

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 1/46

Generic Safe Computing Platform

Specification of the PI API between Application
and Platform

Developed in collaboration among DB Netz AG, duagon AG, Nederlandse Spoorwe-
gen, Real-Time Innovations (RTI), SBB, Siemens Mobility GmbH, SNCF Voyageurs,
SNCF Réseau, SYSGO GmbH, Thales and Wind River

Version 2.0, July 2022

This work is licensed under the dual licensing Terms EUPL 1.2 (Commission Implementing Decision
(EU) 2017/863 of 18 May 2017) and the terms and condition of the Attributions- ShareAlike 3.0
Unported license or its national version (in particular CC-BY-SA 3.0 DE).

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 2/46

List of Contributors 3

1 Motivation 4

2 Aim and Scope of this Document 5

3 Abbreviations and Notation 6

3.1 Abbreviations 6
3.2 Notation 6

4 Definitions 7

4.1 Definition of Entities 7
4.2 Deployment Options (for Illustration) 9

5 Key Paradigms and Guiding Principles for the PI API Design 11

6 Messaging 12

6.1 Introduction and Key Paradigms 12
6.2 Flows 13
6.2.1 Introduction 13
6.2.2 Uni-directional Flows 13
6.2.3 Bi-directional Flows 16
6.3 Addressing 20
6.4 Messages 20
6.5 Possible usage of DDS as Basis for SCP Messaging 21

7 Execution Model and Timing Behavior 21

7.1 Execution Model 21
7.2 Timing 21
7.2.1 Introduction 21
7.2.2 Messaging-related Timing Requirements 21
7.2.3 Scheduling-related Timing Requirements 22
7.2.4 Time Stamps 22

8 Gateway Concept 22

8.1 Introduction and Basic Design Paradigms 22
8.2 Gateway example for illustration 23

9 Fault, Error and Failure Handling and Recovery 25

9.1 Used Terminology 25
9.2 Fault Detection and Response 25
9.3 Error Detection and Response 25
9.4 Failure Response 26

10 API Considerations 27

10.1 Introduction and Basic Considerations 27
10.2 PI API, as used by Safe, Replicated Functional Actors 27
10.2.1 Subselection of POSIX Functions for the PI API 27
10.2.2 API extensions 31
10.3 Extended PI API, as used by non-replicated Functional Actors 32

11 Application Example 33

11.1 Introduction 33
11.2 Chosen Abstract Application Setup 33
11.3 Possible Configuration Files 34
11.4 Possible Deployment Scenarios 36

12 Outlook on Future Work 38

Annex A: Possible Definitions for API Functions required beyond POSIX 40

A.1 Possible Definitions for Functions related to Flows 40
A.2 Possible Definitions for additional Timers 41
A.3 Possible Definitions for Functions related to Configuration Management 41
A.4 Possible Definitions for Functions related to Checksums 42

Annex B: Kubernetes Style YAML Configuration for the SCP 42

B.1 Introduction 43
B.2 Constraints regarding mapping of Replicas to Computing Elements 46
B.3 Referencing Individual Functional Actors in Flows 46

References 46

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 3/46

List of Contributors

Table 1. List of contributors to this document (in alphabetical order).

Name Company

Zeeshan Ansar SYSGO GmbH

Holger Blasum SYSGO GmbH

Mario Brotz SYSGO GmbH

Mark Carrier Real-Time Innovations (RTI)

Christian Daniel SNCF

Stefan Eberli duagon AG

Heiko Erben SBB AG

Markus Fuchs Wind River

Reinhard Hametner Thales

Mark Hary Real-Time Innovations (RTI)

Michael Henze duagon AG

Nikolaus König Thales

Patrick Marsch DB Netz AG

Thomas Martin SBB AG

Angel Martinez Bernal Real-Time Innovations (RTI)

Oliver Mayer-Buschmann DB Netz AG

Prashant Pathak DB Netz AG

Stefan Resch Thales

Harald Roelle Siemens Mobility GmbH

Remco Schellekens Nederlandse Spoorwegen

Kai Schories DB Netz AG

Christian Schuster duagon AG

Kai Schwarzkopf Siemens Mobility GmbH

Betül Sögütlü DB Netz AG

Axel Träger Siemens Mobility GmbH

Nicolas Van Spaandonck Wind River

Julian Wissmann DB Netz AG

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 4/46

Version History

Table 2. Version history of this document.

Date Version Description

Dec 7th, 2021 1.0 Draft initial considerations on the PI API between applica-
tions and platform, as developed among RCA / OCORA
members.

July 1st, 2022 2.0 Strongly evolved considerations on the API among railway
applications and computing platform, as developed jointly
among DB Netz AG, duagon AG, Nederlandse Spoorwegen,
Real-Time Innovations (RTI), SBB, Siemens Mobility GmbH,
SNCF Voyageurs, SNCF Réseau, SYSGO GmbH, Thales and
Wind River.

1 Motivation

The railway sector is currently undergoing the largest technology leap in its history, with many rail-
ways in Europe and across the globe aiming to introduce large degrees of automation in rail opera-
tion. Beyond the rollout of the European Train Control System (ETCS), most railways are for instance
aiming at introducing Automated Train Operation (ATO), in some cases up to fully driverless train
operation (Grade of Automation 4, GoA4), and an automated dispatching of rail operation, typically
referred to as a Traffic Management System (TMS).

In this context, various novel technologies are introduced into the rail sector, such as artificial intel-
ligence (AI), advanced perception, or high-precision train localization, and many new functions and
railway applications are introduced on both train and infrastructure side. Further, the railway initi-
atives Reference Control Command and Signalling Architecture (RCA) [1] and Open Control Com-
mand and Signalling Onboard Reference Architecture (OCORA) [2] are driving a functional architec-
ture for the trackside and onboard functions for future rail operation, which is expected to be taken
further in the new Europe’s Rail programme [3].

It is obvious that this massive transition in the rail sector has to be accompanied by the development
of appropriate and future-proof connectivity and IT platforms. As a key paradigm change in this
respect, the railways in RCA and OCORA find it important to introduce a standardized separation of
(safety-relevant and non-safety-relevant) railway applications and the underlying IT platforms, in
order to be able to decouple the very distinct life cycles of the domains, maximally leverage latest
advances in the IT sector for the rail sector, and to be able to aggregate multiple railway applications
on common IT platforms.

In pursuit of this paradigm change, RCA and OCORA started working on the concept of a Safe Com-
puting Platform (SCP) in 2020 [4] that foresees the notion of a so-called Platform Independent Ap-
plication Programming Interface (PI API) between safety-relevant railway applications and IT plat-
form and hence supports portability of railway applications among IT platform realisations from
different vendors.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 5/46

2 Aim and Scope of this Document

This document aims to provide a first version of a (partial) specification of the aforementioned PI
API between (safety-relevant and non-safety-relevant) railway applications and underlying IT plat-
forms, following the motivation and objectives stated in [4].

The specification was jointly developed among DB Netz AG, duagon AG, Nederlandse Spoorwegen,
Real-Time Innovations (RTI), SBB, Siemens Mobility GmbH, SNCF Voyageurs, SNCF Réseau, SYSGO
GmbH, Thales und Wind River in the time frame between December 2021 and June 2022. This first
version of a specification is envisioned to serve as a basis for subsequent prototyping on a modular
separation of (safety-relevant and non-safety-relevant) railway applications and IT platforms, for
instance in the context of the Europe’s Rail Innovation Pillar [5].

It is important to note that due to the short time frame in which this specification was developed,
and various open questions, this can only be seen as an initial hypothesis of a possible PI API. It is
expected that this will be further refined, also based on findings from early prototyping, for instance
in the context of the Europe’s Rail System and Innovation Pillars. It is also expected that it will be
complemented with further specifications, for instance related to standardized logging, diagnostics,
life-cycle management, etc., and by the development of a modular certification approach.

Finally, it is important to note that the PI API as specified in this document refers to both, trackside
data centre and onboard deployments, as it is assumed that key principles regarding the interaction
of applications and computing platforms should be the same for trackside and onboard.

The further document is structured as follows:

• In Section 3, abbreviations and the notation used in this specification are introduced;

• In Section 4, key entities referred to in the specification are defined, complemented by specific
deployment examples of these for illustration purposes;

• In Section 5, guiding principles regarding the PI API design are listed;

• In Section 6, key messaging principles are introduced;

• In Section 7, basic principles related to execution model and timing behaviour are introduced;

• In Section 8, the notion of gateways (for communication of applications with platform-external
entities) is introduced;

• Section 9 deals with how the platform should handle faults, errors and failures;

• Section 10 then contains detailed considerations on the PI API between applications and IT
platform, based on all the considerations from the previous sections;

• Section 11 provides a concrete application example for illustration purposes;

• Section 12 finally provides an outlook on the further specification and prototyping likely re-
quired in the future.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 6/46

3 Abbreviations and Notation

3.1 Abbreviations

Table 3 lists the abbreviations that are used throughout this document.

Table 3. Abbreviations.

Abbreviation / Term Description

ARINC Aeronautical Radio Inc.

ATO Automatic Train Operation

CCS Control Command and Signaling

CPU Central Processing Unit

DDS Data Distribution Service

DMIPS Dhrystone Millions of Instructions per Second

ETCS European Train Control System

Ffs for future study

FRMCS Future Railway Mobile Communication System

GoA4 Grade of Automation 4

IDL Interface Definition Language

IEEE Institute of Electrical and Electronic Engineers

IPC Inter-Process Communication

IT Information Technology

JSON JavaScript Object Notation

MooN M-out-of-N configuration in the context of composite fail safety (acc. to EN
50129)

OCORA Open CCS Onboard Reference Architecture

PI API Platform-independent Application Programming Interface

POSIX Portable Operating System Interface

RaSTA Rail Safe Transport Application

RCA Reference CCS Architecture

RTE Runtime environment (see definition in [1])

SCP Safe Computing Platform

SIL Safety Integrity Level

SRAC Safety-related application condition

Tbd to be discussed

TCP/IP Transmission Control Protocol / Internet Protocol

TMS Traffic Management System

UDP/IP User Datagram Protocol / Internet Protocol

UML Unified Modelling Language

3.2 Notation

In the remainder of this document, the following notation is used:

Notes in italics and in grey are not parts of the specification as such, but additional explanatory

comments (for instance explaining the background of certain decisions taken in the context of the API

specification).

Open points are indicated in italics and in red. These are points that could not be fully concluded and

which are for future study. In later versions of this specification, these notes are expected to be re-

solved and removed.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 7/46

4 Definitions

4.1 Definition of Entities

In the remainder of this specification document, the following definition of entities is used, as de-
scribed in Table 4.

Table 4. Definition of entities.

Functional Actor A fully deterministic functional module that provides a specific applica-
tion functionality. All functionality within a Functional Actor has a com-
mon functional safety requirement.
A Functional Actor is the entity to which the Platform applies composite
fail safety to meet the functional safety requirement.
It is assumed that the split of a Functional Application into multiple Func-
tional Actors is left to the discretion of the application vendor.

Functional Actor
Replica

An instance of a Functional Actor that is run on a single Computing Ele-
ment, possibly jointly with Replicas of other or the same Functional Ac-
tors, if mechanisms are provided by the Platform that ensure sufficient
independence (e.g., in CPU and memory usage) between Functional Ac-
tor Replicas to fulfill the CENELEC norms EN 5012x. It can be restored to
a specific state to be in sync again with other Replicas after an error.
The Platform applies voting to the outputs of all Replicas of a single Func-
tional Actor. Toward a single Replica, it is not visible that other Replicas
of the same Functional Actor are running.

Functional Applica-
tion

A comprehensive set of application functionality, assumed to be pro-
vided as one product by a single vendor. A Functional Application could
for instance correspond to a subsystem as defined in the RCA architec-
ture. Application-level communication among Functional Applications is
expected to follow standardized interfaces, for instance defined by RCA
or OCORA. Functions within one Functional Application may have differ-
ent functional safety requirements.

Platform Self-contained deployment of a Safe Computing Platform as defined in
the white paper [4], comprising multiple Computing Elements and RTE
Instances running on these. Note that a Platform may be geographically
distributed (though the distribution is transparent to application and
hence not relevant to this specification).

Computing Element A single compute element, which may comprise multiple cores, used by a
Platform. It is assumed that different Functional Actors (and different
Functional Actor Replica of the same or different Functional Actors) may
concurrently run on the same Computing Element if mechanisms are
provided that ensure sufficient independence (e.g., in CPU and memory
usage) between the Functional Actors and Functional Actor Replica to
fulfill the CENELEC norms EN 5012x.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 8/46

Runtime Environ-
ment (RTE)

An (instance of a) runtime environment, which comprises Safety Services
and System Services as defined in [4], the communication stack for infor-
mation exchange between Functional Actors on the same platform and
with external entities and possibly (depending on the actual platform im-
plementation) an operating system. It is expected that an RTE instance
runs on a single Computing Element, though a single Computing Element
may host multiple RTE instances.
Regarding vendor multiplicity, the following constraints are assumed:

• Functional Actor Replicas belonging to the same Functional Actor
are expected to run on RTE Instances from the same vendor (or
on RTEs which are otherwise interoperable), to avoid that inter-
RTE interfaces have to be defined;

• Functional Actors that communicate which each other (using
Flows, as introduced in Section 6.2) are expected to run on RTE
Instances from the same vendor (or on RTEs which are otherwise
interoperable), unless Gateway functions are involved (see Sec-
tion 8), again to avoid that related inter-RTE interfaces have to be
defined.

Thread A single independent sequence of execution running on a Computing Ele-
ment.

It should be noted that for most previously defined entities one could differentiate between a type
and a specific instance of a type. As an example, there could be a Functional Application type called
"Interlocking" for which one instance serves geographical area A, and another instance serves geo-
graphical area B. Both instances would (in terms of code) be identical and would only differ in terms
of their configuration. Similarly, a Functional Application could comprise a Functional Actor type
"Field object interface" for which a single instance is created for each field object (e.g., each railway
switch). The following entity relationship diagram refers to instances of Functional Applications,
Functional Actors, etc. The relationship of the introduced entities is also illustrated in Figure 1.

Note: During the discussion on the defined entities and the entity relationship diagram in Figure 1,
some shortcomings in this terminology were identified. It may hence be that a future version of this
specification provides a refinement of terminology.

Figure 1. Relationship of defined entities (referring to instances, as commented in the text).

The UML code for the entity relationship diagram in Figure 1 can also be found under: LINK.

https://www.plantuml.com/plantuml/uml/ZP5DRnCn48Rl_XMZxGsf5KNYmW4rNP9J9LO94WV2mVLEibRicMWyfa34VyVE1X8-4dLF-_4yx_YTlKjgHNCCPl0zWlFY0fgqyRIrOYCa6x4DDgMFljS1LFBfL-5ClMCX57ZrSeo861zHaZd1N0s0dO5otRFqA2q75dWQlEB-xOn95_uxmkrhyyEOKMYwO7N54fVKW4smQ3kuUl3hGHUA6Ev3nfqvmUUPr4TSqfI-U66AIBeNvn-c5yMMupQhfpLC0rRhCB2zhCqoEVLCDYnfijq6xsnv7DNPf2k7VMTbyruihI-8JbaEolC5cED-tbXlsZsSLJihwgjxwDHDvlylLRTx_UdgCLYt-Tpp4rs_XURsvkP5K_Vm1XnJyaaJyEfFLchO4QxD2zv8fjHSI2rWmQ8bkyPaoeX_iQR-kG8DNEQQSdykgfJwZPNOCrJTKy7wiZh-XZtOP4mzxP4_FTnVbQjy10Eknig_PkDNT5bBg2TpXzJd67u2

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 9/46

4.2 Deployment Options (for Illustration)

In this section, multiple exemplary deployment options are depicted to illustrate how the entities
introduced before may relate in a practical deployment. It should be stressed that this document
only aims to specify the API between Functional Applications and Platform, while the details of the
Platform are left to the discretion of the vendor. Hence, all following examples are only for illustra-
tion purposes and not to be seen as part of this specification.

It is expected that the Safe Computing Platform concept and the specified PI API enable all shown
deployments. However, this does not mean that each Platform realization from a specific vendor
necessarily supports all deployment options (e.g., some vendors may support a geographical distri-
bution of Functional Actor Replicas, while others don’t, or there may be Platform products tailored
to explicit onboard or trackside deployments).

In Figure 2, for instance, a Computing Platform deployment is shown where a Functional Applica-
tion A is deployed in the form of 3 Functional Actors A1-A3. The first two of these require a 2oo3
redundancy constellation, while A3 only requires “basic integrity” and can hence run in a single rep-
lica (but it is assumed that A3 is so closely related to the other Functional Actors that it is neverthe-
less beneficial to run this Functional Actor on a Safe Computing Platform). In this example, all 7
required Functional Actor Replicas are assumed to run on dedicated RTE Instances.

As shown in the figure, there is a differentiation between a Platform-independent API (PI API) and
a so-called “extended PI API”, both of which will be detailed in Sections 8 and 10. The PI API is ex-
pected to be used by safe, replicated Functional Actors and is consequently strongly constrained.
The extended PI API may only be used by non-safe, non-replicated Functional Actors and provides,
e.g., access to the TCP/IP or UDP/IP stack of the Platform, as for instance needed by Gateway func-
tions, as detailed in Section 8.

In the figure, the numbering of the RTE instances as 1-1, 1-2, etc., is used to indicate that RTE in-
stances with the same prefix x- are in a close relation, as they for instance have to jointly handle the
voting for the hosted Functional Actor Replicas.

Figure 2. Computing Platform deployment where each Functional Actor Replica runs on a dedicated RTE instance.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 10/46

Regarding vendor multiplicity, all different layers in Figure 2 (e.g., the Functional Actors, the RTEs,
the virtualization / hypervisor / HW layer, and Gateway functions shown in green and detailed in
Section 8) could be provided by different vendors (assuming that the RTEs of different suppliers
would support the same virtualization environment, which is beyond the scope of this specification).
Also, the two Functional Applications could of course be provided by different vendors. Different
RTE instances could in principle also be provided by different vendors, as long as the two conditions
listed in Section 4.1 are met, i.e.

• Functional Actor Replicas belonging to the same Functional Actor are assumed to run on RTEs
provided by the same vendor (or on RTEs that are otherwise interoperable), to avoid the
standardization of related inter-RTE interfaces;

• Functional Actors that communicate with each other (using Flows, as introduced in Sec-
tion 6.2) are assumed to run on RTEs provided by the same vendor (or on RTEs that are other-
wise interoperable), unless Gateway functions are involved (see Section 8).

Figure 3 shows the same deployment, but with the difference that now multiple Functional Actor
Replicas are assumed to share a common RTE Instance. As, according to Section 4.1, one RTE is
hosted on a single Computing Element, different Functional Actor Replicas may share a common
RTE instance if mechanisms are provided on the underlying Computing Element that ensure suffi-
cient independence (e.g., in CPU and memory usage) between the Functional Actors and Functional
Actor Replica to fulfil the CENELEC norms EN 5012x (and if RTE is able to provide computing guar-
antees to all Functional Actor Replicas hosted).

Figure 3. Computing Platform deployment where Replicas of different Functional Actors share the same RTE Instance.

Figure 4 shows yet another deployment variant where the Computing Entities are geographically
distributed. In this particular example, Functional Actors A1 and A2 are now run in 4 Replicas each,
of which 2 are placed in one data center, and 2 in another, in a 2x2oo2 configuration. This way, even
if one data center completely fails, the two remaining Replicas in the other data center are sufficient
(at least temporarily) to meet the safety requirements for these Functional Actors. This setup hence
helps to increase availability. For the deployment examples shown in Figure 3 and Figure 4, the
considerations and constraints regarding vendor multiplicity are the same as explained for Figure 2.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 11/46

Figure 4. Physically distributed Computing Platform.

5 Key Paradigms and Guiding Principles for the PI API Design

The following key paradigms and guiding principles shall be followed for the design of the PI API:

• A key paradigm for the PI API design is that Functional Applications and Functional Actor (Rep-
lica) shall not be aware about safety and fault tolerance mechanisms such as composite fail
safety provided by the Platform. More precisely, it shall not be visible to a Functional Actor
that itself (and also other Functional Actors) are being run by the Platform in Replica, as all
mechanisms related to voting, etc., are transparently performed by the Platform. This way, Ap-
plication developers can focus on implementing the application logic - in consideration of pos-
sible safety related application conditions (SRACs) -, without needing to be concerned about
fault tolerance, composite fail safety, etc.;

• The PI API design shall maximally leverage API specifications that are already available (to the
extent that this is possible) in order to facilitate portability of existing Applications to the new
API, and to ensure that platform realizations can maximally leverage existing implementations
(open source etc.);

• Restricted number of API functions: For the ease of portability of applications among platform
realizations, and for the ease of certification and acceptance, the number of API functions
should be as few as possible;

• Maximize common functions for onboard and trackside: The API specification describes the
superset of functions for onboard and trackside. It is clear, that there are functional differ-
ences in onboard and trackside railway subsystems, with corresponding explicit requirements
on computing platforms, which may lead to easier implementation of separate functions for
onboard and trackside. However, the PI API is intended to contain the same superset of func-
tions, so the application developer can select functions based on the application demands, as
shown in Figure 5.

Note: In the work that has led to this first version of the PI API specification, no capabilities or
functions of the API have been identified that would be needed only for onboard or only for
trackside deployments

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 12/46

Figure 5. Scope of PI API specification regarding onboard and trackside.

• Evolvability of PI API specs: It is expected that the PI API can evolve over time (even if it is ex-
pected that already the first version deployed in real railway operation should be usable for
10-20 years). Future evolved versions are expected to be decently backward-compatible as
shown in Figure 6. In this example, Functional Application version 1 is able to run on an RTE im-
plementing PI API version 1 or version 2. Functional Application version 2, however, cannot run
on an RTE implementing PI API version 1, as it requires functions that the PI API version 1 does
not provide. Possibly, semantic versioning could be an option.

Figure 6. Illustration of the notion of backward compatibility.

• PI API definition is programming language agnostic: the PI API may be implemented in any
programming language supporting application development up to Safety Integrity Level (SIL) 4.
It is to be noted that the selected language must support the Control Command and Signaling
(CCS) application requirements (e.g., real-time demands).

6 Messaging

6.1 Introduction and Key Paradigms

The exchange of information among Functional Actors is one of the key services that a Safe Compu-
ting Platform realization has to offer via the PI API to Functional Actors. Key messaging aspects are
hence introduced in this section, with Section 6.2 introducing the general notion of Flows, Sec-
tion 6.3 covering addressing, Section 6.4 covering properties of messages as such, and Section 6.5
referring to considerations on using the Data Distribution Service (DDS) for implementing messaging
related aspects of the Safe Computing Platform.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 13/46

Key paradigms behind the presented messaging concepts are:

• It should be transparent to a Functional Actor whether it is communicating to a local entity
(i.e., residing on the same local Platform instance) or a remote entity (i.e., residing on a remote
Platform instance, and possibly involving Safe Communication Protocols and/or gateway func-
tions in between);

• The RTE takes care of the authentication and authorization of Functional Actors, so that Func-
tional Actors can trust that the entities they are receiving messages from or transmitting mes-
sages to are the entities they claim to be;
Note: It is assumed that specific RTE implementations will in this respect refer to a specific secu-
rity standard (e.g., IEC 62443) and security level

• It should generally be transparent to Functional Actors whether they themselves, and the
Functional Actors they are exchanging messages with, are replicated or not (Note: An excep-
tion to this are specific forms of messaging exchanges that will be explained later);

• A message is created by only one Functional Actor;

6.2 Flows

6.2.1 Introduction

Messages are exchanged between Functional Actors using Flows, which are defined as:

Definition: Flow: A Flow is a messaging relation between Functional Actors.

Flows may be joined or disjoined, registered or subscribed to by Functional Actors (possibly within
constraints defined via configuration, as detailed later).

Once a Flow is established, Functional Actors may use it to exchange messages.

As detailed in the subsequent sections, a Flow may have various properties relating to the usage of
voting, the usage of specific Safe Communication Protocols, quality of service, etc.

6.2.2 Uni-directional Flows

6.2.2.1 Introduction and Key Characteristics

Uni-directional Flows enable the transmission of messages from one or multiple publishing Func-
tional Actors to one or multiple subscribing Functional Actors without implicit message acknowl-
edgement from the receiving side.

A key static property of a Uni-directional Flow is the number of publishing Functional Actors, where
we differentiate the cases:

• Exactly one publisher;

• Multiple publishers, possibly confined to a set of Functional Actor (types).

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 14/46

Figure 7. Options of applying voting and distribution in the context of Uni-directional Flows.

Uni-directional Flows may also differ by whether voting and distribution are applied to exchanged
messages. In this respect, the following schemes are foreseen, as also shown in Figure 7:

1) A publisher is not run in Replicas, and its published messages are consequently not voted on
but just distributed to all (Replicas of all) subscribers (in the example in Figure 7 these are
Functional Actors Y and Z);

2) A publisher is run in Replicas, and its published messages are voted on and then distributed to
all (Replicas of all) subscribers (in Figure 7 these are again Functional Actors Y and Z);

3) A publisher is run in Replicas, but its published messages are purposely not voted on, but di-
rectly distributed to all (Replicas of all) subscribers (in the example now non-replicated Func-
tional Actors W and Z). In this case, assumed to be relevant only, e.g., for logging or diagnos-
tics, each receiving Replica would hence redundantly receive the output of each publishing
Replica (and would hence be aware that the publisher is running in Replicas).

For each publisher, the applied scheme depends on whether the publisher is replicated, and
whether for the overall Flow voting is set to be applied or not.

If for the same Flow there are multiple publishers of which some are run in Replicas and others not,
there may be a mix of the schemes shown in Figure 7.

For each publisher, the applied scheme depends on whether the publisher is replicated, and
whether for the overall Flow voting is set to be applied or not, as detailed in Table 5.

Table 5. Application of voting in Uni-Directional Flows.

 Publisher not replicated Publisher replicated

Voting set to be applied for
this Flow

Scheme 1 from
Figure 7 applied

Scheme 2 from
Figure 7 applied

Voting set not to be applied
for this Flow

Scheme 1 from
Figure 7 applied

Scheme 3 from
Figure 7 applied

Key characteristics of Uni-directional Flows are:

• Posted messages (on the same Flow and by the same publisher) are delivered to all subscribers
in the exact same order as they have been published;

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 15/46

• Missing messages are identified by the platform (e.g., through the usage of message sequence
numbers or some other platform-specific mechanism). The subscribed FAs are notified by the
Platform whenever there are missing messages;
Open Point: When and how exactly Functional Actors are informed about missing messages by
the Platform is ffs

• Messages are time-stamped by the Platform, so that subscribers are able to determine how
old messages are, and whether they should still be processed or discarded, etc. (see also Sec-
tion 7.2);
Open Point: It is tbd whether absolute or relative timestamps are to be used, whether there is a
globally synchronized clock, etc.

• The RTE provides identification and authentication, so that from each message, subscriber(s)
can determine and trust the identity of the publisher;

• If desired by the subscriber(s) (e.g., via configuration or upon subscription to a Flow), sub-
scriber(s) are notified when a publisher "dies" (meaning that it is either crashed or otherwise in
a state where it cannot respond any more, or that it has not responded to past messages since
a configured period of time).
Note: Other forms of notifications (e.g., when new publishers appear, or when subscribers
die) have been discussed, but then dropped, as there seems to be no strong need for these

6.2.2.2 Static properties of Uni-directional Flows

Static properties of Uni-directional Flows (which are defined in the configuration of a Flow), to the
extent that these are exposed to the PI API or needed in configuration files and hence required to
be specified, are:

• Name of the Flow (see Section 6.3);

• Constraints on the number of publishers (exactly one publisher or multiple publishers), as
listed in Section 6.2.2.1;

• (Optionally) constraints on the Functional Actor(s) or Functional Actor Type(s) that are allowed
to publish on the Flow, or that are allowed to subscribe to the Flow;

• Whether voting is suppressed even if publishers are running in Replicas (see Section 6.2.2.1),
for instance for logging or diagnostics purpose;

• Message delivery options: Whether posted messages are received at most once or at least
once;

• Desired maximum message delivery time (between publishing of a message by a Functional
Actor to the Platform and the provision of the message to a receiving Functional Actor by the
Platform). It should be noted that this is not to be understood as a guarantee - subscribers
should be able to use / compare time stamps to see if the maximum delivery time was fulfilled,
and to decide whether messages should still be processed or discarded, etc.

6.2.2.3 Dynamic properties of Uni-directional Flows

Dynamic properties of Uni-directional Flows (which can be dynamically changed throughout the life-
time of a Flow), to the extent that these are exposed to the PI API and hence required to be specified,
are:

• Set of currently registered publishers and subscribers;

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 16/46

Open Point: It is to be clarified which information about publishers and subscribers of a Uni-di-
rectional Flow is made available to whom.

6.2.2.4 Configuration of Uni-directional Flows

Uni-directional Flows are defined in configuration files available to the Platform. It is left to the Plat-
form implementation whether Uni-directional Flows are initialized (in the sense that CPU, memory
or connectivity resources are reserved in any form) upon the initialization of Functional Actors that
may use these Flows, or only when Functional Actors actually register to or subscribe to a Uni-direc-
tional Flow.

Open point: Whether it should also be possible for Functional Actors to dynamically create
additional Uni-directional Flows is for future study

6.2.2.5 Register (as a publisher) to and unregister from a Uni-directional Flow

Functional Actors can dynamically register as a publisher to a Uni-directional Flow, as long as this
registration fulfills all constraints in the number and type of publishers defined for this Flow (see
Section 6.2.2.2).

If the Functional Actor fulfils all constraints w.r.t. the number and type of publishers defined for this
Flow, the Platform accepts the registration of this Functional Actor to the Flow.

If the Functional Actor does not fulfil all constraints w.r.t. the number and type of publishers defined
for this Flow, the Platform rejects the registration of this Functional Actor to the Flow.

Functional Actors can dynamically unregister from being a publisher to a Flow. The Platform may
not reject this un-registration.

6.2.2.6 Subscribe to and unsubscribe from a Uni-directional Flow

Functional Actors can dynamically subscribe to a Uni-directional Flow, as long as this subscription
fulfils any constraints that are possibly set on the Function Actor Type(s) allowed to subscribe to this
Flow (see Section 6.2.2.2).

If the Functional Actor fulfils all constraints w.r.t. the number and type of subscribers defined for
this Flow, the Platform accepts the subscription of this Functional Actor to the Flow.

If the Functional Actor does not fulfil all constraints w.r.t. the number and type of subscribers de-
fined for this Flow, the Platform rejects the subscription of this Functional Actor to the Flow.

Functional Actors can dynamically unsubscribe from a Flow. The Platform may not reject this un-
subscription.

6.2.3 Bi-directional Flows

6.2.3.1 Introduction and key characteristics

Bi-directional Flows enable the transmission of messages from exactly one requesting Functional
Actor to exactly one responding Functional Actor, with an explicit response message to each request
message.

Same as for Uni-directional Flows, Bi-directional Flows may involve voting or not. More specifically,
the following schemes are supported:

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 17/46

1) Neither requestor nor responder replicated, no voting applied

Figure 8. Possible scheme for Bi-directional Flow: Neither requester nor responder replicated, no voting applied.

2) Only requestor replicated, voting applied on request path only

Figure 9. Possible scheme for Bi-directional Flow: Only requestor replicated, voting applied on request path only.

3) Only responder replicated, voting applied on response path only

Figure 10. Possible scheme for Bi-directional Flow: Only responder replicated, voting applied on response path only.

4) Only responder replicated, no voting applied (note: mainly for debugging / logging purposes)

Figure 11. Possible scheme for Bi-directional Flow: Only responder replicated, no voting applied.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 18/46

5) Both requestor and responder replicated, no voting applied ("bundling" scenario)

Figure 12. Possible scheme for Bi-directional Flow: Both requestor and responder replicated, no voting applied (“bundling”

scenario).

Note: This scenario relates to the "bundling" of Functional Actors X and Y in this case. “Bundling”
means that the voting on information flows among two or more Functional Actors is purposely
skipped, for instance to improve latency, and voting is only applied (if applicable) on Flows between
the bundled Functional Actors and Functional Actors outside the bundle. See Section 11.4 for a pos-
sible deployment including bundling. It is assumed that the depicted example scenario is only pos-
sible if Replica 1 of Functional Actor X and Replica 1 of Functional Actor Y run on the same Computing
Element. Further, it is assumed that in this case if Functional Actor X or Functional Actor Y provide
inconsistent output (as determined via voting) to another Functional Actor, both the related Repli-
cas of Functional Actor X and Functional Actor Y have to be restarted, as the platform cannot identify
whether an error has occurred in Functional Actor X or Functional Actor Y.

6) Both requestor and responder replicated, voting applied

Figure 13. Possible scheme for Bi-directional Flow: Both requestor and responder replicated, voting applied.

Key characteristics of Bi-directional Flows are:

• Posted messages are received by the receiver in the exact same order as they have been sent.
This applies to both messages sent by the requester, and the response messages sent by the
responder;

• The Platform delivers messages (both requests and responses) exactly once (subject to a possi-
ble timeout); Note: The Platform may use mechanisms to replicate messages to increase relia-
bility, but the receiving Functional Actor(s) ultimately only obtain each message exactly once
(unless an error condition occurs);

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 19/46

• The Platform, if so configured for the Flow, notifies the involved Functional Actors if the de-
sired maximum message delivery time is exceeded. Also, this applies to both request and re-
sponse messages;

• Messages are time-stamped by the Platform, so that the involved Functional Actors are able to
determine how old messages are, and whether they should still process or discard them, etc.,
as also covered in Section 7.2.2;
Open Point: It is tbd whether absolute or relative timestamps are to be used, whether there is a
globally synchronized clock, etc.

• The Platform informs the requesting Functional Actor when the responding Functional Actor
has joined the Flow (for the first time, or, e.g., after a crash)

• The Platform informs the requesting Functional Actor when the responding Functional Ac-
tor "dies" (meaning that it is either crashed or otherwise in a state where it cannot respond
anymore, or that it has not responded to past messages since a configured period of time);

• The Platform informs the responding Functional Actor when the requesting Functional Ac-
tor "dies" (meaning that it is either crashed or otherwise in a state where it cannot respond
any more, or that it has not responded to past messages since a configured period of time);

• The Functional Actors involved in a Bi-directional Flow can trust the identity of the requesting /
responding side.

6.2.3.2 Static properties of Bi-directional Flows

Static properties of Bi-directional Flows (which are defined in the configuration of a Flow) are:

• Name of the Flow (see Section 6.3);

• The identities of the requesting and receiving Functional Actors;

• Whether or not voting is applied;

• Desired maximum message delivery time (between sending and receiving). It should be noted
that this is not to be understood as a guarantee - receivers should be able to use / compare
time stamps to see if the maximum delivery time was fulfilled, and to decide whether mes-
sages should still be processed or discarded, etc.

• Whether or not requesting and receiving Functional Actors are informed about exceeded de-
sired maximum message delivery times.

6.2.3.3 Dynamic properties of Bi-directional Flows

None

6.2.3.4 Configuration of Bi-directional Flows

Bi-directional Flows are defined in configuration files available to the Platform. It is left to the Plat-
form implementation whether Bi-directional Flows are initialized (in the sense that CPU, memory or
connectivity resources are reserved in any form) upon the initialization of Functional Actors that
may use these Flows, or only when Functional Actors join these.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 20/46

6.2.3.5 Joining / disjoining Bi-directional Flows

Functional Actors can dynamically join or disjoin Bi-directional Flows for which they are configured
to be either requestor or respondent. The Platform may not reject such join or disjoin request as
long as the Functional Actor is listed as either requestor or respondent of the Flow.

A Bi-directional Flow can be used for requests from the requesting Functional Actor once both sides
have joined the Flow.

6.3 Addressing

Addressing is built around

• Functional Actor Names (known to the Platform and Functional Actors - in the latter case for
instance such that Functional Actors can identify from which FA a message is);

• Replica Identifier, from which a Functional Actor receiving a message can tell from which Rep-
lica of the publishing Functional Actor the message is (in case of the debugging / logging re-
lated messaging schemes introduced in Sections 6.2.2.1 and 6.2.3.1). A single Functional Actor
Replica can hence be uniquely identified by its Functional Actor Name and its Replica Identi-
fier;

• Functional Actor Types. As introduced in Section 4.1, there may be multiple instantiations of
Functional Actors of the same type, for instance multiple instances of a Functional Actor type
“fixed object controller” – all would be based on the same software but have different configu-
rations. For a specific Uni-directional Flow it may be defined that only Functional Actors of spe-
cific type(s) are allowed to register to or subscribe to a Flow (see Section 6.2.2.1);

• Flow Names (known to the Functional Actors and to the Platform).

It is in general assumed that Functional Actor Names and Flow Names must at least be unique on
the same local Platform deployment.

When Functional Actors (un)register or (un)subscribe from Uni-Directional Flows or request to
join/disjoin Bi-directional Flows, they use (unique) Flow Names.

6.4 Messages

When Functional Actors receive messages, they obtain the following information from the Platform
(either directly through the message, or through some other context information):

• Flow Name that the message belongs to
Note: This is inherently known to a receiving Functional Actor due to the usage of a handle re-
lated to the Flow;

• Functional Actor Name and Replica Identifier (if applicable, in the logging/debugging related
cases defined in Sections 6.2.2.1 and 6.2.3.1) of the Functional Actor from whom the message
(in the case of a Bi-directional Flow a request or response) originates;

• Time stamp when the message was originally submitted by the Functional Actor to the Plat-
form;

• Actual message payload (only readable by the receiving Functional Actors and transparent to
the Platform).

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 21/46

6.5 Possible usage of DDS as Basis for SCP Messaging

In the course of the work that has led to this specification, there has also been elaboration on the
potential usage of the Data Distribution Service (DDS) as an existing protocol in the context of the
SCP. As a result, it is described in a separate document [6] how the aforementioned notion of Flows
in the SCP could be implemented via DDS. One additional aim is here to show the practicability of
the SCP messaging specification, though other implementations that are not based on the DDS pro-
tocol would be equally possible.

7 Execution Model and Timing Behavior

7.1 Execution Model

A Functional Actor Replica obtains execution time based on the following kinds of triggers (or com-
binations of these):

• timer-based, i.e., in configured regular intervals, or in the form of one-shot timers;

• event-based, i.e., upon receipt of (certain types of messages);

• timer- and event-based, i.e., the Functional Actor obtains execution time in regular intervals,
or in the form of one-shot timers, only if (certain types of) messages have (or have not) been
received.

7.2 Timing

7.2.1 Introduction

Key design principles of the Safe Computing Platform API related to timing are:

• Specific Platform implementations shall have maximum degree of freedom in scheduling Func-
tional Actor Replicas, as long as the following very confined list set of requirements is fulfilled;

• It is ultimately in the responsibility of the Functional Actors to determine whether messages
have been received in time, whether enough processing time has been provided, etc., and to
react if this is not the case.

7.2.2 Messaging-related Timing Requirements

The Platform shall supervise that messages are not delayed beyond the maximum message delivery
times defined for the related Flows, as defined in the context of configuring Flows (see Section 6.2).

The Platform shall inform receiving Functional Actors (if so configured) when maximum message
delivery times are exceeded.

In addition, the Platform shall complement messages with timestamps, so that receiving Functional
Actors can check whether and how strongly received messages are outdated and possibly take ap-
propriate action (i.e., either discard such messages or take other action).

Open Point: It is tbd when exactly a timestamp is inserted to a message, and whether these are
relative or absolute timestamps.

This requires the notion of synchronized platform clocks (also among distributed platforms) at least
to the extent/granularity (e.g., on the order of tens of ms) that is required to detect outdated mes-
sages. Note: This is for instance already achieved by RaSTA.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 22/46

7.2.3 Scheduling-related Timing Requirements

When a Functional Actor Replica is invoked to process messages (either timer-based or message-
triggered, as described in Section 7.1) it has to get enough processing budget to conclude the mes-
sage processing before the next invocation. An option could be that in the configuration of a Func-
tional Actor one would list in which time intervals the function needs how much processing budget
(e.g., in DMIPS) - if the Platform is not able to provide this extent of processing budget, it shall reject
the initialization of a Functional Actor.

Note: This approach is seen as suboptimal, but no better approach has been proposed so far.

The Platform shall monitor whether Functional Actor Replicas are able to conclude processing within
a defined time period. If these are not able to conclude, the Platform shall inform the Functional
Actor about this and (if configured) shut down the Functional Actor.

For development purposes, or for non-safety relevant Functional Actors, Replicas may themselves
measure if they obtain sufficient processing budget (for instance through observing the number of
pending incoming messages) and potentially take appropriate action (e.g., reduce the number of
subscriptions, shift load to other Functional Actors, or enter a degraded mode).

In general, when the Platform invokes the multiple Replicas of the same Functional Actor, it shall
ensure that individual Replicas process the same messages as their counterparts, as otherwise it
could not be guaranteed that the Replicas yield the exact same output. It is left to the Platform
implementation how to achieve this.

7.2.4 Time Stamps

The Platform shall upon request provide two kinds of time stamps to Functional Actors:

• One time stamp (“unsynchronized time”) that corresponds to the time at the point when a
Functional Actor Replica requests this (and for which different Replicas of the same Functional
Actor may obtain a different result);

• One time stamp (“synchronized time”) that is exactly the same for all Replicas of the same
Functional Actor requesting this (even if there is a time lag in when this is requested). This is
important if the time stamp has an impact on any (voted) output of the Functional Actor.

Functional Actors shall ensure that they only use the "unsynchronized time" in cases where this does
not have impact on any (voted) output of the Functional Actor (i.e., only for logging or diagnostics
purposes).

Open Point: It is tbd whether there is a globally synchronized clock, how distributed clocks are syn-
chronized, etc.

8 Gateway Concept

8.1 Introduction and Basic Design Paradigms

A Gateway concept is required to enable that Functional Actors can communicate with entities out-
side a local Safe Computing Platform deployment.

Basic design paradigms are here:

• it should not be (explicitly) visible to a Functional Actor whether it is communicating to an-
other entity on the same physical Safe Computing Platform realization or a remote entity (ob-
viously, there would be a difference in latency, etc.);

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 23/46

• it should in particular be possible to port Functional Actors in between different physical Safe
Computing Platform realizations without having to change the Functional Actor implementa-
tion w.r.t. connectivity;

• communication protocols (both safe communication protocols like RaSTA and non-safe com-
munication protocols like, e.g., FRMCS-related protocols) should be separated from the Appli-
cation, so that they can evolve independently and can be provided by different vendors.

While in [4] different options for handling communication protocols were listed, the following ap-
proach seems to best satisfy the points above and fit to the prior agreements on Messaging:

• Safe communication protocols (e.g., RaSTA) which are specific to the application domain (e.g.,
defined for CCS-related applications) and applied end-to-end among Functional Actors hosted
on different physical Safe Computing Platform realizations (and not only applied locally within
one physical Platform realization) are implemented as dedicated Functional Actors, also being
replicated like the (safe) Functional Actors using these;
Note: The specification of safe communication protocols is beyond the scope of this specifica-
tion.

• Non-safe communication protocols (e.g., FRMCS related protocols) are also implemented as
Functional Actors, but these are not safety-relevant, not replicated, and have access to a so-
called “extended PI API” (i.e., with direct access to the TCP/IP or UDP/IP protocol stack of the
Platform), which is further detailed in Section 10.1. These are in the following referred to as
“Gateway functions”;
Note: The term “non-safe” here refers to the fact that these protocols do not need safety-certi-
fication, as there are other mechanisms (for instance provided by the Safe Communication Pro-
tocol Support) that ensure safety.

8.2 Gateway Example for Illustration

The aforementioned gateway approach is now illustrated through an example depicted in Figure 14.
It is here assumed that a Functional Actor FA-X (orange block in the figure) needs to enter a re-
quest/response relationship to an external entity FA-Y (grey block in the figure).

Figure 14. Example for usage of a Gateway approach.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 24/46

In terms of Flow setup, the following would happen:

• The Functional Actor FA-X would join a Bi-directional Flow with name, say, "FLOW_LOCA-
TION_OF_TRAIN_Z" (the Flow name should be defined such as to be agnostic of whether the
flow terminates at a co-located or remote entity);

• The physical Platform realization that Functional Actor FA-X is running on would determine
(through the prior configuration of this Flow) that the communication counterpart should be
the "Safe Communication Protocol Support" (red box in Figure 14). The “Safe Communication
Protocol Support”, possibly provided by a vendor different from the Platform vendor, would be
a safe function that is replicated and to which voting is applied, same as for FA-X itself;

• The " Safe Communication Protocol Support" itself would join Flows to one or multiple (in this
example two) Gateway functions. In the example, we call the two related flows
"FLOW_SCPS_TO_GW1" and "FLOW_SCPS_TO_GW2";

• The two Gateway functions are not replicated and have access to the Extended PI API, as de-
tailed in Section 10.1. Both Gateway functions represent independent grey/black communica-
tion channels to the external entity. It should be noted that the two Gateway functions may
follow the same implementation (and just differ in configuration), or may also be completely
different (e.g., one may establish a wireline connection to the external entity, while the other
establishes a wireless link). Naturally, the involved Gateway functions should run on different
Computing Elements for availability reasons.

For each request sent from FA-X to FA-Y, the following happens:

• FA-X submits a request message on Flow "FLOW_LOCATION_OF_TRAIN_Z", which is voted on
and distributed to all Replicas of the Functional Actor "Safe Communication Protocol support";

• Functional Actor "Safe Communication Protocol support" implements the actual Safe Commu-
nication Protocol (e.g., RaSTA), the output being messages submitted on the Flows
"Flow_SCPS_TO_GW1" and "Flow_SCPS_TO_GW2" to the Gateway functions;

• The output messages of "Safe Communication Protocol support" are voted on and sent to the
(single) instances of the Gateway functions. It is in this context important that this voting steps
yields a single safe output. Together with the respective communication links to the external
entity, the Gateway functions constitute grey/black channels to the external entity;

• The two Gateway functions implement any non-safe protocols and may directly access the
TCP/IP or UDP/IP stack of the Platform.

Figure 15 depicts, for the previous example, how the different entities contribute to the overall
communications protocol stack toward the external entity. Note that in this figure only one of the
two non-safe gateway functions is depicted for brevity. The second one would obviously establish
a similar communications protocol stack toward the external entity.

Figure 15. Contribution of the involved entities in the protocol stack used toward the external entity.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 25/46

9 Fault, Error and Failure Handling and Recovery

This section describes how the Platform should handle faults, errors and failures, and which impli-
cations this has on the API among Applications and Platform.

9.1 Used Terminology

As shown in Table , the subsequent sections follow the terminology used in EN 50129:2018, but
apply this to the specific context of the Safe Computing Platform.

Table 6. Terminology related to faults, errors and failures.

Term Definition in
EN 50129:2018

Usage of term in context of
Safe Computing Platform

Specified Plat-
form
behavior

Fault Abnormal condition that
could lead to an error in a
system

abnormal condition that
could lead to an error in a
system

See Section 9.2

Error Discrepancy between a com-
puted, observed or measured
value or condition and the
true, specified or theoreti-
cally correct value or condi-
tion

A number of Functional Actor
Replicas and/or Computing
Elements is impacted, but to
an extent that can still be
mitigated by restarting Repli-
cas or moving them to other
Computing Elements, so that
Functional Actors are NOT
impacted.

Example: A Functional Actor
Replica provides different
output than its counterpart
Replicas (or no output at all).

See Section 9.3

Failure Loss of ability to perform as
required

Functional Actor(s) are im-
pacted (in the way that these
cannot perform anymore
and/or an application mes-
sage is lost)

See Section 9.4

9.2 Fault Detection and Response

It is left to the specific Platform implementation to which extent it detects and handles faults, as
long as it complies to EN 50129:2018. It is also left to the specific Platform implementation to decide
when a fault (according to EN 50129:2018) is to be flagged as an error.

In any case, the Platform shall ensure fault containment between Functional Actor Replicas by suf-
ficient independence according to EN 50129:2018, as one of the prerequisites to fulfil the safety
case.

9.3 Error Detection and Response

The Platform shall detect and handle errors according to EN 50129:2018 (with both the definition
of “error” and the handling of these according to EN 50129:2018).

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 26/46

Beyond what is covered in the stated norm, the Platform shall explicitly take the recovery and infor-
mational actions listed in Table 7. In addition, the Platform may also take custom actions (e.g., trig-
ger certain maintenance actions or, eventually, shutdown), but these are beyond the scope of this
specification.

Table 7. Recovery and informational actions to be taken by the Platform in the case of errors.

Entity affected by error ac-
cording to EN 50129:2018

Actions to be taken by Platform

Functional Actor Replica • Restart the Functional Actor Replica and recover its
state;

• Inform Functional Actors that have requested diagnos-
tics information about the affected Functional Actor
Replica via a “State Information Interface”.
Open Point: The details of the State Information Inter-
face are for future study.

Computing Element • Restart the Computing Element and recover or restart all
affected RTE instances and Functional Actor Replicas;

• Inform Functional Actors that have requested diagnos-
tics information about the affected Functional Actor
Replica(s) via a “State Information Interface”.
Open Point: The details of the State Information Inter-
face are for future study.

If the recovery actions defined in Table 7 are not successful (e.g., due to repeated failure of a Replica
or a Computing Element), or because more Replicas of the same Functional Actor are affected than
the MooN configuration allows for, this constitutes a failure that is treated as defined in the follow-
ing section.

9.4 Failure Response

As defined in Table 6, a failure implies that one or multiple Functional Actor(s) are not able to per-
form as required. In this case, the Platform shall take the following action:

• It informs other Functional Actor(s) which are in a Flow relation to the affected Functional Ac-
tor(s) that their communication counterpart is affected (see Sections 6.2.2.1 and 6.2.3.1);

• It informs Functional Actors that have requested diagnostics information about the affected
Functional Actor Replica(s) via a “State Information Interface”;
Open Point: The details of the State Information Interface are for future study.

• It informs involved Functional Actor(s) in a Flow that the Flow is impaired (not because the
communication counterpart is affected, but because the communications stack itself is af-
fected).
Open Point: It is to be further discussed whether and in which detail this information is needed.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 27/46

10 API Considerations

10.1 Introduction and Basic Considerations

As already mentioned in Section 8.1, this specification differentiates between two different variants
of API between Functional Applications and Platform:

• PI API: A constrained API for safe, replicated Functional Actors, as detailed in Section 10.2;

• Extended PI API: An extended API for non-replicated Functional Actors (e.g., with TCP/IP,
UDP/IP protocol stack access, as for instance needed by Gateway functions described in Sec-
tion 8), as detailed in Section 10.3 .

Both variants of API need to facilitate the porting of applications onto the runtime environment as
well as portability between different RTE implementations. Furthermore, both variants of the API
are expected to meet the following requirements: They have to be

• suitable for real-time applications;

• language agnostic (as stated in Section 5);

• established in the field;

• defined such that the error states are well understood and stable.

10.2 PI API, as used by Safe, Replicated Functional Actors

On top of the requirements listed in the previous section, the PI API must obviously be suitable for
safe applications (i.e., fulfil EN 5012x up to SIL4). As such it is our goal, to limit the scope of this API
to the functionalities really needed and then to extend it with functionality that eases development
of safety critical applications. This shall be achieved by providing APIs that enable the platform to
provide common network security, redundancy and replication services, so that applications do not
need to implement such services by themselves.

Based on the considerations in the previous section, it becomes clear that one should aim at choos-
ing subsets of existing, well-established APIs, with minor modifications where needed, for the PI API.
Possible choices in this respect are POSIX (in particular IEEE POSIX 1003.1 and IEEE POSIX 1003.13)
and ARINC 653 APIs, as these are already well established, and subsets of these are already used in
certified and approved systems up to SIL4.

Careful evaluation of these APIs has led to the conclusion that the POSIX API is a good overall fit. It
provides the freedom to allow for the usage of the full API for non-safety relevant Functional Actors
and a reduced subset for safety-relevant Functional Actors. However, it was concluded that the
POSIX real-time profiles are not a perfect fit, which is why, in the following, subset definitions for
safety-relevant Functional Actors are defined.

Note that all functions described in Sections 10.2.1 and 10.2.2 are invoked from the side of the
Functional Actor (Replicas).

10.2.1 Subselection of POSIX Functions for the PI API

In Table 8, the POSIX functions (grouped according to the header files as defined in [7]) are prelimi-
narily commented w.r.t. their possible inclusion in the PI API for safety-relevant (and consequen-
tially replicated) Functional Actors.

It shall be noted that Table 8 only gives a rough indication of which POSIX functions could be in-
cluded in the PI API, at the granularity of POSIX headers. The common understanding is that an in-

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 28/46

depth analysis has to be done for each function in POSIX whether this is suitable for the PI API,
especially considering certifiability for SIL4 applications, which will then be captured in an evolved
version of this specification. In this respect, user needs obviously have to be taken into account, and
hence any further input in this direction is explicitly appreciated.

Table 8. Proposal for inclusion of POSIX functions in PI API for safety-relevant Functional Actors.

Header Description Proposal for inclusion in PI API for safe
(and replicated) Functional Actors

aio.h asynchronous input and output  Not included

arpa/inet.h definitions for internet operations  Not included

assert.h verify program assertion  Included

complex.h complex arithmetic Open Point: To be concluded later

cpio.h cpio archive values Open Point: To be concluded later

ctype.h character types () Included excluding functions that
take a locale as argument.

dirent.h format of directory entries  Included

dlfcn.h dynamic Linking Open Point: To be concluded later

errno.h system error numbers  Included;
Open Point: An extension to account
for the distributed nature of flows
needs to be defined and added

fcntl.h file control options  Included

fenv.h floating-point environment  Included

float.h floating types  Included

fmtmsg.h message display structures Open Point: To be concluded later

fnmatch.h filename-matching types Open Point: To be concluded later

ftw.h file tree traversal Open Point: To be concluded later

glob.h pathname pattern-matching types Open Point: To be concluded later

grp.h group structure Open Point: To be concluded later

iconv.h codeset conversion facility Open Point: To be concluded later

inttypes.h fixed size integer types Open Point: To be concluded later

iso646.h alternative spellings  Not included

langinfo.h language information constants Open Point: To be concluded later

libgen.h definitions for pattern matching
functions

 Open Point: To be concluded later

limits.h implementation-defined constants  Included

locale.h category macros Open Point: To be concluded later

math.h mathematical declarations Open Point: To be concluded later

monetary.h monetary types Open Point: To be concluded later

mqueue.h message queues (REALTIME)  Not included, as not required and su-
perseded by flows.h

ndbm.h definitions for ndbm database oper-
ations

 Not included

net/if.h sockets local interfaces  Not included

netdb.h definitions for network database op-
erations

 Not included

netinet/in.h Internet address family  Not included

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 29/46

netinet/tcp.h definitions for the Internet Trans-
mission Protocol (TCP)

 Not included

nl_types.h data types Open Point: To be concluded later

poll.h definitions for the poll() function  Not included

pthread.h Threads () A subset is required to safely handle
threads. This subset shall support
the following functions:

• pthread_attr_init

• pthread_attr_setdetachedtstate,

• pthread_attr_setschedparam

• pthread_create,

• pthread_mutex_init

• pthread_mutex_lock

• phtread_mutex_unlock

• pthread_mutexattr__init

• pthread_self

pwd.h password structure Open Point: To be concluded later

regex.h regular expression matching types Open Point: To be concluded later

sched.h execution scheduling () A subset is included for thread
scheduling during the initialization
phase of an actor. Process schedul-
ing is not supported.

search.h search tables Open Point: To be concluded later

semaphore.h Semaphores  Not included. PThread Mutex is pro-
vided for locking.

setjmp.h stack environment declarations Open Point: To be concluded later

signal.h Signals ()Subset included
Open Point: Exact subset to be con-
cluded later

spawn.h spawn (ADVANCED REALTIME) Open Point: To be concluded later

stdarg.h handle variable argument list  Included

stdbool.h boolean type and values  Included

stddef.h standard type definitions  Included

stdint.h integer types  Included

stdio.h standard buffered input/output () A subset is included and can be used
during the initialization phase of a
functional actor. Open Point: This
subset is to be defined in the future.

stdlib.h Standard library definitions () Included, whereby a subset is only al-
lowed during the initialization phase
of a functional actor. Open Point:
This subset is to be defined further in
the future.

string.h String operations () Included, subset
POSIX_C_LANG_SUPPORT

strings.h String operations Open Point: To be concluded later

stropts.h STREAMS interface (STREAMS)  Not included

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 30/46

sys/ipc.h XSI interprocess communication ac-
cess structure

 Not included

sys/mman.h memory management declarations () A subset is Included. Open Point: Ex-
act subset to be defined later

sys/msg.h XSI message queue structure  Not included

sys/re-
source.h

definitions for XSI resource opera-
tions

 Not included

sys/select.h Select types  Included. Open Point: Tbd whether
in addition epoll should be used

sys/sem.h XSI semaphore facility  Not included

sys/shm.h XSI shared memory facility  Not included

sys/socket.h main sockets header  Not included

sys/stat.h data returned by the stat() function  Included

sys/statvfs.h VFS File System Information struc-
ture

 Not included

sys/time.h time types  Included; Additionally, replicated
timers are defined in sync_time.h,
see 10.2.2.2 for details.

sys/times.h file access and modification times
structure

 Included

sys/types.h data types  Included

sys/uio.h definitions for I/O operations Open Point: To be concluded later

sys/un.h definitions for UNIX domain sockets  Not included

sys/uts-
name.h

system name structure Open Point: To be concluded later

sys/wait.h declarations for waiting  Not included

syslog.h definitions for system error logging  Included

tar.h extended tar definitions Open Point: To be concluded later

termios.h define values for termios Open Point: To be concluded later

tgmath.h type-generic macros Open Point: To be concluded later

time.h time types  Subset POSIX_TIMER included. To
support the SCP timing needs, addi-
tional clocks need to be defined, as
detailed in Section 10.2.2.2.

trace.h Tracing  Included

ulimit.h ulimit commands  Not included

unistd.h standard symbolic constants and
types

 Open Point: To be concluded later

utime.h access and modification times struc-
ture

 Included

utmpx.h user accounting database definiti-
ons

 Not included

wchar.h wide-character handling Open Point: To be concluded later

wctype.h wide-character classification and
mapping utilities

 Open Point: To be concluded later

wordexp.h Word-expansion types Open Point: To be concluded later

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 31/46

10.2.2 API extensions

In the following sections, more details will be provided on extensions to the POSIX API.

10.2.2.1 Flows

To support the notion of Flows introduced in Section 6.2, it is expected that the functions listed in
Table 9 are required.

Table 9. Additional required functions related to Flows.

Function Description

fl_open Used to open a Uni-directional or Bi-directional Flow.

fl_close Used to close a Uni-directional or Bi-directional Flow.

fl_send Used to send a message.

Open Point: It is tbd whether addition functions for data seri-
alization are required

fl_receive Used to receive messages.

Open Point: It is tbd whether addition functions for data seri-
alization are required

fl_getattr Used to obtain attributes of a Flow.

fl_setattr Used to set attributes of a Flow.

An example for how these functions could possibly be defined in detail, including a possible usage
of parameters, is given in Annex A.1.

10.2.2.2 Timers

As mentioned in Section 7.2.4, it is required that the Platform can provide two forms of time stamps
to Functional Actors, namely unsynchronized and synchronized time stamps. It appears that the
functions related to timers provided in POSIX are sufficient also for the SCP, but additional synchro-
nized timers should be introduced. Overall, the usage of timers for the SCP would then be as follows:

• Unsynchronized (i.e., where different Replica of a Functional Actor may get different re-
sponses): For this, timers existent in POSIX could be reused;

• Synchronized (i.e., where different Replica of a Function Actor obtain the exactly same result
when requesting a time stamp): For this, new timers should be introduced:

o SYNCHRONIZED_REALTIME: Potentially also synchronized to external clock sources

o SYNCHRONIZED_MONOTONIC: Increasing time

How exactly these additional timers could be defined is listed in Annex A.2.

10.2.2.3 Configuration Management

To support configuration management, it is expected that the functions listed in Table 10 are re-
quired.

Table 10. Additional required functions related to configuration management.

Function Description

get_configuration_labels Used to obtain configuration labels.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 32/46

get_default_configuration Used to obtain the default configuration.

get_configuration_by_label Used to obtain configuration information by la-
bel.

How exactly these additional functions could be defined is listed in Annex A.3.

10.2.2.4 Checksum Functions

To support checksum related functions, it is expected that the functions listed in Table 11 are re-
quired.

Table 11. Additional required functions related to checksums.

Function Description

messagedigest_create Used to create a message digest.

digest Used to perform a final update on a digest and
then completes the digest computation.

digest_update Used to update a digest using the specified char-
acters.

digest_reset Used to reset a digest.

digest_delete Used to delete a digest.

How exactly these additional functions could be defined is listed in Annex A.4.

10.2.2.5 State handling

In general, it is assumed that both Functional Actors and Functional Actor Replicas could be in one

of the following states:

• INITIALIZING

• OPERATION

• FAILURE / RECOVERY

Open Point: It is assumed that the API should be extended by functions for Functional Actor (Repli-

cas) to report state changes to the Platform (e.g., a Functional Actor may have finished initializa-

tion and now be ready for operation), and for Function Actor (Replicas) to obtain state information

about other Functional Actor (Replicas). The details of this are ffs.

10.2.2.6 Recovery

Open Point: Additional functions related to recovery are ffs.

10.3 Extended PI API, as used by non-replicated Functional Actors

For non-replicated Functional Actors, it currently appears that larger parts of the POSIX API (in ver-
sion POSIX 1003.1 and the evolution thereof) are in scope, as are the additional APIs defined in
Section 10.2.2.

Open Point: The exact scope of the Extended PI API is ffs.

It is here important to stress that when Functional Actors utilizing the Extended PI API for instance
make use of direct access to the TCP/IP or UDP/IP protocol stacks of the Platform, they in conse-
quence have to take care of security, redundancy, etc., themselves.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 33/46

11 Application Example

11.1 Introduction

In this section, an abstract application example is provided to illustrate how Functional Actors use
Flows for messaging among each other, how related configuration files could look like, and how the
API functions described in Section 10 could be utilized. Finally, two deployment options get intro-
duced to show how Functional Actors could be deployed on Computing Elements.

It should be stressed that the provided application example is for illustration purposes only; in par-
ticular the considerations on possible configuration files and formats are only to be seen as an op-
tion and require further specification work.

11.2 Chosen Abstract Application Setup

An exemplary abstract application setup is shown in Figure 16. Here, the main Functional Actor of
interest is depicted in the centre of the figure and named FA-EX. This Functional Actor could, for
instance, represent an onboard vehicle locator function that takes input from safe and non-safe
sources, and provides output (i.e., location information) to both safe and non-safe recipients. In
more detail,

• The Functional Actor FA-EX receives data from a uni-directional Flow_1 (coming from three
publishing Functional Actors FA-PUB_A/B/C), as well as request messages from Functional Ac-
tor FA-IN via a bi-directional Flow_3;

• The Functional Actor FA-EX uses received data for its internal business logic;

• If Functional Actor FA-EX doesn't receive a request message from FA-IN within 50 ms via the bi-
directional (Request/Response) Flow_3, it outputs an error;

• Every 50 ms the Functional Actor FA-EX sends output to a uni-directional Flow_0 and to a dedi-
cated Functional Actor FA-OUT using bi-directional Flow_2;

• The three Functional Actors FA-PUB_A, FA-PUB_B and FA-PUB_C periodically publish data to
the uni-directional Flow_1;

• The two Functional Actors FA-SUB_A and FA-SUB_B consume the periodically published values
of FA-EX obtained via the uni-directional Flow_0.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 34/46

Figure 16. Abstract application example for illustration purposes.

11.3 Possible Configuration Files

For the application example introduced in the previous section, configuration files could look like in
the following example (here assuming that a JSON notation is used). Please note that configuration
items listed are for illustration purposes only and certainly not conclusive. Properties for memory
needs (RAM and non-volatile) and processing and performance quota might be added for instance.

{
 "functional actors" :
 [
 {
 "name" : "FA-EX" ,
 "type" : "TypeExample"
 },
 {
 "name" : "FA-IN" ,
 "type" : "TypeInput"
 },
 {
 "name" : "FA-OUT" ,
 "type" : "TypeOutput"
 },
 {
 "name" : "FA-PUB_A" ,
 "type" : "TypePublisherA"
 },
 {
 "name" : "FA-PUB_B" ,

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 35/46

 "type" : "TypePublisherB"
 },
 {
 "name" : "FA-PUB_C" ,
 "type" : "TypePublisherC"
 },
 {
 "name" : "FA-SUB_A" ,
 "type" : "TypeSubscriberA"
 },
 {
 "name" : "FA-SUB_B" ,
 "type" : "TypeSubscriberB"
 }
],
 "flows" :
 [
 {
 "name" : "Flow_1" ,
 "publishers" : ["FA-PUB_A" , "FA-PUB_B" , "FA-PUB_C"] ,
 "subscribers" : ["FA-EX"] ,

 "message_delivery" : "at most once" ,

 "voting" : true
 },
 {
 "name" : "Flow_0" ,
 "publishers" : ["FA-EX"] ,
 "subscribers" : ["FA-SUB_A" , "FA-SUB_B"] ,
 "message_delivery" : "at least once" ,

 "voting" : true
 },
 {
 "name" : "Flow_2" ,
 "requester" : "FA-EX" ,
 "responder" : "FA-OUT" ,

 "maximum_message_delivery_time_ms” : 50 ,

 "inform_requestor_about_exceeded_delivery_time” : true ,
 "voting" : true
 },
 {
 "name" : "Flow_3" ,
 "requester" : "FA-EX" ,
 "responder" : "FA-IN" ,
 "inform_responder_about_exceeded_delivery_time” : true ,
 "voting" : true
 }
]

}

Possible High-level Sequence Diagram for FA-EX

Assuming that Functional Actor FA-EX is implemented with multi-threading support, a possible se-
quence diagram for its initialization and operation is depicted in Figure 17. Please note that this
sequence diagram is for illustration purpose only and does not claim for completeness. For the sake
of simplicity, no concrete POSIX function calls are depicted nor specific functional exchanges of the
PI API as proposed in Section 10 are used.

During initialization of Functional Actor FA-EX three additional threads get created:

• Two threads for the handling of receiving massages from flows Flow_1 and Flow_3;

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 36/46

• One thread for sending request and receiving responses on the bi-directional Flow_2.

Messages on Uni-directional Flow_0 are supposed to be sent from the main thread context, since
they are non-blocking. The above-mentioned timing requirements and error handling in case of a
timeout get described on a very high level and needed synchronization primitives are assumed to
be in place and out of scope.

Figure 17. Possible high-level sequence diagram for Functional Actor FA-EX.

11.4 Possible Deployment Scenarios

Irrespective of the implementation of Functional Actor FA-EX as described in the previous section,
the following two deployments of the exemplary Functional Actors would be thinkable (among
other options).

In both deployment scenarios, the example Functional Actor is deployed on a Platform comprised
of three Computing Elements. Furthermore, it is assumed that in case Functional Actors are being
bundled, replication (if applicable) is applied jointly to the set of bundled Functional Actors.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 37/46

For optimisation (e.g., to improve latency), voting on messages exchanged between bundled Func-
tional Actors is purposely skipped. However, voting is applied to messages exchanged with Func-
tional Actors residing outside the bundled Functional Actors (refer also to Section 6.2.3.1).

In the first exemplary deployment scenario depicted in Figure 18, the example Functional Applica-
tion is deployed without the use of bundling. As a result, voting and distribution is applied on all
messages exchanged via Flow_0, Flow_2 and Flow_3.

Figure 18. Possible deployment example where Functional Actors are not bundled.

In a second exemplary deployment scenario depicted in Figure 19, the Functional Actors FA-IN and
FA-EX are bundled. As a result, the platform may optimise the communication between FA-IN and
FA-EX and skip voting and distribution on all messages exchanged via Flow_3.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 38/46

Figure 19. Possible deployment example where Functional Actors FA-IN and FA-EX are bundled.

12 Outlook on Future Work

While the joint specification work among railways and industry suppliers that has been captured in
this document has obviously helped to move the vision of a standardized separation of (safety-re-
lated and non-safety-related) railway applications from the underlying IT platforms forward, sub-
stantial further specification work and of course prototyping is required.

In general, it is assumed that this document provides a good basis for the development of proto-
types of trackside and onboard implementations of compute platforms following the notion of a PI
API, though additional Platform requirements would need to be defined that are beyond the scope
of this API specification. In such prototyping, one could then for instance experiment with using DDS
to realize the messaging needs noted in Section 6. Based on the learnings of prototyping, the various
open points listed in this document could then be addressed, and a detailed and binding PI API
specification could be developed, basically further narrowing down and detailing the considerations
from Section 10.

Beyond this, it is expected that also additional specifications should be developed, or further con-
siderations are required, for instance related to

• logging and diagnostics;

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 39/46

• remote updates;

• orchestration;

• standardized tooling and testing;

• modular certification approaches;

• IT Security;

• persistence of application data;

• interfaces "below" to the virtualization (and HW layer);

• juridical recording;

• scalability.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 40/46

Annex A: Possible Definitions for API Functions required beyond POSIX

This section shows a possible API definition that extends the POSIX functions defined in Sec-
tion 10.2.1. To represent the API, the Interface Description Language (IDL) is used as a base with
some modifications, such as the usage of POSIX data types. It is not intended that the following IDL
definitions follow exactly the IDL syntax, but to show the different types and functions that have
been identified in Section 10.2.2. Therefore, code generation may not be performed from the fol-
lowing IDL, but it allows manual implementation of the API types and functions.

A.1 Possible Definitions for Functions related to Flows

Flow-related functions could be defined in the Header file flows.h. The functionality provided by
flows.h could be defined as follows:

interface Flow {

 // Flags to be used when opening a Flow

 enum e_fl_oflags

 {

 O_REQUESTER = 1,

 O_RESPONDER = 2,

 O_PUBLISHER = 4,

 O_SUBSCRIBER = 8,

 O_NONBLOCK = 16

 }

 // Flags to be used when sending/receiving messages - only necessary if we

decide that there is a need for a control channel

 enum e_fl_channels

 {

 C_USER = 1, // user message channel

 C_CTRL = 2 // control message channel

 }

 // flow attributes (static and dynamic)

 struct fl_attr {

 // to be defined

 };

 // function used to join, register or subscribe to a Flow

 fld_t fl_open(in string name,

 in int oflags);

 // function used to leave, unregister or unsubscribe from a Flow

 int fl_close(in fld_t fldes);

 // function used to send a user or a control message to a flow. Blocking or

non-blocking, depending on the oflags used when opening the Flow

 int fl_send(in fld_t fldes,

 in void * data,

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 41/46

 in int msg_len,

 in e_fl_channels fl_channel);

// forward declaration of the metadata struct that is defined by each platform

 struct platform_metadata_t;

 // function to receive a user or control message from a flow. Blocking or

non-blocking, depending on the oflags used when opening the Flow

 void * fl_receive(in fld_t fldes,
 inout platform_metadata_t meta_data,
 in int msg_len,
 out e_fl_channels fl_channel);

 // function to get flow attributes (static & dynamic attributes)

 int fl_getattr(in fld_t fldes,

 in fl_attr attr);

 // function to set flow attributes (restricted set of dynamic attributes)

 int fl_setattr(in fld_t fldes,

 in fl_attr newattr,

 out fl_attr oldattr);

};

A.2 Possible Definitions for additional Timers

As stated in Section 10.2.2.2, the functions related to timers in POSIX should also be sufficient for
the SCP, but additional timers should be defined. This could be done in a Header file sync_time.h as
stated in the following:

// Please note this definition is not strictly IDL as it tries to mimic the
// definition of timers in POSIX

interface Sync_Time {

 enum sync_clockid_t { SYNCHRONIZED_REALTIME, SYNCHRONIZED_MONOTONIC };

 int clock_getres(in sync_clockid_t clock_id);

 int clock_gettime(in sync_clockid_t clock_id);

 int clock_nanosleep(in sync_clockid_t clock_id);

 int clock_settime(in sync_clockid_t clock_id);

 int timer_create(in sync_clockid_t clock_id);
 int timer_delete(in timer_t timerid);/
 int timer_getoverrun(in timer_t timerid);

 int timer_gettime(in timer_t timerid);

 int timer_settime(in timer_t timerid);
};

A.3 Possible Definitions for Functions related to Configuration Management

Functionality to support passing configuration to Functional Actors could be supported through a
Header file configuration.h. It could be defined as follows:

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 42/46

interface Configuration {
 // A location description that can be passed to the application.
 // Contains a path as well as permission information for paths
 // or files under platform supervision
 struct cfg_path_t {
 string<4096> path;
 boolean directory;
 octet mode;
 }
 // Retrieve all labels for configuration locations from the API
 void get_configuration_labels(out string<255>[] labels);
 // Retrieve default configuration
 cfg_path_t get_default_configuration();
 // Retrieve a labeled configuration path from the API
 cfg_path_t get_configuration_by_label(in string<255> label);
};

A.4 Possible Definitions for Functions related to Checksums

Functionality to support checksumming on the SCP could be defined in a Header file checksum.h.
The functionality provided by checksum.h could be defined as follows:

interface Checksum {
 enum checksum_t { MD4, MD5, SHA1, SHA256, SHA512 };
 typedef md4_sum_t CharArray[32];
 typedef md5_sum_t CharArray[32];
 typedef sha1_sum_t CharArray[40];
 typedef sha256_sum_t CharArray[64];
 typedef sha512_sum_t CharArray[128];

 // Create a message digest
 boolean messagedigest_create(in checksum_t algorithm_id,
 out messagedigest_t digest_id);
 // Completes the operation
 string digest();
 // Performs a final update on the digest using the specified array of bytes,
then completes the digest computation.
 string digest(in messagedigest_t digest_id,
 in char[] data);
 // Updates the digest using the specified characters.
 void digest_update(in messagedigest_t digest_id,
 in char[] data);
 // Resets the digest for further use.
 void digest_reset(in messagedigest_t digest_id);
 // Deletes the digest.
 void digest_delete(in messagedigest_t digest_id);
};

Annex B: Kubernetes Style YAML Configuration for the SCP

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 43/46

B.1 Introduction

In the following, a possible configuration approach will be presented that orients itself on the Ku-
bernetes API. In no way is this supposed to imply that a usage of Kubernetes is envisioned in the SCP
context. It is, so far, not understood if Kubernetes is usable as an orchestrator in a safety critical
system at all, however it is an industry standard for deployment and orchestration in other fields
and as such the idea was born to see if the SCP concepts could be expressed in a similar style.

In this excerpt it is assumed that basic primitives provided by Kubernetes configuration would be
available and can be used in the description of a deployable.

In the following YAML file, which is modelled after the example application depicted in Figure 16, a
fictional deployment kind Functional Application is described. Note that in this example, bundles
are also defined in the case where they contain only one Functional Actor:

apiVersion: functionalApplication/v1

kind: FunctionalApplication

metadata:

 name: Example Application

 namespace: example1

 labels:

 app: example-app

spec:

 selector: # Tells the scheduler which labels to manage

 matchLabels:

 app: example-app

 template: # Annotate each bundle with label app: example1

 metadata:

 labels:

 app: example-app

 spec:

 bundles:

 - name: fa-ex

 actors:

 - name: FA-EX

 metadata:

 actorname: fa-ex

 # ... Further attributed need to be specified in order to e.g. define resource constraints

 replicas: 1

 - name: fa-in

 actors:

 - name: FA-IN

 replicas: 1

 - name: fa-out

 actors:

 - name: FA-OUT

 replicas: 1

 - name: fa-pub_a

 actors:

 - name: FA-PUB_A

 replicas: 1

 - name: fa-pub_b

 actors:

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 44/46

 - name: FA-PUB_B

 replicas: 1

 - name: fa-pub_c

 actors:

 - name: FA-PUB_C

 replicas: 1

 - name: fa-sub_a

 actors:

 - name: FA-SUB_A

 replicas: 1

 - name: fa-sub_b

 actors:

 - name: FA-SUB_B

 replicas: 1

Likewise, the involved Flows could be described using the functional kind Flow:

apiVersion: functionalApplication/v1

kind: Flow

metadata:

 name: Example Application Flow 0

 labels:

 app: example-app

spec:

 type: unidirectional

 sourceSelector:

 app: example-app

 bundle: fa-ex

 targetSelector:

 - labelSelector:

 - key: app

 operator: In

 values:

 - example-app

 - key: bundle

 operator: In

 values:

 - fa-sub_a

 - fa-sub_b

apiVersion: functionalApplication/v1

kind: Flow

metadata:

 name: Example Application Flow 1

 labels:

 app: example-app

spec:

 type: unidirectional

 sourceSelector:

 - labelSelector:

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 45/46

 - key: app

 operator: In

 values:

 - example-app

 - key: bundle

 operator: In

 values:

 - fa-pub_a

 - fa-pub_b

 - fa-pub_c

 targetSelector:

 app: example-app

 bundle: fa-ex

apiVersion: functionalApplication/v1

kind: Flow

metadata:

 name: Example Application Flow 2

 labels:

 app: example-app

spec:

 type: bidirectional

 sourceSelector:

 - labelSelector:

 app: example-app

 bundle: fa-ex

 targetSelector:

 app: example-app

 bundle: fa-out

apiVersion: functionalApplication/v1

kind: Flow

metadata:

 name: Example Application Flow 3

 labels:

 app: example-app

spec:

 type: bidirectional

 sourceSelector:

 - labelSelector:

 app: example-app

 bundle: fa-ex

 targetSelector:

 app: example-app

 bundle: fa-in

For the sake of following the example and for readability, several details were omitted in this exam-
ple that shall be explained further in the following sections.

Generic Safe Computing Platform - Specification of the PI API Version 2.0, July 2022 Page 46/46

B.2 Constraints regarding mapping of Replicas to Computing Elements

As Figure 18 and Figure 19 indicate, there is a need to express if different Functional Actor Replicas
should or should not be deployed on the same Computing Element. This requirement can easily be
fulfilled with existing Kubernetes primitives. One such way is using affinities [8], which can be ex-
pressed with either an affinity or an anti-affinity. See an example for the bundling from Figure 19:

 - name: fa_sub-a

 metadata:
 bundle: fa_sub-b
 actors:
 - name: FA_SUB-A
 replicas: 1
 affinity:
 replicaAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 bundle: fa_sub-b
 topologyKey: platform/hostname

B.3 Referencing Individual Functional Actors in Flows

The Kubernetes API defines a rather smart filtering functionality to find other components [9]. In
the flow examples seen, so far, this was used to reference the bundle a communication is to be
established to. However, if the actors’ metadata is extended with appropriate metadata, as is the
actor in the bundle fa-ex in the above example, direct referencing of the actor becomes possible.

References

[1] RCA initiative, see https://www.eulynx.eu/index.php/news
[2] OCORA, see https://github.com/OCORA-Public/Publication
[3] Europe’s Rail programm, see https://rail-research.europa.eu/about-europes-rail/
[4] RCA/OCORA, “An Approach for a Generic Safe Computing Platform for Railway Applica-

tions”, White paper, OCORA-TWS03-010, Version 1.1, July 2021, see
https://github.com/OCORA-Public/Publication/blob/master/04_OCORA%20Delta%20Re-
lease/OCORA-TWS03-010_Computing-Platform-Whitepaper.pdf

[5] Europe’s Rail Multi-Annual Work Plan, see https://rail-research.europa.eu/wp-content/up-
loads/2022/03/EURAIL_MAWP_final.pdf

[6] Angel Martinez Bernal, Mark Carrier and Mark Hary, “OMG DDS Reference Implementation
for Safe Computing Platform Messaging”, Version 1.0, July 2022, see
https://github.com/OCORA-Public/Publication/blob/master/91_SCP_OMG_DDS_Refer-
ence_Implementation/SCP_OMG_DDS_Reference_Implementation.pdf

[7] POSIX Headers, see https://pubs.opengroup.org/onlinepubs/9699919799/idx/head.html
[8] Affinities, see https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
[9] Labels and Selectors, see https://kubernetes.io/docs/concepts/overview/working-with-ob-

jects/labels/

https://www.eulynx.eu/index.php/news
https://github.com/OCORA-Public/Publication
https://rail-research.europa.eu/about-europes-rail/
https://github.com/OCORA-Public/Publication/blob/master/04_OCORA%20Delta%20Release/OCORA-TWS03-010_Computing-Platform-Whitepaper.pdf
https://github.com/OCORA-Public/Publication/blob/master/04_OCORA%20Delta%20Release/OCORA-TWS03-010_Computing-Platform-Whitepaper.pdf
https://rail-research.europa.eu/wp-content/uploads/2022/03/EURAIL_MAWP_final.pdf
https://rail-research.europa.eu/wp-content/uploads/2022/03/EURAIL_MAWP_final.pdf
https://github.com/OCORA-Public/Publication/blob/master/91_SCP_OMG_DDS_Reference_Implementation/SCP_OMG_DDS_Reference_Implementation.pdf
https://github.com/OCORA-Public/Publication/blob/master/91_SCP_OMG_DDS_Reference_Implementation/SCP_OMG_DDS_Reference_Implementation.pdf
https://pubs.opengroup.org/onlinepubs/9699919799/idx/head.html
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

	List of Contributors
	1 Motivation
	2 Aim and Scope of this Document
	3 Abbreviations and Notation
	3.1 Abbreviations
	3.2 Notation

	4 Definitions
	4.1 Definition of Entities
	4.2 Deployment Options (for Illustration)

	5 Key Paradigms and Guiding Principles for the PI API Design
	6 Messaging
	6.1 Introduction and Key Paradigms
	6.2 Flows
	6.2.1 Introduction
	6.2.2 Uni-directional Flows
	6.2.2.1 Introduction and Key Characteristics
	6.2.2.2 Static properties of Uni-directional Flows
	6.2.2.3 Dynamic properties of Uni-directional Flows
	6.2.2.4 Configuration of Uni-directional Flows
	6.2.2.5 Register (as a publisher) to and unregister from a Uni-directional Flow
	6.2.2.6 Subscribe to and unsubscribe from a Uni-directional Flow

	6.2.3 Bi-directional Flows
	6.2.3.1 Introduction and key characteristics
	6.2.3.2 Static properties of Bi-directional Flows
	6.2.3.3 Dynamic properties of Bi-directional Flows
	6.2.3.4 Configuration of Bi-directional Flows
	6.2.3.5 Joining / disjoining Bi-directional Flows

	6.3 Addressing
	6.4 Messages
	6.5 Possible usage of DDS as Basis for SCP Messaging

	7 Execution Model and Timing Behavior
	7.1 Execution Model
	7.2 Timing
	7.2.1 Introduction
	7.2.2 Messaging-related Timing Requirements
	7.2.3 Scheduling-related Timing Requirements
	7.2.4 Time Stamps

	8 Gateway Concept
	8.1 Introduction and Basic Design Paradigms
	8.2 Gateway Example for Illustration

	9 Fault, Error and Failure Handling and Recovery
	9.1 Used Terminology
	9.2 Fault Detection and Response
	9.3 Error Detection and Response
	9.4 Failure Response

	10 API Considerations
	10.1 Introduction and Basic Considerations
	10.2 PI API, as used by Safe, Replicated Functional Actors
	10.2.1 Subselection of POSIX Functions for the PI API
	10.2.2 API extensions
	10.2.2.1 Flows
	10.2.2.2 Timers
	10.2.2.3 Configuration Management
	10.2.2.4 Checksum Functions
	10.2.2.5 State handling
	10.2.2.6 Recovery

	10.3 Extended PI API, as used by non-replicated Functional Actors

	11 Application Example
	11.1 Introduction
	11.2 Chosen Abstract Application Setup
	11.3 Possible Configuration Files
	11.4 Possible Deployment Scenarios

	12 Outlook on Future Work
	Annex A: Possible Definitions for API Functions required beyond POSIX
	A.1 Possible Definitions for Functions related to Flows
	A.2 Possible Definitions for additional Timers
	A.3 Possible Definitions for Functions related to Configuration Management
	A.4 Possible Definitions for Functions related to Checksums

	Annex B: Kubernetes Style YAML Configuration for the SCP
	B.1 Introduction
	B.2 Constraints regarding mapping of Replicas to Computing Elements
	B.3 Referencing Individual Functional Actors in Flows

	References

