. R = −0.93, P < 0.001, n = 9. (e) The firing 
rate at the poke-out period (50-ms window before the poke out) is plotted against the mean waiting time for each group. Note that firing rate reached 
almost the same level at the poke out. R = 0.58, P = 0.076, n = 10. (f) Difference between time to cross threshold and the waiting time (prediction time) 
is plotted against the threshold tested. Black circles represent mean prediction time across groups, error bars represent ±s.e.m. and filled black circles 
represent significant threshold. (g–i) Population data (n = 27 neurons). (g) Distribution of correlation coefficients between the rate of ramping and the 
waiting time. Ramp-up neurons are shown in pink, ramp-down neurons in blue and neurons with significant correlation in vivid color. (h) Distribution of 
correlations between the firing rate at the poke-out period and the waiting time. (i) Distribution of the earliest prediction time (Online Methods).
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we estimated the probability of obtaining this result by chance at  
P < 0.002 (permutation test, Online Methods).

After selecting a population using relatively strict criteria, we con-
sidered in detail further properties of this population that were not 
included in the selection criteria. Briefly, this population of neurons 
showed a strong positive or negative correlation between ramp rate 
and waiting time (Fig. 3d,g and Supplementary Fig. 4), but a small or 
zero correlation between firing rate at movement time (poke out) and 
waiting time (Fig. 3e,h). Finally, individual neurons’ threshold cross-
ing times predicted future waiting times substantially in the future, 
up to around 1 s in advance (Fig. 3f,i).

Transient waiting-time predictive activity
We next looked for neurons that also showed waiting time predictive 
activity that did not take the form of ramp-to-threshold. Specifically, 
we searched for neurons exhibiting different firing rates for differ-
ent waiting time trials, which could serve as input to an integrator 
and therefore contribute to the different rates of ramping activity. 

This analysis revealed a larger second population of M2 neurons, an 
example of which is shown in Figure 4. This neuron showed tran-
sient activation when the rat poked into the waiting port (Fig. 4a). 
The activation was stronger in impatient trials with longer waiting 
times (Fig. 4b), and the firing rate of this neuron was significantly 
correlated with waiting time (R = 0.51, P < 0.001, n = 38 trials;  
Fig. 4c). The correlation was significant only in the time window 
between poke in and tone 1 presentation (Fig. 4d). The activity of this 
neuron after the poke in was able to predict the waiting time in each 
trial to the extent of explaining 26% of the variance.

M2 neurons with transient waiting time correlations showed a 
variety of different dynamic profiles, including different times and 
durations of firing. Figure 5a shows an example of a neuron show-
ing a more prolonged activation during the delay period. Figure 5b 
shows an example of a neuron with the opposite correlation: waiting 
time decreased as firing rate increased. Overall, of 356 M2 neurons  
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Figure 4  An M2 neuron with transient predictive activity. (a) Raster  
plots (top) represent activity of an M2 neuron, with each row 
corresponding to a single trial aligned to poke in (white line) and each 
black tick to a single spike. The impatient trials are shown on the 
pink background and the patient trials on the blue background. Trials 
are chronologically ordered from top to bottom in each type of trials. 
Color ticks represent tone 1 (light green), tone 2 (dark green), poke 
out (white) and poke in into the reward port (light blue). PETHs at the 
bottom represent activity in the impatient (red) and patient trials (blue), 
smoothed with a Gaussian filter (s.d. = 50 ms). (b) The same neuron in 
the impatient trials. Trials are sorted in ascending order of the waiting 
time. PETHs (bottom) of trials grouped by waiting time, as indicated by  
a color scale. (c) Mean waiting time is plotted against mean firing rate  
at 0–0.4 s from poke in. Trials are grouped according to firing rates  
(4–spikes per s bin) for the visualization purpose only. Error bars 
represent ±s.e.m. Circles without error bars represent groups with  
1 or 2 trials. Dashed line: regression line. (d) Significance (P value) 
of the Pearson’s correlation coefficient was calculated at each 0.4-s 
non-overlapping bin and plotted as a function of time (corrected for the 
multiple comparisons). Significance level (P = 0.05) is indicated by the 
dashed line. The significance of each time bin is also indicated by the 
color bar on top. N.S., not significant; N.D., no data.
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Figure 5  Population data of predictive activity. (a,b) Other examples  
of M2 neurons with predictive activity. (a) Shown is an M2 neuron  
with sustained activation during waiting and whose firing rate was 
positively correlated with the waiting time. Data are presented as in 
Figure 4b,d. (b) Shown is an M2 neuron with negative correlation 
between the firing rate and the waiting time. Data are presented as  
in Figure 4b,d. The color scale in green indicates a positive correlation 
and orange a negative correlation. (c) Time course and the sign  
of the correlation for all the predictive neurons (n = 64 neurons).  
The significance of the correlation is calculated for 0.4-s overlapping 
time window in every 0.02-s time step for each neuron and indicated  
in each row. Neurons are sorted according to a center of mass of  
log(P value). Only the time bins with significant P value were used 
to calculate the center of mass. The color code is the same as in b. 
Bonferroni correction for multiple comparisons was used to select 
neurons with transient correlation, but the P value here is not corrected 
for the multiple comparisons, as the main points are the time course 
and the sign of the predictive activity, not its absolute value. (d) Time 
course of fraction of predictive neurons. For each neuron, waiting time 
correlation with firing rate was tested on subsamples of 30 impatient 
trials, allowing comparisons across time bins. Subsampling was 
performed 1,000 times and error bars represent 95th percentile ranges. 
The white dashed line indicates chance level of 0.05.
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examined in a population analysis, 64 (18%, P < 0.002 with permutation  
test with trial shuffling) showed transient waiting-time predictive 
activity (Supplementary Fig. 3 and Online Methods). Across the 
entire population of waiting time predictive neurons, two features are 
critical (Fig. 5c). First, different neurons showed predictive activity, 
spanning the waiting period (Fig. 5c,d). Second, approximately equal 
numbers of neurons were positively and negatively correlated with 
waiting time (Fig. 5c). This is consistent with the idea that individual 
neurons contribute to push waiting time longer or shorter, through 
either positive or negative coupling to the putative integrator circuit.

Action specificity of waiting-time predictive activity
If waiting-time predictive activity represents a signal related to pre-
paring a particular action, it should be action specific. Alternatively, 
predictive activity might represent an abstract signal, such as level of 
patience or the value of the anticipated outcome of the trial, which 
would not be expected to be action specific. To differentiate these pos-
sibilities, we trained three rats to perform, in addition to the nose-poke  

waiting task, a lever-press waiting task (Fig. 6a, Supplementary Fig. 5 
and Online Methods) and recorded 175 units in M2 during perform-
ance of the dual nose-poke/lever-press waiting task.

An example M2 neuron that showed transient activation in nose-
poke trials correlated with waiting time is shown in Figure 6b. The 
activity of this same neuron was weak during the lever-press trials 
and was not correlated with lever-press waiting time. To quantify 
the action specificity of predictive activity in the population of M2 
neurons, we compared the strength of correlation between firing rate  
and waiting time in nose-poke trials with that in lever-press trials  
(Fig. 6c). The correlation coefficients for those two trial types 
appeared independent (R = −0.07, P = 0.43 for all 119 neurons;  
R = −0.26, P = 0.22, for all 23 nose-poke predictive neurons; R = −0.4, 
P = 0.18 for all 11 lever-press predictive neurons). The percentage of 
lever-press predictive neurons among all the nose-poke predictive 

Figure 6  Action specificity of predictive activity. (a) A schematic diagram of a waiting task with interleaved blocks  
of the nose-poke waiting trials and the lever-press waiting trials (Online Methods). (b) An example of nose  
poke–specific predictive neurons. PETHs indicate activities of the neuron in the nose-poke waiting trials (left) and  
in the lever-press waiting trials (right). The color of the bar on top indicates the significance of the time bins. Data  
are presented as in Figure 4b,d. (c) The predictive activities of the two types of waiting trials are represented  
independently in M2. Each circle represents one neuron, indicating the correlation coefficient between the firing  
rate and the waiting time in the nose-poke trials on the x axis and the correlation coefficient between the firing rate 
and the waiting time in the lever-press trials on the y axis. The correlation coefficient was calculated at the most  
significant time bin for each type of trials.
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Figure 7  Action specificity of ramp-to-threshold 
activity. (a) An example of nose poke–specific 
predictive neurons. PETHs indicate activities 
of the neuron in the nose-poke waiting trials 
(left) and in the lever-press waiting trials 
(right). Data are presented as in Figure 3. 
(b) Poke-out/delay selectivity index and 
lever-release/delay selectivity index for all 
of the nose-poke predictive neurons (ramp-to-
threshold type). Of six nose-poke predictive 
neurons, two neurons did not show significant 
difference between activity at the lever-release 
period and activity at the delay period (open 
circle), and were therefore not tested with 
threshold-type predictive activity. The other 
four neurons showed significant difference in 
activity at the lever-release period and delay 
period (black and red filled circles), and 
were therefore tested with the threshold-type 
predictive activity for the lever-release time. One 
of them showed significant predictive activity in the lever-press trials, but the direction of ramping activity was the opposite (red filled circle). (c) An 
example of the lever press–specific predictive neurons. Data are presented as in Figure 3. (d) Lever-release/delay selectivity index and poke-out/delay 
selectivity index for all the lever-press predictive neurons (ramp-to-threshold type). Of 15 lever-press predictive neurons, nine neurons did not show 
significant difference between activity at the poke-out period and activity at the delay period (open circle). Six neurons showed significant difference in 
activity at the poke-out period and delay period (black and red filled circle), and were therefore tested with the threshold-type predictive activity for the 
poke-out time. One of them (the same as the red neuron in b) showed significant, but opposite, predictive activity in the nose-poke trials.
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neurons (4.4%, 1 of 23 neurons) was not more than would be expected 
from the percentage of lever-press predictive neurons among all the 
neurons (11 of 119 neurons, 9.2%; χ2 test, χ2(1) = 0.81, P = 0.37).

We also examined action specificity in neurons with the ramp-to-
threshold type predictive activity (Fig. 7). We only found one neuron 
that showed ramping type predictive activity in both types of waiting 
trials, but the sign of ramping activity in this neuron was opposite for 
the two types of trials. These results suggest that the predictive activity 
in M2 is action specific rather than tied to general states or outcome 
predictions, although we could not specify whether observed action 
specificity was a result of effector specificity (nose-poking or lever-
pressing), action-direction specificity (plan to move left or right) or 
other forms of specificity. Further characterization of activity of waiting 
time predictive neurons revealed that weaker predictive activity was 
already present during the intertrial interval (Supplementary Fig. 6), 
that activity in patient trials was consistent with activity in impatient 
trials (Supplementary Fig. 7), and that transient neurons’ waiting-
time predictive activity can be partly explained by somatic motor input 
(Supplementary Fig. 8) and trial histories (Supplementary Fig. 9).

Integrator model
To test whether a neural integration process could explain the 
relationship between the observed electrophysiology and behav-
ior, we instantiated this theory in a model based on our observa-
tions. The input to the integrator consisted of a population of 
transiently active units connected to an ideal temporal integra-
tor by synaptic weights randomly distributed around a near-zero 
mean (Fig. 8a). When the integrator reached a given threshold, an 
action was elicited. Each transient neuron was assigned a specific 

delay relative to waiting onset, and the amplitude of firing was 
scaled by a random variable on each trial.

The output of the integration circuit was indeed similar to the activity 
of the observed ramp-to-threshold neurons (Fig. 8a). The magnitude 
of activation of transient neurons gained trial-by-trial correlation with 
waiting times by affecting the slope of ramping activity of the integrator 
neuron. However, if we assumed that firing of transient neurons were 
independent of each other, the contribution of each neuron to waiting 
time decreased markedly as the number of transient neurons increased 
(Fig. 8b). As it is known that even small inter-neuronal correlations 
make the responses of individual neurons correlated with behavior even 
in case of a large population size26, we hypothesized that correlations 
induced by shared input might prevent neural-behavioral correlations 
from being diluted by the law of large numbers. We first analyzed the 
actual trial-to-trial firing rate correlations from subsets of simultane-
ously recorded M2 neurons. To factor out the contribution of waiting 
time itself to inter-neuronal correlations, we used a partial correlation 
technique (Online Methods; Fig. 8c). Despite having factored out corre-
lation with waiting time, we observed large inter-neuronal correlations,  
the pattern of which was such that the relative sign of correlation between 
neurons and behavioral output determined whether an inter-neuronal 
correlation will be positive or negative (that is, two neurons that were 
both positively or negatively correlated with waiting time were on aver-
age positively correlated to one another, whereas positive-negative pairs 
were negatively correlated with one another). Furthermore, the strength 
of correlation decayed as a function of time difference of the activity 
of each neuron. To test whether the integration-to-bound model was 
consistent with these observations, we introduced a common noise 
source that was injected into all transient units with a sign and strength 

0 100 200 300
0

0.2

0.4

0.6

Number of neurons per
time step

F
ra

ct
io

n 
of

pr
ed

ic
tiv

e 
ne

ur
on

β = 0.6
β = 0.4

β = 0.2
β = 0d

0 0.5 1
0

Cell’s time of activation (s)

Neurons per time: 300
Fraction common noise: 0

0 1 2 3
0

100

200

300

Cell’s time of activation (s)

Neurons per time: 300
Fraction common noise: 0.4

a

∫

I I I I I I

Waiting time (s)

F
ra

ct
io

n 
of

 tr
ia

ls

Model input neurons

Model integrator
neurons

0 1 2 3
0

0.1

0.2

0 0.5 1 1.5
0

10

20

Waiting time (s)

A
ct

iv
ity

0 0.5 1 1.5
0

10

20

0 2 4
0

50

0 0.5 1 1.5
0

10

20

b

0 0.5 1
0

10

Cell’s time of activation (s)

C
el

l n
um

be
r 

pe
r 

tim
e

Neurons per time: 10
Fraction common noise: 0

100

200

300

c

0 1 2
–0.4

–0.2

0

0.2

0.4

Time difference of predictive
activity (s)

P
ar

tia
l c

or
re

la
tio

n

Data

0 1 2
–0.4

–0.2

0

0.2

0.4

Time difference of predictive
activity (s)

P
ar

tia
l c

or
re

la
tio

n

Model

Same sign
Opposite sign
Others

<0.0001

0.01
0.05

0.001

Not significant

P
 value

Figure 8  Integrator model. (a) A schematic diagram of an integrator model. Circles with ‘I’ indicate input neurons. A circle with ‘∫’ indicates an 
integrator neuron. A small triangle indicates an excitatory synapse and a small circle indicates an inhibitory synapse. Inset panels show PETHs  
of example model neurons (top three panels are example input neurons and the bottom left panel is an integrator neuron; data are presented as in 
Fig. 3a). The bottom right inset panel shows a waiting time histogram of the model (mean ± s.e.m. of 1,000 model sessions of 100 trials). (b) Waiting 
time correlation for all the input neurons from three example models with different parameters (number of neurons per time: 10 (left), 300 (middle 
and right); fraction of common noise (β): 0 (left and middle), 0.4 (right)). Color indicates P value of waiting time correlation. Neurons are arranged 
according to its activation time (x axis) and synaptic weight (y axis, positive weight at the top and negative weight at the bottom). (c) Left, pairwise 
partial correlation between simultaneously recorded neurons as a function of time difference of the most predictive time bins of each neuron. Pairs 
are categorized as the same sign (green), opposite sign (blue) or other (gray) according to the sign of waiting time correlation of each neuron. Error 
bars indicate s.e.m. N = 1,836 pairs. Right, pairwise partial correlation between input neurons in the model as a function of time difference of their 
activities (number of neurons per time, 300; fraction of common noise (β), 0.4). Mean ± s.e.m. of 100 model sessions. Error bars are too small to 
be visible. (d) Fraction of predictive neurons as a function of the number of neurons per time step and fraction of common noise in the input neuron 
activity (β). Mean ± s.e.m. of 1,000 model sessions.



nature NEUROSCIENCE  advance online publication	 �

a r t ic  l e s

proportional to its synaptic weight (Fig. 8c). By varying the number 
of neurons and the relative magnitude of shared versus private noise, 
we characterized the relationship between neural-behavioral and inter-
neuronal correlations. We found that, as the fraction of shared noise 
was increased, the fraction of transient neurons significantly correlated 
with waiting time increased, even for large population sizes (Fig. 8d).  
At a level of common noise sufficient to reproduce the observed  
neuronal-behavioral correlations, we obtained a prediction for both 
the magnitude and signs of trial-by-trial correlations between neurons.  
This prediction was quantitatively consistent with those actually recorded 
(Fig. 8c). Thus, the integration-to-bound model provided a simple 
and self-consistent account of the neural-behavioral correlations and  
inter-neuronal correlations observed in the data.

DISCUSSION
Waiting task
We developed a task in which subjects had to wait for two tones to 
obtain a large reward, but could respond after the first tone to obtain 
a small reward. Studies on standard inter-temporal choice tasks11,12 
have focused on a single choice point at which subjects decide between 
an immediate and a delayed reward. In contrast, subjects in our task 
were able to respond for the small reward while waiting, similar to 
previous human studies9,10. As far as we are aware, there are no stud-
ies investigating a neural mechanism of spontaneous ‘giving up’ in 
such inter-temporal choice procedures. We provide evidence for the 
involvement of the cortical motor system in such behaviors.

Neural activity and classes
We recorded two types of neurons whose activity correlated with wait-
ing time, even hundreds of milliseconds to seconds before movement 
onset. One class of neurons showed ramping activity that reached a 
threshold just before movement initiation and a ramping rate that 
was inversely correlated with waiting time. This pattern of activity 
is reminiscent of neurons in the frontal eye field, premotor and pri-
mary motor cortex, lateral intraparietal area, and superior colliculus 
recorded from monkeys performing sensorimotor tasks5–7,18,27.

The second class of predictive activity occurred transiently and 
tiled all periods of waiting period and at least 1 s beforehand. To 
some degree, they resemble neurons reported in posterior parietal 
cortex28, medial prefrontal cortex29 and striatum30. However, unlike 
those previously described transients carrying signals related to move-
ment location, here the transient neurons carried information about 
movement timing. Neurons in primate supplementary eye field show 
a similar form of transient signal predicting reaction time in a stop 
signal task, but with only about 10% of the delay and variance that we 
observed31. Although the analyses that we performed identified two 
classes, we cannot ascertain whether these classes are truly distinct 
or reflect a spectrum. There was no evidence for segregation of these 
populations across the surface of M2 (Supplementary Fig. 10) and we 
were not able to determine whether the profiles segregated by layer. 
An intriguing possibility is that the transient activity reflects neurons 
in layer 2/3, as sequences imaged in posterior parietal cortex28.

Integration model
The data supported our hypothesis that action timing could be 
explained by an integration-to-bound process, a computation hypoth-
esized to underlie choices based on perceptual, mnemonic, value  
and other forms of decision variables2–4,32,33. Our data strengthen the 
evidence for the applicability of this class of models to cases where there 
is no evidence per se. In the model, transient waiting-time predictive  
neurons constitute the input, ‘voting’, for short or long waiting times. 

They fire with different rates from trial-to-trial and are connected to 
the integrator with positive or negative weights. Ramping neurons, 
on the other hand, are represented by the output of the integrator. By 
implementing a model based on this integration-to-bound theory, 
we were able to compare predictions of the theory to our data. The 
integration-to-bound model explains a number of salient features of 
the data parsimoniously. First, it explains the properties of ramping 
neurons, both the correlation between ramp rate and waiting time 
and the existence of a uniform threshold at action initiation. It also 
explains the observation that ramping neurons reach a lower threshold 
when the rat responds to a tone that arrives while waiting. Second, by 
using inputs modeled on the observed transient responses, the model  
explains the neuronal-behavioral correlations between transient  
neuron activity and waiting time. Notably, despite the existence of 
correlations, in this model, the decision to act is only made just before 
movement is observed. The observation of correlations of antecedent 
neural activity with action timing is a consequence of their causal con-
nection through the integrator and do not imply a decision.

In addition to explaining these observations, the model also led to 
predictions concerning inter-neuronal correlations that we did not 
anticipate. We chose to introduce correlations in the model using a 
single shared noise source. The contribution of the shared noise to each 
input neuron’s firing rate was proportional to the weight of its connec-
tion to the integrator. The model predicted that transient neurons must 
have specific inter-neuronal correlations if individual neurons’ correla-
tions with behavior are to be maintained in large pools of neurons.

It is notable that two aspects of this prediction were met. First, the 
magnitude of shared noise required to achieve the observed fraction 
of neurons with significant behavioral correlations at population sizes 
on the order of 103 to 104 imply a magnitude of inter-neuronal correla-
tions of around 0.2, as seen in the data. Second, in this model, pairs of 
neurons with the same sign of behavioral correlations will themselves 
be positively correlated and pairs of neurons with the opposite sign 
will be negatively correlated34. The model and data also suggest an 
overall mean correlation level near zero, consistent with balanced net-
work theory35. We believe these predictions to be general features of 
the proposed theory. The biophysical mechanisms supporting integra-
tion are an important and unresolved issue. One class of biophysical 
models suggests that ramping arises from attractor dynamics depend-
ing on recurrent excitatory connections2. However, we have not tested 
the predictions of these models. Further elements introduced into the 
present model, such as variable weighting of inputs have also been 
considered biophysically36. The integration-to-bound mechanism 
represents a cognitive primitive that may be assembled into diverse 
computations together with other motifs, such as divisive normaliza-
tion, spike timing–dependent plasticity or reinforcement learning.

Anatomical context
As to the neural substrates of the proposed integrator, two general 
hypotheses could be considered. Because we observed all the constitu-
ents of the model in M2, it could be that M2 is capable of supporting 
integration in local circuitry. Alternatively, integration could occur with 
a larger circuit comprising a larger network of cortical and subcortical 
regions to which M2 is connected. Although the data do not present 
much evidence bearing on this question, our default is to consider the 
latter hypothesis to be more likely. One observation favoring this alter-
native is that ramp-to-threshold activity has already been observed in 
many other areas5–7,18,27. A second argument favoring a widely dis-
tributed network is that this would allow more kinds of evidence to be 
integrated into the same process. Finally, we also conjecture that the 
slow dynamics that we observed, compared with the much more rapid 
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dynamics in stimulus-driven response, would be produced more readily 
in larger size networks (R. Chaudhuri et al., Soc. Neurosci. Abstr. 597.10, 
2012). A specific possibility worth investigating is that integration takes 
place as a ‘reverberation’ in the goal-directed circuit including not only 
M2 (ref. 37), but also ventrolateral orbitofrontal cortex (VLO)12,23,38, 
prelimbic cortex39,40 and dorsomedial striatum22,38.

Rat M2, also known as medial agranular cortex (AGm), and partly 
overlapping with lateral agranular cortex (AGl22,23), is considered on 
anatomical and physiological grounds to be homologous to the pri-
mate higher motor cortices, including premotor cortex, supplementary 
motor complex and frontal eye field19,22,23. At a single-neuron level, M2 
(including areas at around anterior-posterior axis (AP) 2–3 mm from 
Bregma, somewhat more caudal than our center of recordings) contains 
action predictive choice signals19–21. Our recordings spanned a large area 
of rostral M2 (AP 1.8–5.6, medial-lateral axis (ML) 0.8–2.6 mm from 
Bregma) and waiting time predictive neurons were present uniformly 
throughout this extent. The caudal part of M2 partly overlaps with a 
whisker-related area of medial agranular cortex (AP 0.5–4.5 mm)41,42, 
but the majority of our recordings (70%) were from a more rostral sub-
region of M2 (>AP +4.6 mm’ Supplementary Fig. 10). Important M2 
outputs include primary motor cortex, the dorsocentral region of the 
striatum and the subthalamic nucleus22, as well as brain stem motor 
nuclei43, the superior colliculus and other midbrain motor regions22,43. 
In particular, the superior colliculus, which is involved in orienting deci-
sions in rats44, has been proposed to be a key element supporting the 
threshold nonlinearity in integration45.

Origin of trial-by-trial fluctuations
In our task, waiting times exhibited near Poisson variability. To account 
for this variability with the integration-to-bound model, it was neces-
sary to introduce large amounts of noise in model units. We do not take 
this as evidence for noise introduced by the brain, but rather as a call for 
further scrutiny of the contributors to this variability. One source of vari-
ability in trial-by-trial neural activity might be variability in movements 
or posture during waiting. To test this, we performed video tracking 
and extracted time series of position and orientation of the rat’s body. 
Although the rats’ behavior during waiting was relatively constrained 
by the requirement of keeping the snout inside the waiting port (or paw 
on the lever), multilinear regression analysis showed that around 20% 
of waiting time predictive neurons activity could be explained by these 
features, whereas 80% remained significant (Supplementary Fig. 8). 
We consider it plausible that transients reflect input from sensory areas, 
especially somatosensory and proprioceptive input, given the strong 
connections between motor cortices and somatosensory cortices.

A recent anatomical study suggested the existence of an entire body map 
in the rodent M2 (ref. 46). We did not determine precisely the somatic 
locations linked to the recording locations, but the wide distribution of 
waiting time correlated activity suggests the recruitment of multiple body 
areas in this task. Specific micro-movements may have been incidentally 
reinforced, leading to ‘superstitious’ behavior (R. Kawai et al., Soc. Neurosci. 
Abstr. 790.1, 2010) and amplifying the trial-to-trial variability. In addition 
to these somatic-motor loops, we could expect additional contributions 
to transient fluctuations from interoceptive systems and other sensory 
systems. Under the hypothesis that M2 is a general locus of integrated 
signals, in tasks in which reward is contingent on specifically controlled 
sensory input, we would expect to observe similar ramping activity, but 
with inputs dominated by the appropriate sensory modalities.

Value and intertemporal choice
Another likely source of variability in waiting time predictive neurons 
is variability in decision values originated from the past trial history of 

waiting decisions and reward outcomes. Waiting and responding were 
associated with different decision outcomes (small versus large water 
amount) and different costs (waiting time), which might be updated 
through experience. Waiting-time predictive neurons might therefore 
reflect, in part, decision values as well as action plans21. Although 
substantial evidence against abstract value coding is provided by our 
experiment showing that M2 neurons are strongly selective for spe-
cific action sequences, even when they were associated with similar 
reward sizes and waiting times (Fig. 6), it is possible that the decision 
value associated with specific actions is multiplexed with waiting time 
predictive signals. A multiple regression analysis did reveal a contri-
bution of past trial decisions and outcomes to activity in subsequent 
trials, but this reflected only 9% of the trial-by-trial variance. Small 
increments and decrements in activity according to the trial history 
would allow subjects to adjust their mean waiting time in the face of 
changing motivational conditions. Finally, from these considerations, 
we infer that other functionally relevant variables may gain access 
to influencing M2 input, thereby suggesting a hypothesis for how 
confidence signals47 may be read out by waiting time48.

Implications for self-initiated actions
Slow building activity has been theorized for nearly 50 years as a 
neural mechanism for generation of self-initiated actions13–17. Here, 
we have strengthened these concepts in four dimensions. First, our 
data strengthen the evidence that an observer can ‘forecast’ a simple  
decision by observing the state of the brain before a decision on a single 
trial basis17,18. Second, our results provide the strongest level of quanti-
tative evidence supporting the involvement of an integration-to-bound 
mechanism. Notably, our model predicted previously unobserved patterns  
of inter-neuronal correlation. Third, these recordings provide compelling 
evidence linking neurons in the rat premotor cortex to neural activity 
observed both in human electroencephalogram (readiness potential13,14) 
and primate frontal cortices15–18. These cortices are considered function-
ally homologous to rodent M2 (refs. 22,23). Our experiments provide a 
rodent model of an important cognitive phenomenon with physiological 
and anatomical justification and extend the applicability of this class of 
experiments across species. Fourth, these results identify, to the best of our 
knowledge for the first time, a possible driving force or causal anteced-
ent for ramping activity (that is, transient input neurons; Figs. 4 and 5).  
This finding strengthens the plausibility of the integration-to-bound 
model to the case of voluntary actions. It also opens doors to further 
studies to elucidate the properties of these antecedent signals and dissect 
neural mechanisms underlying concepts such as ‘will’ and ‘self ’ that are 
used to describe this class of actions.

Supported by these considerations, an integration-to-bound theory 
of voluntary action provides a potential resolution to the long-standing 
controversy over the interpretation of previous experiments showing that 
readiness potentials precede the subjective conscious intention to move14. 
The theory explains how activity preceding bound crossing, either input 
or accumulated activity, can be said to participate causally in the timing 
of an action, but does not uniquely specify it. The integration-to-bound 
theory implies that no decision has been made until the bound has been 
reached. Thus, assuming a threshold above the size of an individual input, 
more than one individual input must occur to reach a decision; no indi-
vidual neuron contributing to the integrator is a unique cause.

The crossing of an arbitrary lower threshold by ramping activity13,14  
may partially forecast action, but logically it cannot fully predict action, 
as at any moment up to bound crossing the arrival of opposing inputs 
may avert an action no matter how strongly it is forecasted49. In contrast,  
after reaching the action bound, an action is inevitable. Thus, sub-bound 
activity may be associated with predictive, causal activity of a qualitatively 
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different nature than super-bound activity, similar to a proposed distinc-
tion between subconscious and conscious neural processes50. The relative 
delay between threshold crossing and movement initiation observed in 
rat M2 (around 150 ms) were consistent with the delay between human 
subjects’ awareness of their intention to act and movement (around 
200 ms)14. It could therefore be inferred that crossing the threshold 
from unawareness to awareness is a reflection of bound crossing.  
In this way, the integration-to-bound theory may help to resolve the con-
tradiction between the subjective report of free will and the requirement 
for causal antecedents to non-capricious, willed actions. Finally, insofar 
as simple voluntary actions constitute an appropriate experimental con-
text, our results provide a starting point for investigating mechanisms 
underlying concepts such as self, will and intention to act, which might 
be conserved among mammalian species.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Animal subjects. All procedures involving animals were either carried out in 
accordance with US National Institutes of Health standards and approved by 
Cold Spring Harbor Laboratory Institutional Animal Care and Use Committee 
or in accordance with European Union Directive 86/609/EEC and approved by 
Direcção-Geral de Veterinária. Experiments were performed on 37 male adult 
Long-Evans hooded rats. Rats had free access to food, but water was restricted 
to the behavioral session and 20–30 additional min per d.

Behavioral task. Rats were trained and tested on the waiting task (Fig. 1a,b). In 
the standard waiting task, the behavioral box contained a wall with three ports 
(Island Motion)44. The waiting port was located at the center and the reward port 
was located at the side. The side of the reward port was chosen randomly for each 
rat. The third port was inactive. Entry to and exit from the ports were detected 
based on an infrared photo-beam located inside each port.

Rats initiated a trial by poking their snout into the waiting port  
(Supplementary Video 1). The first tone, tone 1 (6- or 14-kHz tone, 80 ms)  
was played, if the rat kept its snout inside the waiting port for T1 delay (0.4 s). 
Tone 1 signaled the availability of a small amount of water reward at the reward 
port. If the rat moved out before tone 1, no rewards were available in that trial 
(short poke trial). If the rat moved out of the waiting port after tone 1 and visited 
the reward port, a small water reward (10 µl) was delivered through a tube in 
that port after a 0.5-s delay (impatient trial). If the rat did not respond to tone 1 
and waited with its snout in the waiting port, a second tone, tone 2 (14- or 6-kHz, 
differing from tone 1, 80 ms) was played after a certain delay (T2 delay). If the 
rat visited the reward port after tone 2, a large reward (40 µl) was delivered after 
a 0.5-s delay (patient trial). For three of the rats, the reward sizes were different:  
14 µl for the small and 30 µl for the large rewards was used. There were no  
signals to the rat that it had exited the waiting port. Re-entrance to the waiting 
port (multi-poke) was signaled by brief noise burst (60 ms) to discourage this 
behavior. Because we did not know whether the rat intended to leave the waiting 
port or just failed to wait unintentionally in the multi-poke trials, we excluded 
this type of trials from the neural analysis. The rat also had to visit the reward 
port in 2 s after the initial poke out to collect rewards, and trials violating this 
requirement were also excluded from neural analysis.

Waiting time was defined as a time from the entry into the waiting port to  
the movement out of the waiting port (Fig. 1a). As a measure for trial-by-trial 
variability, we calculated average CV2 of the interval between waiting time and T1 
delay for each rat. CV2 was calculated for each 2 consecutive impatient trials as

2 1 1| | ( )/I I I In n n n− +− −

where In denotes an interval between waiting time and T1 delay in nth trial51. If leav-
ing the port after the tone 1 is a Poisson process, the expected value is 1. If waiting 
time is constant or slowly changing across trials, the value should be close to 0.

T2 delay was drawn randomly from an exponential distribution, whose  
minimum value was 0.7 s and whose mean value was adjusted according to the 
performance of the animal so that rats succeeded in waiting on about one third 
of trials. For 33 rats, including 5 rats used in M2 recordings, the mean value of 
the exponential distribution was adjusted every trial; after each short-poke trial 
or impatient trial, the mean was decreased by 20 ms. After each patient trial, the 
mean was increased by 40 ms. For 4 rats, including 3 rats used in M2 record-
ings, the mean value was set manually for each behavioral session and stayed 
constant for the entire session. We pooled data from the two conditions, because 
behavioral and neural recording data showed similar trends in both conditions 
(data not shown).

Response time to tone 2 was defined as time from the onset of tone 2 to the 
poke out (Fig. 1a). A histogram of the response time was generated from the 
data pooled across sessions in each rat. To test whether the rat was responding 
to tone 2, we shuffled tone 2 delays from both the impatient and patient trials 
in each session and made a new response time histogram from the patient trials 
of shuffled data. We repeated this procedure 1,000 times to estimate the 95% 
confidence interval. The peak of the data histogram was defined as significant 
if the peak bin (20-ms bin size) and one of the adjacent bins were above the 
95% confidence interval of the shuffled histogram. Movement time was defined  
as the time from leaving the waiting port to entering the reward port (Fig. 1a). 
To compare movement times from impatient and patient trials without the con-

tribution of difference in waiting time distribution (Fig. 1c), we selected subsets 
of impatient and patient trials to match the waiting time distributions from the 
two trial types. For this purpose, we first selected the single shortest waiting time 
trial with waiting time >700 ms. Then we selected the rest of the trials so that if 
we sorted all the selected trials according to the waiting time, the order of the 
trial types would alternate: that is, impatient (Imp), patient (Pat), Pat, Imp, Imp, 
Pat, and so on, if the first selected trial was an impatient trial (if the first selected 
trial was a patient trial, then the opposite). With this selection method, 37.7 ± 
0.4% (329 sessions from 37 rats) of trials was selected.

An intertrial interval (ITI) period started after the delivery of the reward. 
During the ITI period, a white noise was played. The time from the initial poke 
into the waiting port to the end of the ITI was constant, so that the rat could  
not profit from leaving the waiting port early to start the next trial early. Thus, 
the optimal strategy to obtain maximal reward in this task was always to wait 
for tone 2.

To test whether neuronal responses were specific for a given action, 3 rats were 
trained on two variants of the waiting task. For these experiments, the behavioral 
box contained a wall with a reward port at the center flanked by a nose-poke 
waiting port on one side and a lever-press waiting port on the other side (Fig. 6a). 
The rat was required to perform interleaved blocks of nose-poke waiting trials 
and lever-press waiting trials in a single session. In the nose-poke block, the rat 
was required to perform the same task as described previously. In a lever-press 
block, the rule of the task was the same except that the rat had to wait for the 
tones by keeping the lever pressed. Lever-press waiting in the nose-poke block (or 
vice versa) was not rewarded. Each block consisted of 70–100 trials. Transitions 
between the blocks were not signaled explicitly.

Neural recording. For the recording experiments, each rat was implanted with 
a drive (Island Motion) containing 10–24 movable tetrodes44 targeted to the M2 
(3.2–4.7 mm anterior to and 1.5–2.0 mm lateral to Bregma52) contralateral to 
the side of the reward port. In case of a dual waiting task in Figure 6, the drive 
was implanted contralateral to the side of the reward port in a nose-poke waiting 
task. Rats were allowed to recover for 5 d before water restriction resumed and 
the recording sessions began.

Individual tetrodes consisted of four twisted polyimide-coated nichrome  
wires (H.P. Reid; single-wire diameter = 12.5 µm) gold-plated to 0.2–0.5-MΩ 
impedance at 1 kHz. The tetrodes were coated with DiI (Molecular Probes) to 
visualize the tetrode tracks in a histological examination. Electrical signals were 
amplified and recorded using the NSpike data acquisition system (L.M. Frank, 
University of California, San Francisco, and J. MacArthur, Harvard University 
Electronic Instrument Design Lab). Multiple single units were isolated offline 
by manually clustering spike features derived from the waveforms of recorded 
putative units using MCLUST software (A.D. Redish, University of Minnesota). 
Tetrode depths were adjusted before or after each recording session in order 
to sample an independent population of neurons across sessions. Single-units 
recorded during more than one session, as judged from the spike waveform and 
the firing pattern, were excluded from the analysis. The locations of tetrode tips 
during each recording session were estimated based on their depth and histo-
logical examination based on electrolytic lesions and the visible tetrode tracks 
(Supplementary Fig. 10). Single-units recorded from outside the M2 were 
excluded from the analysis. Rats performed 1 session per day, and a total of 135 
recording sessions were obtained from 8 rats.

Histology. To verify the ultimate location of the tetrodes, electrolytic lesions were 
produced after the final recording session (15 µA of cathodal current, 10 s). Rats 
were then deeply anesthetized with pentobarbital and perfused transcardially 
with 4% paraformaldehyde (wt/vol). The brain was sectioned at 50 µm. Every 
other slice was stained with Cresyl violet solution to observe sites of electrolytic 
lesions. Other slices were prepared for fluorescent observation to examine the 
fluorescent tracks made by DiI-coated tetrodes.

Neural data analysis. All data analysis was performed with custom-written  
software using MATLAB (Mathworks). No statistical methods were used to  
pre-determine sample sizes. But our sample sizes were similar to those reported 
in previous studies19,21. Two-sided tests were used for all the statistical tests.  
All the PETHs were smoothed with a Gaussian filter (s.d. = 50 ms) only for 
visualization purpose.
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For the ramp-to-threshold analysis in Figure 3, only impatient trials were 
analyzed because in patient trials, the response was triggered by the tone. Only 
those neurons which showed different firing rates during the delay period (from 
0.4 s after poke in to 0.4 s before poke out) and the poke-out period (last 0.4 s 
before poke out) were analyzed (Wilcoxon signed-rank text, P < 0.01, ramp-up 
or ramp-down neurons). Neurons with less than ten long waiting trials (more 
than 1.2 s waiting time) were pre-excluded before the selection process because 
the delay period firing rate could not be estimated reliably. Impatient trials were 
divided into ten groups based on the waiting time, with equal (or different by 1)  
number of trials per group. Spike trains were smoothed with a causal filter 
(EPSP-like filter, which is a multiple of two exponentials, one rising exponen-
tial with τ = 1 ms, and the other falling exponential with τ = 40 ms) to gener-
ate a PETH for each group. The threshold crossing time was determined from 
the PETHs. While ramp-up neurons were tested with threshold crossing with 
positive slope, ramp-down neurons were tested with negative slope. Threshold 
crossing time was detected when the PETH first crossed the threshold and stayed 
above (or below for ramp-down neuron) the threshold for more than 20 ms. 
The threshold crossing time was defined as the end point of this 20 ms. The 
search for threshold crossing was started at the trough time between 0 and 0.4 s  
from the poke in (peak time for the ramp-down neurons) of the average of 
the ten PETHs and ended at 0.4 s after the waiting time of the longest waiting  
time trial. For each neuron, we tested ten different firing rate thresholds, deter-
mined as follows: The lowest threshold was set at the lowest firing rate at which 
threshold crossing occurred in at least 9 out of 10 PETHs. The highest threshold 
was set at the highest firing rate at which threshold-crossing occurred at least 
in 9 PETHs. Eight intermediate thresholds were equally-spaced in between the 
lowest and the highest thresholds. At each threshold level, we calculated cor-
relation between the mean waiting times against the threshold crossing times. 
A ramp-to-threshold type predictive neurons was defined as a neuron which 
showed, significant correlation coefficient between the threshold crossing time 
and the waiting time in at least 2 of the 10 thresholds (corrected for multiple 
comparisons; two significant thresholds were required for the calculation of 
rate of ramping explained later), positive prediction time (defined below) in 
at least 2 significant thresholds, and the regression slope for threshold cross-
ing time against the waiting time close to unity (value between 0.8 and 1.2) in 
at least 1 significant threshold with positive prediction time. Prediction time 
was defined for each threshold as an average of waiting time minus time to 
cross threshold across different waiting time groups. The earliest prediction 
time was defined for each neuron as a prediction time calculated at the lowest 
significant threshold for ramp-up neurons (the highest significant threshold 
for ramp-down neurons). For each PETH, rate of ramping was calculated as 
a slope of a line connecting 2 points. One was the point of crossing the high-
est significant threshold with near unity slope and the other was the point of 
crossing the lowest significant threshold (opposite for ramp-down neurons).  
For ramp-down neurons log ramp rate is calculated as follows: [log ramp rate] = 
− log(|ramp rate|). To estimate the significance of fraction of ramp-to-threshold 
type neurons, we ran a permutation test by randomly permuting the waiting 
times and neural data across impatient trials. We repeated this procedure 1,000 
times to estimate the probability of obtaining the observed fraction of significant 
neurons by chance. To obtain the correlation coefficient between activity at the 
poke-out period and the waiting time in Figure 3e,h, firing rates during the last 
0.05 s before poke out was used.

For the analysis of correlation between the firing rate and the waiting time 
in Figure 4, we excluded 27 ramp-to-threshold type neurons, because in this 
analysis, we looked for a different class of waiting-time predictive activity from 
the ramp-to-threshold type neurons. Only impatient trials were analyzed because 
in patient trials, the response was triggered by the tone. Two neurons with 
fewer than 10 impatient trials were excluded from the analysis. The correlation  
coefficient between the firing rate and the waiting time was examined for non-
overlapping 0.4-s time window, starting from 1.2 s before the waiting port entry. 
For each time window, the trials in which the rat had already exited the waiting 
port by the end of the analysis time window or within 0.2 s after the end of the 
time window were excluded from the analysis, in order to exclude potential move-
ment correlates. Time windows with less than 10 trials after the exclusion were 
not analyzed, because the correlation could not be estimated reliably. Because the 
significance was tested in multiple time windows, we corrected the significance  

level using Bonferroni correction. To estimate the significance of fraction of  
firing rate correlated neurons, we ran a permutation test by shuffling the impa-
tient trials 1,000 times.

For the analysis of the action specificity of the predictive activity in Figure 6, 
we excluded 35 neurons which was recorded in fewer than 10 impatient trials 
in either nose-poke or lever-press waiting task. We further excluded 21 neurons 
which showed ramp-to-threshold type activity in either nose-poke or lever-press 
waiting tasks to be consistent with the analysis for Figures 4 and 5. But analysis 
without exclusion yielded similar results (data not shown).

For the analysis of action specificity of ramp-to-threshold activity in Figure 7, 
poke-out/delay selectivity index was defined for nose-poke trials as the difference 
in a mean firing rate during poke-out period (last 400 ms before poke out) and 
during the delay period (from 400 ms after poke in to 400 ms before poke out) 
normalized by the sum of the two. The index ranges from −1 to 1; 1 indicates a 
neuron selective for poke-out period. The lever-release/delay selectivity index 
was defined as a similar manner for lever-press trials.

To explore whether and how the patterns of neural activity and behavior 
observed might arise from neural circuits, we explored how integration of neu-
ral activity could give rise to the waiting times. Although neural integration is 
proposed to be achieved by multiple neurons in a circuit2, here we modeled the 
integrator circuit as multiple input units feeding a single idealized integrator, 
similar to the drift-diffusion model.

In this section, N (µ,σ2) denotes a Gaussian random variable with mean µ and 
variance σ2. The model was run at discrete time step of 0.2 s until maximum time 
of 5s (25 time steps) was reached.

Each input unit i was assigned its own time of activation. At every time step, 
t, there were Nt number of activated units (Nt: 10, 30, 100 or 300). Each input 
unit was connected to the integrator with a random weight, wi, drawn from  
N (1/Nt, 1/Nt). To make sure the synaptic weights at each time step did not have 
strong bias toward positive or negative, we assigned a rank, Rw, to each input unit 
at a time step from 1 to Nt and the synaptic weight was drawn randomly from 
a narrow percentile range (from (Rw − 1)/Nt·100 to Rw/Nt·100) of the normal 
distribution, N (1/Nt, 1/Nt). The activity of each unit, FRi(t) was described as a 
square pulse activation function as follows:

FR t N z w N t t Ti FR FR i( ) ( )(( ) ( , ) ( ) ),= + ⋅ − ⋅ + ⋅ ⋅ =m s b b1 0 1 comm at

FR t t Ti i( ) ,= ≠0 at

where µFR denotes mean firing rate with its value 10, σFR denotes trial-to-trial 
variability with its value 4, β denotes fraction of common noise varying from 0 
to 0.6, z(w) denotes z-scored synaptic weight, Ncomm(t) denotes activity of the 
common noise source and Ti denotes time of activation of each unit. Ncomm(t) 
was generated by convolving Gaussian white noise with Gaussian kernel with 
s.d. 0.6 s and then normalized to have 0 mean and unit variance. Negative FR 
was always truncated at 0.

Input units fed to a perfect integrator which kept adding to its own activity a 
weighted sum of all the input units’ activity as follows:
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where Ntotal = Nt × 25 (Note that only Nt neurons were active at a particular time 
step). Once it reached a threshold level of 50 spikes per s, the model stops waiting. 
The model was run 100 times to produce 100 trials, comparable to the number of 
impatient trials used to analyze data neurons (101.7 ± 1.8 trials).

For the analysis in Figure 8b, correlation coefficient between the input units 
activity and the waiting time was examined.

For the trial-by-trial correlation analysis in Figure 8c, we analyzed 1,836 simul-
taneously recorded neuron pairs for data neurons (27 ramp-to-threshold neurons 
were excluded, because they were supposed to be the integrator neurons). For 
each neuron, the 0.4-s time bin with the lowest P value for correlation between 
firing rates and waiting times was used for the analysis. Trial-by-trial partial  
correlations of firing rate of each pair of neurons were calculated factoring out 
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correlation of firing rates with waiting times. Each pair of neurons was categorized 
as the same sign, opposite sign and others depending on the sign and significance 
of the firing rate correlation with waiting times. Each pair was also categorized by 
the absolute time difference of the most significant time bin (analysis time bin). 
For the model units, the activity at the 0.2-s activated time was used to calculate 
the partial correlation.

A Supplementary Methods Checklist is available.
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