

Safety Evaluation of Intersection Conflict Warning Systems (ICWS)

Scott Himes, PhD, PE

Monday, February 12th

ITS Carolinas 2018 Annual Meeting

Acknowledgements

- Development of Crash Modification Factors (DCMF) Project
 - Roya Amjadi FHWA
 - Brad Estochen Minnesota DOT
 - Derek Leuer Minnesota DOT
 - Ashley Reinkemeyer Missouri DOT
 - John Miller Missouri DOT
 - Shawn Troy North Carolina DOT
 - Carrie Simpson North Carolina DOT

Overview

- ICWS Overview
- Study Design
- Aggregate Results
- Disaggregate Results
- Economic Analysis
- Conclusions

Overview of ICWS

- ICWS Warning signs with flashing beacons activated by vehicles on adjacent intersection approach
 - Alerts drivers on major road to vehicles entering
 - Assists minor road drivers selecting gaps
 - Combination may be used

Crowson and Jackels – December 2010

Overview of ICWS

- Typical Uses
 - Limited ISD
 - Gap-acceptance crash history
- Installation Locations
 - Post-mounted
 - Overhead

Study Objectives

- Evaluate safety effectiveness through development of crash modification factor (CMF)
- Perform disaggregate analysis to determine conditions where treatment is most effective
- Conduct economic analysis to determine cost effectiveness

Crash Modification Factors

- CMF = multiplicative factor for calculating expected crashes after implementing treatment
 - CMF > 1 indicates an increase in crashes
 - CMF < 1 indicates a reduction in crashes
- Percent crash reduction is 100 × (1.00 CMF)
 - A CMF of 0.77 results in a 23 percent reduction in crashes
- Example Provide highway lighting for site with 6 nighttime crashes/year: CMF = 0.80

Expected nighttime crashes after treatment = 6.00 × 0.80 = 4.80 crashes/year

ICWS Evaluation Volunteer States

Applicable Scenarios

- Four-leg intersections with stop control on minor road approaches
- Two-lane major road
- Four-lane major road

Study Design - Overview

- Analysis method
 - Empirical Bayes before-after
 - Project-specific safety performance functions (SPFs)
- Crash categories
 - Total
 - Fatal and injury
 - Right angle
- Study periods
 - MN 2006 2012
 - MO 2000 2012
 - NC 1992 2012

- Two-lane sites
 - MN 10
 - MO 6
 - NC 53
- Four-lane sites
 - MN 3
 - MO 8
 - NC 13

Study Design – Methodology

- Empirical Bayes (EB) before-after
 - Maximum 5 years before/after
 - Establish reference groups for SPF development
 - Predict safety for after period using SPF
 - Use EB procedure to estimate expected crashes with no treatment
 - Observe actual safety for after period with treatment
 - Compare the two

Aggregate Results – Two-Lane

Crash Type	After-Perio	d Crashes	EB		
	Expected	Observed	CMF	S.E.	
Total	912.8	670	0.73	0.04	
Fatal + Injury	515.6	362	0.70	0.05	
Right Angle	522.2	420	0.80	0.05	

Aggregate Results – Four-Lane

Crash Type	After-Perio	d Crashes	EB		
	Expected	Observed	CMF	S.E.	
Total	464.5	385	0.83	0.06	
Fatal + Injury	263.6	212	0.80	0.07	
Right Angle	295.5	252	0.85	0.08	

Treatment Category – NCDOT

- Category 1 Overhead signs and flashers on major; loop on minor
- Category 2 Overhead signs and flashers on minor; loop on major
- Category 3a Post-mounted signs and flashers on major; loop on minor
- Category 3b Post-mounted signs and flashers on minor; loop on major
- Category 4 Other

Results by Category – Two-Lane at Two-Lane

Cate	gory	1 OH-Maj	2 OH-Min	3a PM-Maj	3b PM-Min	4 Combo
Sit	es	16	15	14	8	16
Total	CMF (SE)	0.74 (0.07)	0.89 (0.08)	0.52 (0.06)	0.89 (0.16)	0.70 (0.09)
	N	173	241	120	42	94

Results by Category – Two-Lane at Two-Lane

Cate	gory	1 OH-Maj	2 OH-Min	3a PM-Maj	3b PM-Min	4 Combo
Sites		16	15	14	8	16
Total	CMF (SE)	0.74 (0.07)	0.89 (0.08)	0.52 (0.06)	0.89 (0.16)	0.70 (0.09)
	N	173	241	120	42	94
Fatal and Injury	CMF (SE)	0.60 (0.08)	0.94 (0.10)	0.45 (0.07)	1.06 (0.29)	0.74 (0.12)
	N	91	144	58	18	51
Right Angle	CMF (SE)	0.81 (0.10)	1.08 (0.11)	0.45 (0.07)	1.25 (0.30)	0.70 (0.11)
	N	111	169	61	25	54

Results by Category – Four-Lane at Two-Lane

Cate	gory	1	2	3a PM-Maj	3b PM-Min	4
Sit	es			12	7	
Total	CMF (SE)			0.75 (0.07)	0.69 (0.13)	
	N			243	35	
Fatal and Injury	CMF (SE)			0.73 (0.08)	0.90 (0.21)	
	N			138	22	
Right Angle	CMF (SE)			0.77 (0.08)	0.76 (0.17)	
	N			174	23	

Economic Analysis

- Approximated costs for installation, annual maintenance, and annual operations
- Benefits included savings in prevented crashes
- Assumed 10-year lifespan with 7 percent discount rate
- Two-lane B/C ratio: 27:1
- Four-lane B/C ratio: 10:1

Conclusions

- Aggregate results for combined states recommended
- Results indicate statistically significant reductions
- B/C ratios suggest strategy can be cost-effective
- This is an evolving strategy
 - Study reflects installation practices to date
 - As practices change, results may change
 - Overhead applications limited to NC and at-intersection only
 - Post-mounted applications in-advance only
 - Future research should consider placement of warning signs

Final Report

- Available on <u>Evaluation of Low Cost Safety Improvement-</u> <u>Pooled Fund Study website</u>
 - (Search "FHWA ELCSI-PFS" in internet browser)
 - FHWA Report Number: FHWA-HRT-16-035

Thank you!

Scott Himes 919.334.5608 <u>shimes@vhb.com</u>

