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The scientific method relies on facts, established through repeated measurements and agreed upon
universally, independently of who observed them. In quantum mechanics, the objectivity of observa-
tions is not so clear, most dramatically exposed in Eugene Wigner’s eponymous thought experiment
where two observers can experience seemingly different realities. The question whether these real-
ities can be reconciled in an observer-independent way has long remained inaccessible to empirical
investigation, until recent no-go-theorems constructed an extended Wigner’s friend scenario with
four observers that allows us to put it to the test. In a state-of-the-art 6-photon experiment, we
realise this extended Wigner’s friend scenario, experimentally violating the associated Bell-type in-
equality by 5 standard deviations. If one holds fast to the assumptions of locality and free-choice,
this result implies that quantum theory should be interpreted in an observer-dependent way.

Introduction.— The observer’s role as final arbiter of
universal facts [1] was imperilled by the advent of 20th

century science. In relativity, previously absolute ob-
servations are now relative to moving reference frames;
in quantum theory, all physical processes are continu-
ous and deterministic, except for observations, which are
proclaimed to be instantaneous and probabilistic. This
fundamental conflict in quantum theory is known as the
measurement problem, and it originates because the the-
ory does not provide a clear cut between a process being
a measurement or just another unitary physical interac-
tion.

This is best illustrated in the seminal “Wigner’s friend”
thought experiment [2], whose far-reaching implications
are only starting to become clear [3–5]. Consider a sin-
gle photon in a superposition of horizontal |h〉 and verti-
cal polarisation |v〉, measured in the {|h〉, |v〉}-basis by
an observer—Wigner’s friend—in an isolated lab, see
Figs. 1a and b. According to quantum theory, the friend
randomly observes one of the two possible outcomes in
every run of the experiment. The friend’s record, h or v,
can be stored in one of two possible orthogonal states of
some physical memory, labeled either |“photon is h”〉 or
|“photon is v ”〉, and constitutes a “fact” from the friend’s
point of view. Wigner, who observes the isolated lab-
oratory from the outside, has no information about his
friend’s measurement outcome. According to quantum
theory Wigner must describe the friend’s measurement as
a unitary interaction that leaves the photon and friend’s
record in the entangled state (with implicit tensor prod-
ucts):

1√
2

(|h〉 ± |v〉)

→ 1√
2

(
|h〉|“photon is h”〉 ± |v〉|“photon is v ”〉

)
=: |Φ±photon/record〉. (1)

Wigner can now perform an interference experiment in

FIG. 1. Wigner’s friend experiment. a A quantum sys-
tem in an equal superposition of two possible states is mea-
sured by Wigner’s friend (inside the box). According to quan-
tum theory, in each run she will randomly obtain one of the
two possible measurement outcomes. This can indeed be ver-
ified by directly looking into her lab and reading which result
she recorded. b From outside the closed laboratory, however,
Wigner must describe his friend and her quantum system as a
joint entangled state. Wigner can also verify this state assign-
ment through an interference experiment, concluding that his
friend cannot have seen a definite outcome in the first place.
c We consider an extended version of that experiment, where
an entangled state is sent to two different laboratories, each
involving an experimenter and their friend.

an entangled basis containing the states of Eq. (1) to ver-
ify that the photon and his friend’s record are indeed in
a superposition—a “fact” from his point of view. From
this fact, Wigner concludes that his friend cannot have
recorded a definite outcome. Concurrently however, the
friend does always record a definite outcome, which sug-
gests that the original superposition was destroyed and
Wigner should not observe any interference. The friend
can even tell Wigner that she recorded a definite outcome
(without revealing the result), yet Wigner and his friend’s
respective descriptions remain unchanged [6]. This calls
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FIG. 2. Experimental setup. Pairs of entangled photons from the source S0, in modes a and b, respectively, are distributed
to Alice’s and Bob’s friends, who locally measure their respective photon in the {h, v}-basis using entangled sources SA, SB

and type-I fusion gates. These use nonclassical interference on a polarising beam splitter (PBS) together with a set of half-
wave (HWP) and quarter-wave plates (QWP). The photons in modes α′ and β′ are detected using superconducting nanowire
single-photon detectors (SNSPD) to herald the successful measurement, while the photons in modes α and β record the friends’
measurement results. Alice (Bob) then either performs a Bell-state measurement via non-classical interference on a 50/50 beam
splitter (BS) on modes a and α (b and β) to measure A1 (B1) and establish her (his) own fact, or removes the BS to measure
A0 (B0), to infer the fact recorded by their respective friend; see Supplementary Materials for details.

into question the objective status of the facts established
by the two observers. Can one reconcile their differ-
ent records, or are they fundamentally incompatible—
so that they cannot be considered objective, observer-
independent “facts of the world” [3, 4]?

It was recently shown [4] that this question can be
addressed formally, by considering an extension of the
Wigner’s friend scenario as follows. Consider a pair of
physical systems, shared between two separate laborato-
ries controlled by Alice and Bob, respectively, see Fig. 1c.
Inside these laboratories, Alice’s friend and Bob’s friend
measure their respective system non-destructively and
record the outcomes in some memory. Outside these
laboratories, in each run of the experiment Alice and
Bob can choose to either measure the state of their
friend’s record—i.e. to attest the “facts” established by
their friend, and whose results define the random vari-
ables A0 (for Alice’s friend) and B0 (for Bob’s friend);
or to jointly measure the friend’s record and the system
held by the friend—to establish their own “facts”, defining
variables A1 (for Alice) and B1 (for Bob). After compar-
ing their results, Alice and Bob can estimate the proba-
bility distributions P (Ax, By) for all four combinations of
x, y = 0, 1. As in the original Wigner’s friend Gedanken-
experiment, the facts A1, B1 attributed to Alice and Bob
andA0, B0 attributed to their friends’ measurements may
be inconsistent.

This raises the question whether a more general frame-
work exists in which all observers can reconcile their
recorded facts. We shall call this assumption O, observer-
independent facts, stating that a record or piece of infor-
mation obtained from a measurement should be a “fact
of the world” that all observers can agree on—and that
such “facts” take definite values even if not all are “co-
measured” [7, 8]. Under the additional assumptions of
locality (L), that Alice and Bob’s choices do not influ-

ence each others’ outcome, and free-choice (F), that Al-
ice and Bob can freely choose their measurements A0, A1

and B0, B1, it should then be possible to construct a sin-
gle probability distribution P (A0, A1, B0, B1) for the four
individual facts under consideration, whose marginals
match the probabilities P (Ax, By) [3, 4].

Any joint probability distribution satisfying these
assumptions must then satisfy Bell inequalities [9].
More specifically, when the variables Ax, By take val-
ues a, b ∈ {−1,+1}, then the average values 〈AxBy〉 =∑
a,b abP (Ax = a,By = b) must obey the Clauser-Horne-

Shimony-Holt inequality [10]:

S = 〈A1B1〉+ 〈A1B0〉+ 〈A0B1〉 − 〈A0B0〉 ≤ 2. (2)

As shown in Refs. [3, 4], a violation of the inequality
above is, however, possible in a physical world described
by quantum theory. Such a violation would demonstrate
that the observed probability distributions P (Ax, By) are
incompatible with assumptions F, L, and O. Therefore,
if we accept F and L, it follows that the pieces of infor-
mation corresponding to facts established by Alice, Bob,
and their friends cannot coexist within a single, observer-
independent framework [3, 4]. Notably this is the case
even though Alice and Bob can acknowledge the occur-
rence of a definite outcome in their friend’s closed labo-
ratory.

We note that, although Bell’s mathematical machin-
ery [11] is used to show the result, the set of assumptions
considered here—and therefore the conclusions that can
be drawn from a violation of inequality (2)—are differ-
ent from those in standard Bell tests. In fact, while they
share assumptions L and F, the third assumption of pre-
determination (PD) in the original Bell theorem [12], for
instance, differs from our assumption O in that it is only
concerned with the deterministic (or otherwise) nature of
measurement outcomes, not with their objectivity as in
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O. A Bell test is indifferent to the observables used and
the underlying system, such that any violation suffices to
rule out the conjunction of L, F and PD. In contrast, a
Bell-Wigner test is based on very specific observables that
satisfy the definition of an observation given below and
thus represent facts relative to different observers. For-
mally, any Bell-Wigner violation implies a Bell-violation,
but not the other way round.

Before we describe our experiment in which we test
and indeed violate inequality (2), let us first clarify our
notion of an observer. Formally, an observation is the act
of extracting and storing information about an observed
system. Accordingly, we define an observer as any phys-
ical system that can extract information from another
system by means of some interaction, and store that in-
formation in a physical memory.

Such an observer can establish “facts”, to which we as-
sign the value recorded in their memory. Notably, the
formalism of quantum mechanics does not make a dis-
tinction between large (even conscious) and small physi-
cal systems, which is sometimes referred to as universal-
ity. Hence, our definition covers human observers, as well
as more commonly used non-conscious observers such
as (classical or quantum) computers and other measure-
ment devices—even the simplest possible ones, as long
as they satisfy the above requirements. We note that
the no-go theorem formulated in [5] requires observers to
be “agents”, who “use” quantum theory to make predic-
tions based on the measurement outcomes. In contrast,
for the no-go theorem we tested here [4] it is sufficient
that they perform a measurement and record the out-
come. The enhanced capabilities required of agents were
recently discussed in [13].
Results.— Our experiment makes use of three care-

fully designed [14, 15] sources S0, SA and SB , see Fig. 2,
which generate pairs of 1550 nm single photons, entan-
gled in the polarisation degree of freedom [16] in the state
|Ψ−〉 = (|h〉|v〉 − |v〉|h〉) /

√
2. We confirmed the almost

ideal quality of the prepared states via quantum state to-
mography, with typical fidelity F = 99.62+0.01

−0.04%, purity
P = 99.34+0.01

−0.09% and entanglement as measured by the
concurrence C = 99.38+0.02

−0.10%, see Supplementary Ma-
terials for details. The photon pair from source S0 is
rotated to

|Ψ̃〉 = 1⊗ U 7π
16
|Ψ−〉, (3)

using a half-wave plate at an angle 7π/16, given by U 7π
16

=

cos( 7π
8 )σz+sin( 7π

8 )σx (where 1 is the identity, σz, σx are
the Pauli operators). This state maximises the violation
of inequality (2) for our choice of measurement settings,
see Eq. (4).

Source S0 provides the quantum systems on which Al-
ice’s and Bob’s friends perform their measurements. Re-
calling the above definition of an observer, we employ the
entangled photon pairs from sources SA and SB as the
physical systems which, through interaction in a type-I
fusion gate [17, 18] between modes a, α′ and b, β′ re-

spectively (see Fig. 2), are able to extract information
and thereby establish their own facts. When success-
ful, the fusion gate realises a non-destructive polarisation
measurement of a photon from S0 in the {|h〉, |v〉}-basis,
whose results |“photon is h”〉 or |“photon is v ”〉 represent
the friend’s record. Via the ancillary entanglement, the
extracted information is then stored in the polarisation
state of the other photon from SA (SB)—in mode α (β)—
which acts as a memory, while the photon in mode α′ (β′)
is absorbed in a single photon counter to herald the suc-
cess of the measurement (see Supplementary Materials
for details). Note that this detection could be delayed un-
til the end of the experiment as it carries no information
about the measurement outcome, akin to the observer
in the box communicating the fact that an observation
took place [3, 4]. From Alice’s and Bob’s perspective,
the yet undetected photons from S0, SA, and SB are now
in a joint 4-photon entangled state, see Eq. (S7) in the
Supplementary Materials.
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FIG. 3. Experimental data. The outcome probabili-
ties comprising each of the four expectation values 〈A0B0〉,
〈A0B1〉, 〈A1B0〉, 〈A1B1〉 are obtained from the measured 6-
fold coincidence events for each set of 4×4 eigenvectors during
a fixed time window. Shown here, are only the data corre-
sponding to non-zero eigenvalues labelled on the horizontal
axes + and − for +1 and −1, respectively, with the full data
shown in the Supplementary Materials. The theoretical pre-
dictions are shown as orange bars, and each measured ex-
pectation value is given above the corresponding sub-figure.
Uncertainties on the latter and error bars on the data rep-
resent 1σ statistical confidence intervals assuming Poissonian
counting statistics (see Supplementary Materials).

To test inequality (2), Alice and Bob then measure the
following observables on their respective joint photon /
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friend’s record systems:

A0 =B0 =1⊗
(
|“photon is h”〉〈“photon is h”|
− |“photon is v ”〉〈“photon is v ”|

)
,

A1 =B1 = |Φ+
photon/record〉〈Φ

+
photon/record|

− |Φ−photon/record〉〈Φ
−
photon/record|. (4)

(with |Φ±photon/record〉 as defined in Eq. (1)). The observ-
ables A0 and B0 directly unveil the records established
by Alice’s and Bob’s friend, respectively. The observables
A1 and B1, on the other hand, correspond to Alice’s and
Bob’s joint measurements on their friend’s photon and
record, and define their own facts in the same way as
Wigner in the original thought experiment confirms his
entangled state assignment.

We estimate the four average values 〈AxBy〉 in inequal-
ity (2) via projection onto each of the 4 × 4 eigenstates
of the observables Ax and By, see Supplementary Ma-
terials for details. For the corresponding 64 settings we
collect 1794 six-photon coincidence events over a total
measurement time of 360 hours, from which we calculate
the probabilities shown in Fig. 3. We achieve a value
of Sexp = 2.416+0.075

−0.075, thus violating inequality (2) by
more than 5 standard deviations. This value is primar-
ily limited by the higher-order photon emissions from our
probabilistic photon sources. Statistical uncertainties are
independently estimated using an error propagation ap-
proach and a Monte-Carlo method. Details are discussed
in the Supplementary Materials.
Discussion.— In principle, “Bell-Wigner tests” like

ours are subject to similar loopholes as tests of conven-
tional Bell inequalities [19]. To address the detection
and space-time loopholes, we make the physically rea-
sonable assumption of fair sampling and rely on the em-
pirical absence of signalling between our measurement
devices (which experimentally we verified to be in agree-
ment with the expectation from Poissonian statistics), re-
spectively. Another loophole may arise if the observables
A0, B0 that are measured in practice do not strictly cor-
respond to a measurement of the friends’ memories. Here
we assume (with reasonable confidence, up to negligible
experimental deviations) that the measured observables
indeed factorise as in Eq. (4), with the identity on the
photon system, so that the above interpretation for A0,
B0 can be trusted. As discussed in the Supplementary
materials, closing all loopholes in full will be considerably
more challenging than for Bell tests.

One might further be tempted to deny our photonic

memories the status of “observer”. This, however, would
require a convincing revision of our minimal definition
of what qualifies as an observer, which typically comes
at the cost of introducing new physics that is not de-
scribed by standard quantum theory. Eugene Wigner,
for example, argued that the disagreement with his hy-
pothetical friend could not arise due to a supposed impos-
sibility for conscious observers to be in a superposition
state [2]. However, the lack of objectivity revealed by a
Bell-Wigner test does not arise in anyone’s consciousness,
but between the recorded facts. Since quantum theory
does not distinguish between information recorded in a
microscopic system (such as our photonic memory) and
in a macroscopic system the conclusions are the same for
both: the measurement records are in conflict regard-
less of the size or complexity of the observer that records
them. Implementing the experiment with more complex
observers would not necessarily lead to new insights into
the specific issue of observer-independence in quantum
theory. It would however serve to show that quantum
mechanics still holds at larger scales, ruling out alterna-
tive (collapse) models [20]. However, this is not the point
of a Bell-Wigner test—less demanding experiments could
show that.

Modulo the potential loopholes and accepting the pho-
tons’ status as observers, the violation of inequality (2)
implies that at least one of the three assumptions of free
choice, locality, and observer-independent facts must fail.
The related no-go theorem by Frauchiger & Renner [5]
rests on different assumptions which do not explicitly in-
clude locality. While the precise interpretation of Ref. [5]
within non-local theories is under debate [21], it seems
that abandoning free choice and locality might not re-
solve the contradiction [5]. A compelling way to accom-
modate our result is then to proclaim that “facts of the
world” can only be established by a privileged observer—
e.g., one that would have access to the “global wavefunc-
tion” in the many worlds interpretation [22] or Bohmian
mechanics [23]. Another option is to give up observer in-
dependence completely by considering facts only relative
to observers [24], or by adopting an interpretation such as
QBism, where quantum mechanics is just a tool that cap-
tures an agent’s subjective prediction of future measure-
ment outcomes [25]. This choice, however, requires us to
embrace the possibility that different observers irrecon-
cilably disagree about what happened in an experiment.
A further interesting question is whether the conclusions
drawn from Bell-, or Bell-Wigner tests change under rel-
ativistic conditions with non-inertial observers [26].
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SUPPLEMENTARY MATERIALS

Setup details.— A 775 nm, 1.6 ps-pulsed Ti:Sapphire
laser is focused into a 22 mm periodically-poled KTP
crystal in a Sagnac-type interferometer [27], where it gen-
erates pairs of 1550 nm single photons through collinear
type-II parametric down-conversion. The 80 MHz repe-
tition rate of the pump laser is quadrupled through tem-
poral multiplexing [28] in order to suppress higher-order
emissions, see Fig. S1. We thereby achieve a signal-
to-noise ratio (i.e. photon pairs vs. higher-order contri-
butions) of 140 ± 10 in each photon source, generating
∼ 8000 photon pairs mW−1 s−1 with a typical heralding
efficiency η = (cc/

√
s1s2) of ∼ 50%, where cc are the

number of coincidence counts, and s1, s2 are the num-
bers of singles in the first and second output respectively.
Single photons pass through 3 nm band-pass (BP) fil-
ters to guarantee high spectral purity, and are detected
with superconducting nano-wire single-photon detectors
(SNSPDs) with a detection efficiency of ∼ 80%. De-
tector clicks are time-tagged using a field-programmable
gate-array and processed to detect coincidences within a
temporal window of 1 ns.

To benchmark the three required 2-qubit states we per-
form maximum-likelihood quantum state tomography di-
rectly at each source. From the reconstructed density
matrices we compute the fidelity, concurrence and pu-
rity quoted in the main text. Further transmission of the
photon pairs to the fusion gates slightly degrade the fi-
delities of the three entangled pairs, to F0 = 98.79+0.03

−0.03%,
FA = 98.70+0.03

−0.03%, FB = 98.59+0.03
−0.03% for sources S0, SA

and SB respectively, see Fig. 2. This indicates that the
optical circuit preserves the excellent quality of the initial
states.

Measurement protocol.— We now describe in detail
the measurement procedure sketched in Fig. 2. Source
S0 and the HWP on its right output arm produce an
entangled pair of photons in the state of Eq. (3). This
photon pair is distributed to the laboratories of Alice’s
friend and Bob’s friend, who measure their photon us-
ing Type-I fusion gates [17]. Each fusion gate is imple-
mented with a PBS, where horizontally and vertically
polarised photons are transmitted and reflected, respec-
tively (by convention collecting a phase i for the latter).
Two photons entering the PBS from two different inputs
with opposite polarisation, |h〉|v〉 or |v〉|h〉, will exit from
the same output port, and will therefore not lead to co-
incident detection. Only the coincident |h〉|h〉 and |v〉|v〉
components will be recorded in post-selection. For these
post-selected photons, the fusion gate induces the follow-
ing transformations:

|h〉|h〉 PBS−−−→ |h〉|h〉 Q/HWP−−−−−→ |h〉 |h〉+ i|v〉√
2

,

|v〉|v〉 PBS−−−→ −|v〉|v〉 Q/HWP−−−−−→ −|v〉 |h〉 − i|v〉√
2

, (S1)

where Q/HWP refers to the combination of a quarter-
wave plate at π/4 and a half-wave plate at π/8 behind
the PBS (see Fig. 2). The second (heralding) photon in
the above equation is then projected onto the state |h〉
via another PBS. The Type-I fusion gate thus implements
the operation

FGI =
1√
2

(
|h〉〈h|〈h| − |v〉〈v|〈v|

)
, (S2)

where the factor 1√
2
indicates the success probability of

the gate of 1
2 .

To use the fusion gate to measure photon a (see Fig. 2)
non-destructively, Alice’s friend uses an ancilla from the
entangled pair created by SA, prepared as |Ψ−〉α′α. De-
pending on the state of the incoming photon, the oper-
ation performed by Alice’s friend transforms the overall
state as

|h〉a|Ψ−〉α′α =
1√
2

(
|h〉a|h〉α′ |v〉α − |h〉a|v〉α′ |h〉α

)
FGI−−−→ 1

2
|h〉a|v〉α,

|v〉a|Ψ−〉α′α =
1√
2

(
|v〉a|h〉α′ |v〉α − |v〉a|v〉α′ |h〉α

)
FGI−−−→ 1

2
|v〉a|h〉α. (S3)

Hence, the state |h〉a or |v〉a of the external photon in
mode a is copied, after being flipped (h ↔ v), onto Al-
ice’s friend’s photon in mode α. In other words, this
corresponds to a measurement of the incoming photon in
the {h, v}-basis, with the outcome being recorded in the
state of photon α, such that we can write

|“photon is h”〉α = |v〉α,
|“photon is v ”〉α = |h〉α. (S4)

The amplitudes 1
2 in Eq. (S3) indicate the total success

probability of 1
4 for this procedure.

Consider now the central source S0 together with
Alice’s and Bob’s friends’ laboratories. According to
Eq. (3), the state generated by S0 is, after the unitary
U 7π

16
,

|Ψ̃〉ab =
1√
2

cos
π

8

(
|h〉a|v〉b + |v〉a|h〉b

)
+

1√
2

sin
π

8

(
|h〉a|h〉b − |v〉a|v〉b

)
. (S5)

The transformations induced by Alice’s and Bob’s friends
are then, according to Eq. (S3):

|Ψ̃〉ab|Ψ−〉α′α|Ψ−〉β′β
FG⊗2

I−−−−→ 1

4
|Ψ̃′〉aαbβ , (S6)
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FIG. S1. Detailed experimental setup. The Ti:sapphire laser beam is protected from back-reflections by a Faraday isolator
and spatially filtered using a short single-mode fibre (not shown). The laser beam is then temporally multiplexed to effectively
quadruple the pulse rate. The pump is then delivered to three Sagnac-interferometer sources to create polarisation entangled
photon pairs. The outputs of each source are coupled to single-mode fibres and delivered to the measurement stages. Fibre
polarisation controllers are used to maintain the polarisation states of the photons during transport. The three entangled pairs
are then subject to two fusion gates, where temporal mode matching is achieved by employing physical delays as indicated.
One photon at each measurement stage acts as a heralding signal for the success of the fusion gate, while the other two are
subject to a Bell-state measurement on a 50/50 beam splitter, or to a direct measurement without the BS (for A0, B0), followed
by projection onto orthogonal polarisations. Finally, all six photons are fibre-coupled and detected by the SNSPDs whose
detection is processed by a classical computer to find 6-photon coincidence events.

with a global success probability of 1
16 . The state

|Ψ̃′〉aαbβ =
1√
2

cos
π

8

(
|hv〉aα|vh〉bβ + |vh〉aα|hv〉bβ

)
+

1√
2

sin
π

8

(
|hv〉aα|hv〉bβ − |vh〉aα|vh〉bβ

)
,

(S7)

is the four-photon state shared by Alice and Bob when
both fusion gates are successful.

Recalling from Eq. (S4) how the friends’ measurement
results are encoded in their polarisation states, the ob-
servables of Eq. (4) to be measured on |Ψ̃′〉aαbβ are

A0 = B0 = 1⊗ (|v〉〈v| − |h〉〈h|),
A1 = B1 = |Ψ+〉〈Ψ+| − |Ψ−〉〈Ψ−|, (S8)

with |Ψ±〉 = 1√
2
(|hv〉 ± |vh〉). To obtain 〈AxBy〉 we

project these states onto all combinations of eigenstates
of Ax and By individually and record 6-photon coinci-
dence events for a fixed duration. More specifically, to
measure A0 (similarly B0) we project onto |hv〉aα and
|vv〉aα (eigenvalue +1), and |hh〉aα and |vh〉aα (eigen-
value −1) using a QWP and HWP to implement lo-
cal rotations before the final PBS, not using the BS in

Fig. 2. Note that A0 cannot be simply measured by
ignoring photon a, due to the probabilistic nature of
the photon source. Hence, this photon has to be mea-
sured in a polarisation-insensitive way, which, due to
the polarisation-sensitive nature of the photon-detectors,
is best achieved by summing over the projections onto
both orthogonal polarisations. To measure A1 (B1) we
use a 50/50 beam splitter followed by projection onto
|vh〉. Due to nonclassical interference in the beam split-
ter, this implements a projection onto the singlet state
|Ψ−〉aα with success probability 1

2 . Using quantum mea-
surement tomography, we verified this Bell-state mea-
surement with a fidelity of Fbsm = 96.84+0.05

−0.05. Projec-
tions on the other Bell states are possible via local ro-
tations using the same QWP and HWP as before. Here
|Ψ+〉aα takes eigenvalue +1, |Ψ−〉aα eigenvalue −1, and
|Φ±〉aα = 1√

2
(|hh〉 ± |vv〉)aα eigenvalue 0. Probabili-

ties are obtained from normalising the measured counts
with respect to the total of the 16 measurements for
each pair of observables, see Fig. S2. The theoretically
expected values for the various probabilities are either
1
4 (1 + 1√

2
) ' 0.427, 1

4 (1− 1√
2
) ' 0.073, or 0. In addition

to this result, an alternative measurement protocol for
A0 and B0 is presented below.
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FIG. S2. Full experimental data. The full experimental set of probabilities for the 64 settings is shown. The horizontal axis
in each of the four plots indicates the eigenstates (ϕA, ϕB) on which the experimental state shared by Alice and Bob in Eq. (S7)
is projected, where ϕA corresponds to Alice’s projection in the two modes a and α, ϕB instead represents Bob’s projection
in modes b and β. For each setting, the number of 6-photon coincidences is recorded and normalised to obtain the relative
probabilities as shown in the vertical axis.

Error analysis.— As described previously, each av-
erage value 〈AxBy〉 is calculated from 16 measured 6-fold
coincidence counts ni. These numbers follow a Poisson
distribution with variance σ2

ni = ni. The uncertainty on
〈AxBy〉 = f(n1, . . . , n16) can then be computed using

σ2
f (n1, . . . , n16) =

16∑
i=1

(
∂f

∂ni

)2

σ2
ni . (S9)

Since the four averages 〈A1B1〉, 〈A1B0〉, 〈A0B1〉 and
〈A0B0〉 are statistically independent, the uncertainties
can be calculated independently and combined to esti-
mate the uncertainty on S. To take into account poten-
tially asymmetric errors in the limit of small count rates,
we computed the uncertainty on the Bell-Wigner param-
eter S using a Monte-Carlo routine with 100 000 samples.
The values obtained through these two methods agree to
within 0.0032.

Note that in the results shown in Fig. S3 with the ob-
servables of Eq. (S10), errors are correlated due to nor-
malisation with a common total. Accounting for this in
the error propagation results in slightly larger statistical
uncertainty.

The Bell-Wigner value Sexp that can be achieved ex-
perimentally is primarily limited by multi-pair emissions
from our probabilistic photon-pair sources. We first note
that any emission of 3 pairs from any subset of our 3
sources occurs with roughly similar probability. To ex-
clude unwanted terms we use six-fold coincidence detec-

tion, which can only be successful for an emission of one
pair each in S0, SA and SB , or three pairs in S0. The
latter would amount to noise but is excluded by our cross-
polarisation design and can thus not lead to a coincidence
detection. This leaves higher-order contributions where
at least 4 photon pairs are produced as the main source of
errors. Since such events scale with a higher exponent of
the pump power, they are suppressed in our experiment
by working with a relatively low pump power of 100 mW.

Towards a loophole-free “Bell-Wigner” test.— Since
our experiment relies on some of the same assumptions as
traditional Bell tests, it is subject to the same conceptual
and technical loopholes: locality, freedom of choice, and
the detection loophole. Due to the increased complexity
of our experiment, compared to a standard Bell test, the
practical requirements for closing these loopholes are sig-
nificantly more challenging. We now briefly discuss how
these loopholes could be closed in the future.

The configuration of our experiment makes it analo-
gous to an “event-ready” Bell test, where the detection
of the ancilla photons in the fusion gates heralds which
events should be kept for the Bell-Wigner test. In such a
configuration, closing the locality and freedom of choice
loopholes requires the heralding events to be space-like
separated from Alice’s and Bob’s setting choices, which
should each be space-like separated from the measure-
ment outcome of the other party. This imposes stringent
space-time location requirements for a Bell-Wigner test
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closing these loopholes.
The detection loophole arises because only a fraction

of all created photons is detected. In our “event-ready”
configuration, the limited success probability of the fu-
sion gates is not an issue: only heralded events will con-
tribute to the Bell-Wigner test. Nevertheless, to ensure
that the fusion gates are indeed event-ready, the ancilla
detectors should be photon-number-resolving.

To measure the observables Ax, By, we chose to project
the photon states onto their different eigenstates sepa-
rately. To close the detection loophole one cannot follow
such an approach: the measurement protocol should be
able to project the states onto all of the eigenstates in
any run of the experiment.

To measure A0/B0 from Eq. (4), one could pass the
friend’s photon through a PBS, with detectors at both
outputs. As for A1/B1, a full Bell-state measurement
(which is impossible with linear quantum optics [29]) is
not required: it suffices to distinguish |Ψ+〉, |Ψ−〉, and
have a third outcome for |Φ±〉 (see Eq. (S8)). This can be
realised with a small modification to our setup, with de-
tectors added on the second outputs of Alice’s and Bob’s
PBS [30]. An even simpler measurement would discrimi-
nate e.g. |Ψ−〉 from the other three Bell states, thus mea-
suring the observables A1 = B1 = 1 − 2|Ψ−〉〈Ψ−|; this
would not change anything in an ideal implementation,
but simplifies the analysis with detection inefficiencies
below.

Even the best photon detectors aren’t 100% efficient
and optical loss is unavoidable. Assuming a symmetric
combined detection efficiency per photon of η, the mea-
surement of A0/B0 requires one detector to click and
would succeed with probability η, while the measure-
ment of A1/B1 requires two detectors to fire and would
work as expected with probability η2. When a detec-
tor fails to click, a simple strategy is to output a fixed
pre-defined value for the measurement outcome, e.g. +1.
Then, for Eq. (S7) the average values 〈AxBy〉 are theo-
retically expected to be 〈A0B0〉 = η2(− 1√

2
) + (1 − η)2,

〈A0B1〉 = 〈A1B0〉 = η3 1√
2

+(1−η)(1−η2) and 〈A1B1〉 =

η4 1√
2

+(1−η2)2. With these values, the minimal required
detection efficiency to violate inequality (2) with (unre-
alistically) perfect quantum states and measurements is
η > 2

√
3(1− 1√

2
) − 1 ' 0.875. This is a more strin-

gent requirement than for a standard test of the CHSH
inequality, for which a similar analysis for maximally en-
tangled states yields η > 2

√
2 − 2 ' 0.828. To relax

this requirement, one might attempt similar tricks as for
standard Bell tests, e.g. to use non-maximally entangled
states [31], although this will come at the cost of a re-
duced violation of the inequality.

Note, finally, that in the conclusions we draw from the
violation of inequality (2), we need to trust that A0 and
B0 indeed directly measure the memory of Alice’s and
Bob’s friends, so as to unveil their respective facts. A
new loophole may be opened, now specific to Bell-Wigner
tests, if such an interpretation cannot be maintained. To

address this loophole with a setup like ours, one should
use measurement devices for A0 and B0 that clearly sep-
arate the initial systems and the memories of each friend,
and only “looks” at the memory photons, rather than at
the system photon + memory photon together; we also
leave this possibility as a challenge for future Bell-Wigner
experimental tests.

Alternative observables A0, B0.— In Ref. [4] the ob-
servables A0, B0 were defined as

A0 = B0 = |h〉〈h|⊗|“photon is h”〉〈“photon is h”|
− |v〉〈v|⊗|“photon is v ”〉〈“photon is v ”|,

(S10)

which have a slightly different physical interpretation.
The observables used in the main text and defined in
Eq. (4), directly measure the facts established by the
friend, as recorded in their memory. In contrast, the ob-
servables in Eq. (S10) can be understood as not only a
measurement of the friend’s record (to establish a “fact
for the friend”), but also of the original photon measured
by the friend, as a consistency check: if the state of
the photon is found to be inconsistent with the friend’s
record, the definition above assigns a value 0 for the mea-
surement result.

Our experiment also allows us to test inequality (2) us-
ing this alternative definition of A0, B0. Indeed, from the
experimental data shown in Fig S2, it suffices (according
to Eq. (S10) and recalling Eq. (S4)) to assign the eigen-
state/eigenvalue according to |hv〉 → +1, |vh〉 → −1
and |hh〉, |vv〉 → 0 in the calculation of the average
values 〈AxBy〉. We thus obtain the three average val-
ues 〈A0B0〉 = 0.662+0.033

−0.033, 〈A0B1〉 = 0.573+0.039
−0.039 and

〈A1B0〉 = 0.600+0.040
−0.040 with 〈A1B1〉 unchanged. With

these values, we have Sexp = 2.407+0.073
−0.073, again violating

inequality (2) by more than 5 standard deviations. As in
the main text, errors are computed assuming Poissonian
photon counting statistics, see below for details.

Alternative measurement protocol for A0, B0.— Re-
call that in order to measure A0 (similarly B0), the beam
splitter for Alice in Fig. 2 has to be removed relative to
the measurement of A1. A less invasive method (which
does not compromise the alignment of our optical ele-
ments) is to introduce linear polarisers in modes a(b) and
α(β). This effectively measures the photons before the
BS, preventing interference.

We implemented this procedure for the alternative def-
inition of A0 and B0 in Eq. (S10). Since this approach
leads to a reduced success probability of the measure-
ment of A0(B0) by a factor 1/4, we measured all 16
eigenvectors only for 〈A1B1〉. For the other observables
we measured the eigenvectors with non-zero eigenval-
ues and normalised all data with respect to the total
counts for 〈A1B1〉, Fig. S3. This slightly increases ex-
perimental uncertainties, which we have taken into ac-
count in our error analysis. The expectation values so ob-
tained are 〈A0B0〉 = 0.609+0.048

−0.048, 〈A0B1〉 = 0.577+0.049
−0.049
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FIG. S3. Alternative protocol experimental data. The
experimental probabilities obtained with the alternative def-
inition of A0 and B0, Eq. (S10), are shown. 〈A1B1〉, in the
bottom panel, is left unchanged by the new definition thus
the data shown here as well as the average value for this cou-
ple of observables, is the same as in Figs. 3 and S2. 〈A0B0〉,
〈A0B1〉 and 〈A1B0〉 shown in the top panels are instead mea-
sured in accordance with the new protocol. In this case, only
6-photon coincidences for the non-zero terms, labelled in the
horizontal axis, are recorded and normalised with the sum of
all the coincidences recorded for 〈A1B1〉.

and 〈A1B0〉 = 0.588+0.049
−0.049 with 〈A1B1〉 unchanged, and

Sexp = 2.346+0.110
−0.110, violating the Bell-Wigner inequality

by more than 3 standard deviations. We note that the
violation observed with this method is somewhat reduced
because of ∼ 4.83± 0.97% loss that is introduced by the
polarisers. This effectively reduces the number of counts
that are observed in the settings A0 and B0 compared to
the normalisation used, and thereby reduces the expec-
tation values 〈A0B1〉 and 〈A1B0〉, and 〈A0B0〉, leading
to a reduced violation.
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