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1. Introduction 

 

The railway sector is currently undergoing the largest technology leap in its history, with many rail-

ways in Europe and across the globe aiming to introduce large degrees of automation in rail operation. 

Beyond the rollout of the European Train Control System (ETCS), most railways are for instance 

aiming at introducing Automated Train Operation (ATO), in some cases up to fully driverless train 

operation (grade of automation 4, GoA4), and an automated dispatching of rail operation, typically 

referred to as a Traffic Management System (TMS). 

In this context, the railway initiatives Reference Control Command and Signalling Architecture 

(RCA) [1]  and Open Control Command and Signalling Onboard Reference Architecture (OCORA) 

[2] are driving a functional architecture for the trackside and onboard functions for future rail opera-

tion. More precisely, 

• RCA is an initiative by the members of EUG [3] and EULYNX [4] to define a harmonised 

architecture for the future railway Control Command and Signalling (CCS), including a defini-

tion of components and interfaces among these, with the main goal to substantially increase the 

ratio between performance and total cost of ownership (TCO) compared to today’s implemen-

tations. 

• OCORA is first and foremost a platform for cooperation to the benefit of the European railway 

sector. Recognising that a coherent, modular, upgradeable, interchangeable, reliable and secure 

onboard architecture is paramount to overcome the challenges for the overall CCS system, the 

intent is to establish the OCORA onboard architecture in coherence with and complementarily 

to the trackside control command and signalling. 

It is obvious that a future-proof, modular functional architecture is only one essential step toward the 

digitalisation of rail operations. Beyond this, it is also vital that the rail sector maximally leverages 

latest advances in the IT sector, for instance related to Cloud technology and high-performance com-

puting. In this context, RCA and OCORA are jointly working toward a generic safe computing 

platform approach for onboard and trackside CCS applications (and possibly other railway applica-

tions), in particular aiming to decouple applications from the underlying computing platform, consid-

ering their very distinct life cycles, and to achieve platform independence.  

This White Paper is jointly issued by the stated initiatives and provides: 

• the high-level objectives behind the design of a generic safe computing platform for railways; 

• key design requirements and design paradigms which have been agreed upon; 

• a description and comparison of two possible platform approaches; 

• a discussion on how a safe computing platform for railways could leverage concepts and expe-

rience from the automotive and aviation sectors; and 

• the envisioned next steps towards the specification of the API between application and platform. 

After a first version of this White Paper was published in July 2020 [5], the current version provides 

a further refined and detailed view on the Safe Computing Platform, also incorporating feedback 

which the RCA and OCORA partners obtained via a Request for Information (RFI) conducted in 

Spring 2021, as detailed in Section 9. 

The purpose of this White Paper is to create awareness within and beyond the railway sector on the 

ambition and initial plans of leading railways to introduce a generic safe computing platform for 

railway applications, to stimulate broad discussion on this, and to obtain early feedback from related 

application and platform vendors on key design principles and possible platform realisations.    

The considerations on onboard and trackside computing platforms presented in this paper are driven 

mainly by the needs of safety-relevant CCS applications like ETCS and its further evolution. 
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However, they shall not be limited to such applications, but potentially also be used for other, possibly 

non-safety-relevant applications (wherever a reuse of the same platform design or even same physical 

platform appears beneficial). 

 

 
Figure 1. General computing platform principle and terminology. 

 

2. Notion of Platform Independence and overall Platform Terminology 

 

A key term used throughout this document is the notion of Platform Independence. Platform inde-

pendence is achieved when an application, based on a generalised abstraction between the applica-

tion logic and system interfaces, runs unchanged on different platform implementations. This is seen 

as a key prerequisite for the portability of applications among different platform environments, 

which in turn is a key enabler for the reduction of development costs. 

Note: This White Paper considers platform independence from a computing platform perspective 

only. It does neither address vehicle independence nor bearer independence, which are both important 

aspects of modularity, but which are dealt with in other workstreams of RCA and OCORA. 

Beyond the notion of platform independence, the following terminology is applied throughout this 

paper, as also shown in Figure 1: 

• Functional Application refers to a software (SW) implementing the actual business logic of 

a railway function (e.g., that of a so-called Vehicle Locator or Vehicle Supervisor, as exam-

ples of CCS functions according to the RCA architecture); 

• Computing Platform refers to the environment on which applications are run, comprised of 

o Hardware (i.e., compute nodes, memory, etc.) and 

o Runtime Environment1, itself comprised of Safety Services, System Services, the 

communication stack for information exchange among applications on the same 

 
1 Note that the term “runtime environment” here covers a broader scope than in AUTOSAR, e.g., 

also encompassing “basic software” and “platform foundation” acc. to AUTOSAR terminology.     
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platform and with external entities2 and possibly (depending on the actual platform 

implementation) an operating system and virtualisation.  

• Platform Independent (PI) API refers to the aforementioned general abstraction that allows 

applications to run unchanged on different computing platform implementations. 

 

Further, the term Tools refers to all necessary tools to develop and test a product based on the platform 

(e.g., to test and configure the platform and develop, compile, integrate and test applications). To 

foster the development of easily exchangeable and competitive tools, and avoid single source, a de-

scription of a standard development process (i.e., defining the artefacts needed for each step and 

the transition between them) may be released with the platform. This may for instance take orientation 

in the AUTomotive Open System Architecture (AUTOSAR) [7] methodology, see also Section 7. 

As indicated in Figure 1, it is also envisioned to have some extent of independence between runtime 

environment and hardware, again considering their different market ecosystem and life cycles. 

More precisely, any runtime environment implementation should be able to run on a decently wide 

range of commercial-off-the-shelf (COTS) hardware, so that hardware can be added or replaced as 

technology advances. It is, however, understood that it may be difficult to enforce this in the short 

and medium term for onboard systems, as here often embedded solutions are used with a strong cross-

optimization between runtime environment and hardware. 

In more detail, Safety Services are expected to comprise functions that ensure that the computing 

platform satisfies the railway norms EN 50126, EN 50128 and EN 50129 by covering: 

• Integrity checking; 

• Fault tolerance (e.g., achieved through redundancy and voting, or through diagnostic functions); 

• Synchronisation and communication services related to safety (e.g., needed for fault tolerance); 

• Hardware and software monitoring as needed in safety context. 

 

System Services are expected to comprise functions that cover at least: 

• Application lifecycle management (incl. start-up, supervision, restart, stop, update, recovery);  

• Platform and software monitoring (process, software stack and interface modi); 

• Tracing and logging; 

• Communication services (not related to safety) incl. network management and compression; 

• Access to external entities, including sensors and actuators; 

• Security, including means for authentication, (HW accelerated) encryption, key storage, etc. 

(possibly provided in a centralised way by some platform implementations);  

• Persistence services, e.g., provision and management of persistent storage. 

 

 

  

 
2 It is an open design question if the communication stack should be logically separated from the 

rest of the runtime environment or not. 
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3. High-Level Objectives 

 

The high-level objectives for a generic safe computing platform are listed in Table 1. 

 
Table 1. High-level objectives. 
 

No. Objective Applicability to 

  Onboard Trackside 

1 Meet safety and real-time requirements of CCS (and similar) 

railway applications. The platform shall meet safety requirements 

of applications up to safety and integrity level (SIL) 4, e.g., acc. to 

EN 50126, EN 50128 and EN 50129, and support applications with 

real-time characteristics (e.g., overall processing cycles in the order 

of 10-100ms). 

✓ ✓ 

2 Respect diverse lifecycles of business logic, runtime environ-

ment and hardware. The platform shall be partitioned with respect 

to the different lifecycles of business logic, runtime environment 

and hardware. The platform shall support fully independent life-cy-

cle handling, i.e., with minimal dependencies. 

✓ ✓ 

3 Open market to new players. The platform shall open the market 

to new, non-rail-oriented software and tooling companies. They 

shall be able to become involved in functional application develop-

ment without providing their own platform safety mechanisms (e.g., 

related to safe communication, fault tolerance implementation, etc.). 

✓ ✓ 

4 Minimise total cost of ownership. The platform shall minimise the 

total cost of ownership, i.e., the overall life-cycle cost. ✓ ✓ 

5 Vendor independence. Different vendors shall be able to provide 

functional applications, computing platforms and development 

tools, respectively, without a vendor lock-in. It shall be possible to 

purchase hardware directly from different vendors throughout the 

lifespan of the software. The platform shall build on existing 

HW/SW solutions, stimulating competition among vendors and al-

lowing them to shine with their specific expertise and distinctive so-

lution features. 

(✓) 

* with possi-

ble limitations 

in HW choice, 
at least short-

term, due to 

highly inte-
grated solu-

tions  

✓ 

6 Industrial readiness. It shall be possible to procure a platform as 

off-the-shelf solution supported by an open and dynamic market. 

The solutions shall be mature (e.g., reliability proven in field) and 

backed by effective acceptance and integrated logistical support 

(e.g., maintenance service, tooling, availability of spare parts). 

✓ ✓ 

7 Migratable and portable business logic. The business logic is con-

sidered a significant system asset, being the component with the 

longest lifetime. It must hence be portable to different computing 

platform evolutions. We here further differentiate: 

• Migrateability for legacy applications: It should be decently 

easy to migrate legacy applications to the new platform; 

• Portability for new applications: Applications running on the 

platform should be portable to any other vendor’s or evolved 

version of the platform. 

✓ ✓ 

8 System evolvability. The platform shall be open to extensions (in 

the sense of additional system services that are added over time, 

e.g., related to FRMCS). Adding new functionalities shall be 

✓ ✓ 
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No. Objective Applicability to 

possible with minimal to no changes to existing applications 

(though these may naturally not be able to leverage the new func-

tionalities). 

9 Facilitation of application development. The platform shall use an 

open, well-documented application model and programming inter-

face, facilitating that third parties develop applications. 

✓ ✓ 

10 Modularity. The platform shall allow for a modular safety certifica-

tion process, using pre-certified components leading to a dramati-

cally simplified and shortened full system certification process. An 

evolution or update of the platform shall not require a new E2E ho-

mologation of application and platform, as detailed in Section 8. 

✓ ✓ 

11 Encapsulated, transparent fault tolerance mechanism. The plat-

form shall transparently encapsulate the safety and fault tolerance 

mechanisms. Vendors may offer different (new) approaches to 

safety and fault tolerance as they become available on the market - 

solution agnostic and future-proof.  

✓ ✓ 

12 Scalability. The platform shall be highly scalable, i.e., it should by 

design be able to support an arbitrary number of applications and ar-

bitrary number of compute nodes. 

(✓) ✓ 

13 Flexible usage of compute resources. The platform shall enable a 

flexible mapping of business logic to compute resources (e.g., such 

that the platform can be expanded while applications are running, 

and that business logic can be re-mapped when compute nodes fail). 

It shall be able to leverage advances in computing technology (i.e., 

when better compute nodes are available, it shall be possible to as-

sign more instances of business logic to the compute nodes). 

✓ ✓ 

14 Centralisation. The platform shall allow to centralise applications 

physically in a safe data centre to simplify life-cycle management, 

reduce TCO by means of simplified, optimised operations, and ben-

efit from increased availability and optimised resource usage. 

 
✓ 

15 Support for running multiple applications (also with different 

SIL levels) on one physical platform. It shall be possible to run 

multiple applications, possibly with different SIL levels, on a single 

physical platform to reduce cost, space, power dissipation, etc., and 

simplify certification, maintenance, system evolution, etc. 

✓ ✓ 
(though need 

less pro-

nounced as 

for onboard) 

16 Life-cycle management capabilities. The platform shall provide 

automated mechanisms related to software lifecycle and configura-

tion management, diagnostics, etc. This may also be expanded to 

software development automation, e.g., taking orientation in SPEM. 

✓ ✓ 

 

From Table 1, it is already visible that there is a high level of commonality among the objectives for 

onboard and trackside computing platforms, suggesting a common platform approach for both sides. 

It should be noted that it may obviously not be possible that a particular computing platform design 

fulfils all requirements, and that compromises may hence have to be accepted. 

First feedback from suppliers obtained through the previously mentioned RFI has confirmed that 

abovementioned objectives are rather reasonable and largely achievable, though some challenges 

have been identified that are detailed in Section 9. 
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4. General Computing Platform and PI API Design Considerations 

 

In order to achieve the aforementioned high-level objectives, it is expected that a safe computing 

platform for digital rail shall follow at least these main design paradigms: 

• Satisfy railway norms such as EN 50126, EN 50128, EN 50657 and EN 50129 in their ap-

plication up to SIL4: provide functional applications with safe, reliable, deterministic and 

real-time performance as well as the level of availability required; 

• Clear separation of concern between the functional application and the platform: Nota-

bly, functional applications shall handle only business logic, while all other required functions 

related to application execution and control (incl. mechanisms for safety, fault tolerance, per-

sistence, communication and application management) shall be handled by the computing 

platform in a way that is transparent to the business logic; 

• Enable safe and secure communication with external entities: (e.g., trackside object con-

trollers or separate onboard systems, possibly connected via the OCORA Gateway [8]); 

• Implement a harmonised PI API: possibly common for onboard and trackside;  

• Follow a modular safety concept: to minimise homologation efforts; 

• Maximise usage of COTS components (CPU, I/O, SW, etc.), tools and Open Source soft-

ware (where applicable): to minimise vendor lock-in and leverage advances in other sectors; 

• Provide mechanisms to sufficiently isolate applications, in particular when involving dif-

ferent SIL levels, which are running on the same physical platform.  

 

While this is not seen as mandatory, it is expected to be beneficial if computing platforms also 

• Consider utilising virtualisation techniques or similar means of abstraction of compu-

ting resources: for better evolvability, scalability, the support of mixed SIL constellations 

and a more flexible mapping of applications to compute resources. 

 

It should be noted that beyond the agreed basic design paradigms above, the railways are working 

on a comprehensive list of requirements for the generic safe computing platform [6].   

 

We will now venture into details on the possible design of a generic safe computing platform for 

railway applications, in particular regarding how functional applications interact with the platform 

and with external entities. It should be noted that all subsequently described aspects are still to be 

seen as proposals and subject to further study. Furthermore, the focus is mainly on safety-relevant 

applications; for non-safety-related applications, obviously leaner mechanisms could be envisioned. 

 

Application Model 

 

While this may not be the only approach to meet SIL requirements, it is in the following assumed that 

“composite fail-safety” according to EN 50129 is used for achieving fault tolerance. This means that 

a functional application is run multiple times (for M-out-of-N redundancy), and the results of the 

replicated instances are compared to provide one overall safe output. It is here assumed that the func-

tional application consists of a processing logic and a state, and that some form of State Machine 

Replication (SMR) is used. This allows to support a big range of approaches for achieving fault tol-

erance, which, as stated before, is considered to be handled by the platform and transparent to the 

functional application. The resulting application model is illustrated in Figure 2. 
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Figure 2. Illustration of application model. 

The SMR requires that the functional application has a defined initial state and is deterministic in the 

sense that with a given state and given message received, it always results in exactly the same change 

of the state and the same sequence of sent messages. It is in particular not allowed that there is ran-

domness in the execution or the sent messages, dependency on local or overall timing, or dependency 

on the local node state. One example of how a computing platform could run a functional application 

for achieving sufficient fault tolerance is shown in Figure 3, where the functional application is run 

in three replicas. 

 
Figure 3. Illustration of possible usage of functional application replicas for fault tolerance 

(assuming a composite fail-safety approach and highly simplified for brevity). 

Here, the message distribution logic ensures an identical sequence of messages delivered to the func-

tional application replicas by using a so-called atomic broadcast. As the application replicas all have 

the same initial state and are deterministic, they will produce an identical sequence of output messages 
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and will go through the same sequence of states. The voting logic then compares these messages and 

detects inconsistencies. In case of such, it provides an error indication which is processed further by 

additional monitoring mechanisms to ensure a safe reaction of the overall system.  

It is expected that the computing platform provides state management and handles all procedures 

needed to (re-)start functional application replicas after a crash, fault detection, or maintenance work. 

It may do so by requesting a snapshot of the state from still running replicas and then providing the 

snapshot to the started replica, before starting to provide the input messages. 

 

General Communication Approach and related Design Criteria 

 

For the communication among functional applications, regardless of whether they are located on the 

same or different physical platform realisations, a layered communication approach is assumed, 

which distinguishes between: 

• Application layer protocols (i.e., OSI layer 7), which are handled by the functional applica-

tions and are transparent to the platform; 

• (Optional) domain-specific safe communication protocols (e.g., RaSTA or the Euroradio 

safety layer) involved in communication among physical platform realisations. These could 

be implemented in different forms, as will be discussed in more detail later; 

• RTE-specific safe communication protocols that are used to ensure safe communication 

between functional applications running on the same RTE; 

• Non-safe communication protocols or services (e.g., FRMCS-related communication pro-

tocols) on OSI layers 5 and 6 that may be provided through non-safe gateway functions, as 

discussed later; 

• OSI layers 1-4, which are assumed to be provided by the platform, with support of TCP/IP 

and UDP/IP and possibly other protocols. 

 

Further, the following design criteria shall apply: 

1) It shall not be visible to functional applications whether they are communicating to entities 

on the same platform (e.g., same hardware pool or same runtime environment) or on remote 

platforms. This is important to enable flexible application (re-)deployment over time. Conse-

quently, any domain-specific safe communication protocols or other communication proto-

cols below OSI layer 7 that are required only for inter-platform communication should be 

applied in a way that is transparent to the functional applications; 

2) On the other hand, it shall be ensured that said protocols can evolve independently from spe-

cific RTE implementations; 

3) Safe communication should be applied end-to-end, so that the whole communication link be-

tween remote functional applications can be assumed to be safe. 

 

Publish-Subscribe Approach 

 

A key step toward fulfilling criterion 1) above, i.e. to ensure that it is not visible to a functional 

application whether it is communicating to a co-deployed or remote other functional application, is 

to use a publish-subscribe scheme, where functional applications publish messages to “topics” and 

receive messages via subscription queues, as also illustrated in Figure 4. In this context, the following 

shall apply: 
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• Functional applications may have one or multiple queues for incoming messages, where each 

queue may be associated to one or multiple “topics”. Message queues are in general designed 

as first-in-first-out (FIFO) and may have a configurable fixed length. Messages may be de-

fined such that they are updated or refreshed when a new message of the same type is pub-

lished;  

• The platform shall ensure that all related queues of all functional application replica of the 

same application contain exactly the same sequence of messages when the functional appli-

cations are scheduled; 

• When functional applications publish messages, the platform performs voting on these (unless 

the SIL level of the sending functional application does not require this or sending and receiv-

ing functional applications belong to the same application replica) and adds the voted mes-

sages to the queues of the receiving functional applications. 

 

 

Figure 4. Publish-subscribe principle with subscription queues. 

 

While this is left to the specific platform implementation, one option to fulfil the aforementioned 

principles would be to introduce a rigid platform timing. For instance, the platform could apply a 

fixed slot timing where every functional application replica is scheduled exactly once per slot and 

obtains a guaranteed fixed CPU time. The application, in turn, has to guarantee that it is able to pro-

cess the maximum expected number of incoming messages in this fixed CPU time, such that the 

platform can still apply the voting (where necessary) and message distribution before the beginning 

of the next slot.    

It shall be noted that the shown message distribution principle involving voting typically requires the 

usage of safe communication protocols, e.g., to ensure the end-to-end safety of the data transferred 

from one functional application to another. It is assumed that – for communication among functional 

applications running on the same RTE - this is done via aforementioned RTE-specific, proprietary 

safe communication protocols.  

 

Communication to external Systems 

 

Communication of functional applications to external systems (i.e., to other functions hosted beyond 

the physical implementation of one platform, regardless of whether the other function is implemented 

according to a Safe Computing Platform approach or not) typically requires the usage of domain-

specific Safe Communication Protocols (e.g., RaSTA, or the safety layer in EuroRadio). Also, non-

safe protocols may have to be involved (e.g., related to the FRMCS service stratum) on top of a lower-

layer stack with, e.g., TCP/IP, UDP/IP or possibly other protocols.   
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For the handling of domain-specific safe communication protocols, three principle approaches are 

thinkable:  

a) Safe communication protocols could be applied within the application context. In order to 

ensure that these protocols are only used for inter-platform-communication and in a way that 

is transparent to the application, as required according to criterion 1 above, the protocols could 

be handled via functionality (possibly provided by a vendor other than the RTE vendor) run-

ning in the application context, but behind the PI API and hence transparent to the application. 

Such functionality would of course need information from the RTE on whether a target func-

tional application is located on the same platform or not, so that it knows whether or not to 

apply the domain-specific safe communication protocols. 

b) Safe communication protocols could be applied by the RTE 

c) Safe communication protocols could be handled by a separate application function running 

on the same RTE as the application function needing these.   

 

A short comparison of the three mentioned approaches is provided in Table 2. As is visible, none of 

the approaches fulfils all design criteria mentioned above, but instead all involve some compromise. 

 

Table 2. Comparison of different possible approaches to handle domain-specific safe communication protocols. 

Approach for han-

dling domain-spe-

cific safe communi-

cation protocols 

a) Protocol(s) ap-

plied within applica-

tion context 

b) Protocol(s) ap-

plied in RTE 

c) Protocol(s) applied 

in separate Func-

tional Application 

running on RTE 

Criterion 1: Usage of 

safe communication 

protocols transpar-

ent to application 

May be fulfilled if 

functionality is pro-

vided in application 

context but behind the 

PI API 

Fulfilled Fulfilled 

Criterion 2: Safe 

communication pro-

tocols can evolve in-

dependently of RTE 

Fulfilled if related 

functionality can be 

offered by an inde-

pendent vendor 

Not fulfilled Fulfilled 

Criterion 3: Safe 

communication en-

sured end-to-end 

Fulfilled inherently 

through the fact that 

safe communication 

protocol is applied 

end-to-end 

Can be fulfilled More challenging to 

fulfil, as there is no 

single end-to-end safe 

communication proto-

col, but rather a chain 

of these.  

 

For handling of non-safe communication protocols like FRMCS-related protocols or lower-layer 

protocols like TCP/IP, UDP/IP or others, it appears suitable to introduce the notion of Non-safe Gate-

way Functions that could be provided by independent vendors and deployed on the RTE, as shown 

in Figure 5. Non-safe Gateway Functions would in principal be similar to other Functional Applica-

tions, but would only run in one application instance, and would access the RTE through an “extended 

PI API” that gives these functions access to the lower layer TCP/IP, UDP/IP or possibly other protocol 

stacks to external systems.   
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Figure 5. Notion of domain-specific safe communication protocol support (if needed) and non-safe gateway functions (always 

needed for communication to an external entity). Note that for brevity the message flows between the entities running on the 

RTE are not shown. 

 

For illustration purposes, it is now described along a specific example how communication to an 

external entity would take place if abovementioned approach a) is used. In the example, an application 

SUBSYS-X communicates to an application SUBSYS-Y located in an external entity. The example 

involves a domain-specific safe communication protocol (e.g., RaSTA, or the EuroRadio safety layer) 

and a non-safe communication protocol (e.g., “FRMCS layer”) over one non-safe communication 

channel to the target: 

• Application data packing and insertion of the domain-specific safe communication protocol 

are applied within the application context (i.e., redundantly for each functional application 

replica), supported by functionality that is from the application perspective behind the PI API 

and is possibly provided by an independent vendor; 

• The functional application replicas publish the application payload including the domain-spe-

cific safe communication protocol layer to the related topic (e.g., “SUBSYS-Y”) using the PI 

API; 

• The RTE, to which application payload and domain-specific safe communication protocol 

layer are transparent, performs the voting and pushes the outcome to a “Non-safe Gateway 

Function” which is subscribed to the topic “SUBSYS-Y”. As mentioned before, such Non-

safe Gateway Function would only run as one application instance and utilize an extended PI 

API providing access to, e.g., TCP/IP, UDP/IP or possibly other protocol stacks; 

• The Non-safe Gateway Function adds any further protocol layers that are needed (e.g., 

FRMCS layers); 

• The RTE finally handles the lower layers of the communication stack, e.g., TCP/IP, UDP/IP, 

or other protocols.    

 

In Figure 6, it is summarized for the stated example which entity (application, RTE, Non-safe Gate-

way Function) contributes to which part of the overall protocol stack toward the external entity. On 

the side of the external entity (not shown in the figure), the layers are handled likewise (if this is also 

based on the Safe Computing Platform): A Non-safe Gateway Function running on the target platform 

terminates the “FRMCS layers”. It then publishes the application payload to the topic “SUBSYS-Y” 

using the PI API. The platform distributes this to all functional application replicas of the target ap-

plication (which is subscribed to “SUBSYS-Y”), which finally (redundantly) terminate the domain-

specific safe communication protocol and unpack the application payload.    
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If now the two communicating subsystems would be instantiated on the same platform, the Non-safe 

Gateway Functions would simply be removed and the communication would inherently work, as 

subsystem SUBSYS-X publishes to topic “SUBSYS-Y”, to which SUBSYS-Y is anyway subscribed. 

 

 

Figure 6. Handling of the communication protocol stack by application, RTE and Non-safe Gateway Function for communica-

tion to a remote entity (resembling aforementioned approach a)). 

 

The aforementioned approaches regarding the handling of domain-specific safe communication pro-

tocols are subject to further investigation. 

Expected Capabilities of the Platform Independent API 

 

In consequence of the previous sections, it is expected that the API between applications and platform 

covers at least the following functions: 

• Functions for applications to communicate with other application instances or with gateways 

to external systems (such as sensors and actuators), based on a publish-subscribe logic; 

• Functions via which functional applications can determine or be informed about the presence 

of other (platform-internal or external) functional applications; 

• Functions related to tracing and logging, security and access to persistent storage.  

 

 

IT Security Considerations 

 

IT security supports digitalisation and cannot be captured as a single requirement. Instead, IT security 

comes with a plethora of requirements related to law, norms, safety and life cycle. 

Law and norms (incl. regulatorily mandated standards) foresee a dynamic life for security compo-

nents to follow constantly changing threats and vulnerabilities. Safety and life cycle, on the other 

hand, focus on much longer release cycles from economic but mainly operational point of view. That 

is why the basic requirement and design principle should be “security as a shell”. In particular, the 

security concept should only demand a minimum possible support from the safety system to fulfil the 

requirements, and the security shell should allow for maximum flexibility. 

This principle applies to interfaces as well as to systems and sub-systems themselves and must be 

applied continuously throughout patch and release management. Especially for releasing security up-

dates it is necessary to implement processes that allow to quickly respond to vulnerabilities and con-

duct testing, without requiring certification by federal accredited organisations when following a risk-

based analysis. In addition, an outstanding capability is ‘detection’. Detecting security incidents is 

quite common for trackside infrastructure but totally new on vehicles. In the context of the 
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introduction of a generic safe computing platform, detection should be natively enabled on both sides 

while protecting and respecting the distinct security zones on both sides. 

 

 

5. Possible Platform Deployments and Vendor Multiplicity 

 

Before delving into possible implementations of the Safe Computing Platform concept, it is helpful 

to understand the flavours of platform deployments and vendor multiplicity that one may actually 

obtain in practise. For this, Figure 7 shows a highly simplified deployment of three functional railway 

applications (possibly provided by different vendors) in two platform realisations. Note that the ex-

ample can refer to both trackside deployments (where the two platform realisations could resemble 

different data enters) and onboard deployments (where these would resemble two onboard platform 

instances). In the first platform realisation, one functional application is deployed on a dedicated RTE 

instance. Another application runs on a separate RTE instance (in this example provided by a different 

runtime environment vendor, as indicated through a different shade of blue), but shares a common 

hardware pool with the first functional application. In the case depicted to the right, multiple func-

tional applications run on a common RTE instance. 

 

In the specific example, it is assumed that multiple instances of runtime environments on different 

platforms are provided by the same vendor (as indicated through the same dark blue colouring). This 

setup could allow that these instances are connected via proprietary interfaces through which the 

vendor could for instance realize geographic redundancy (e.g., one functional application being real-

ised through geographically distributed redundant replica, as shown in the figure). In this case, the 

runtime environment instances from the same vendor would appear toward the functional applications 

utilizing these as one geographically distributed runtime environment.  

 

 
Figure 7. Possible deployments of Safe Computing Platforms, for illustration purposes only. Note that the illustration could 

refer to a trackside deployment (where the two setups could resemble different data centers) or an onboard deployment 

(where these could resemble different physical platform realisations onboard).  
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6. Possible Realisations of the Computing Platform and PI API 

 

While there is a broad common understanding on the key design principles of a generic safe compu-

ting platform, the likely relation and information exchange between applications and platforms, and 

the main functions to be supported by the PI API, there is no conclusion yet on the exact realisation 

of the PI API. In the following, two possible platform and PI API approaches are shortly introduced 

and assessed. 

 

Approach where applications are programmed against PI API 

 

In this approach, applications are programmed against the PI API, which includes 

• a set of hardened libraries implementing a well-defined, standardised set of system functions 

covering the required API capabilities as listed in Section 4, and 

• a well-defined, standardised set of safety related application conditions (SRACs) that every 

application must comply with in order to get safety-certified. 

To run an application on a specific platform, the application must be compiled for a target system 

(OS and CPU architecture) that is supported by that specific platform (noting that a platform may 

support one or several target systems), for which there are in principle two options: 

• The platform supplier provides or determines all tools to be used by the application provider 

to develop, integrate and test the application for that specific platform (possibly imposing fur-

ther SRACs on the application), or 

• the target system (OS and CPU architecture) is specified and the application provider chooses 

the tools that support this target system. 

 

 

Figure 8. Possible platform options where applications are programmed against PI API. 
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Applications programmed against the PI API are at minimum source code portable, or possibly even 

binary code portable, between different platform implementations. All safety-related functions not 

inherent in the application logic are implemented as part of the platform. Key properties are: 

• The application does not depend on how the underlying system is built and which mechanism 

is used to achieve the required safety, availability and performance. For instance, a supplier 

could in principle realise the platform based on embedded hardware, e.g., on “bare metal” or 

with an operating system, as depicted as options A and B in Figure 8, respectively. In such case, 

if a composite fail safety approach is used, each functional application replica of each applica-

tion would run on a dedicated multi-core node. A more future-proof solution allowing to inte-

grate multiple functional applications over a common set of computing nodes would be to in-

volve a separation kernel and / or hypervisor, in the figure shown as option C. In this case, 

multiple functional applications could coexist on the same multi-core node, though the func-

tional application replica belonging to the same application have to run on separate nodes. 

While the three mentioned options could be suitable for onboard deployments, it is expected 

that larger scale trackside data centres would rather be based on orchestrated virtualisation so-

lutions, shown as option D. These differ from option C in particular in the way that a common 

orchestration layer can potentially span all compute nodes of one data centre and hence offer 

the largest flexibility in terms of the assignment of functional applications to compute resources.     

Note that the term “partition” in the figure refers to isolated execution environments with guar-

anteed processing and memory resources, and it is used consistently for all options, irrespective 

of whether there is only one partition or multiple; 

• The platform supplier must provide an overall concept for the mechanism that is used to achieve 

safety and availability. The supplier also has to provide the safety case showing that the plat-

form executes a correct software with the required failure rate. This includes a standardised set 

of SRACs that an application provider needs to comply with.  

 

Approach where applications run with a guest OS in virtual machines or partitions 

 

In a possible alternative approach, applications are not directly compiled against the PI API, but run 

together with their own OS (i.e., “guest OS”). The PI API, again fulfilling all the functions listed in 

Section 4, could in this case for instance be based on socket communication. In principle, this ap-

proach can be used in conjunction with all platform options involving an operating system shown in 

Figure 8, specifically options B, C and D. The key rationale of the approach is that it may be easier 

for application vendors to adapt existing applications to use the PI API and overall Safe Computing 

Platform approach if also the operating systems for which the applications have been developed can 

be reused. On the other hand, the fact that certain aspects like memory management etc. are then left 

to the guest operating system and are not in control of the platform below the PI API renders this 

approach more challenging from a safety assessment and authorization perspective, as will be elabo-

rated shortly. 

  

 

Preliminary comparison of the two approaches 

 

It should be noted that both described platform and API approaches in principle fulfil the objectives 

stated in Section 0, but there are some subtle differences regarding how well some of the objectives 

are met, as elaborated in Table 3. Based on this initial assessment, the first approach where applica-

tions are compiled against the API is preferred, though both approaches are for the time being still 

pursued.  
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In general, one should stress that the two approaches may also be combined, i.e., on the same physical 

platform different API levels could be foreseen that correspond to the two compared approaches. 

 
Table 3. Extent to which described platform and API approaches fulfil selected high-level objectives. 
 

Objective Approach where application is pro-

grammed against API 

Approach where applications run 

with guest OS in VM or partition 

2 Respect di-

verse lifecycles 

(of application, 

platform, etc.) 

 

The platform can be exchanged (possi-

bly requiring re-compilation of the ap-

plication) with different technology or 

different safety concept as long as the 

PI API remains the same. 

The same principle applies, but the ap-

plication VM and the application itself 

may have to be modified if the virtuali-

sation approach changes. 

 

3 Open mar-

ket to new 

players 

(in particular 

new application 

providers) 

As safety and fault tolerance are han-

dled entirely in the platform, applica-

tion programmers can focus on busi-

ness logic only while adhering to the 

SRACs. Therefore, a larger supplier 

market is expected to develop. 

Application providers typically also 

have to provide a “safe” operating sys-

tem with health monitoring capabili-

ties. However, this may also be chosen 

and provided by the platform vendor, 

so that the application vendor need not 

bother about this. 

5 Vendor 

independence 

  

(regarding 

range of possi-

ble OSs and 

CPU architec-

tures) 

 

The platform may implement a range 

of OSs and CPU architectures or an ap-

proach without OS (e.g., allowing to 

scale down to small system). 

Depending on the hypervisor product, 

the virtual machine can host a broad 

variety of guest operating systems. 

 

(regarding free-

dom for appli-

cation provider 

to choose OS 

and CPU arch.)  

OS and CPU architecture are defined 

by the platform (which may support 

multiple CPU architectures, for in-

stance through virtualisation) 

Application provider may choose all 

OSs and CPU architectures supported 

by the chosen virtualisation technol-

ogy. 

(regarding free-

dom for appli-

cation provider 

to choose tools) 

If tools are chosen by the application 

provider, these are limited to those for 

the required OS and CPU architecture. 

If tools are provided by the platform 

vendor, only supported programming 

languages can be used. 

 

Because the operating system is deter-

mined by the application provider, this 

has full flexibility regarding the tool 

chain to be used. 

6 Industrial 

readiness 

 

(regarding re-

use of existing 

solutions, etc.) 

 

Platform suppliers may offer their ex-

isting platform extended with the Plat-

form Independent API. In general, the 

approach provides openness for plat-

form vendor differentiation and further 

platform evolution. 

Platform suppliers must have a virtuali-

sation platform including safety and 

fault tolerance mechanisms supporting 

a wide range of guest OS and CPU ar-

chitectures to support solutions of ex-

isting application providers. 
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Objective Approach where application is pro-

grammed against API 

Approach where applications run 

with guest OS in VM or partition 

10 Modular 

safety certifi-

cation process 

  

A modular safety assessment and au-

thorisation is likely facilitated, as de-

tailed in Section 8. 

A modular safety assessment and au-

thorisation is likely a bit more difficult, 

as detailed in Section 8. 

 

7. Comparable Approaches from other Industries 

 

The platform approaches elaborated in this document can be compared to approaches used in the 

automotive sector (AUTOSAR [7]) and in avionics (IMA [9], typically using the real-time operating 

system or RTOS interface definition ARINC 653 [10]), which have a long development history and 

proven record of implementation in their industries. Despite some differences across the sectors re-

garding application lifecycles, market size, equipment cost, etc., AUTOSAR and IMA / ARINC 653 

share quite some commonality with the computing platform approach envisioned for the railway sec-

tor: 

• A standardised layered architecture (of 3 or more layers) is used to decouple hardware and up-

per software layers;  

• Based on a standardised runtime environment, the application developer focuses on the busi-

ness logic only, minimising the efforts to reduce the risk of faults in the lower software layers. 
AUTOSAR and IMA / ARINC 653 are designed for onboard applications with stringent requirements 

on bus communication, networking and environmental factors, which also apply to railway onboard 

systems (and partially to trackside systems), hence both architectures may provide some inspiration 

for the design of railway computation platforms. 

A technical analysis of ARINC 653 shows that it would likely fulfil objective 1 from Section 0 in the 

way that it provides mechanisms for process management, time services, fault isolation and health 

monitoring that are suitable to meet safety requirements for a single application. However, it may not 

meet the real-time requirements of the railways and likely does not support mixed-SIL setups accord-

ing to objective 15 due to limitations in partition and memory management. Further, a flexible usage 

of resources as per objective 13 may be limited as ARINC 653 does not allow runtime (re-)configu-

ration of the system.  

AUTOSAR would likely meet objectives 1 regarding both safety and real-time support as it provides 

various means related to partition, process, time, memory and communication management, fault 

isolation and health monitoring. However, it likely fails to support objective regarding mixed SIL 

support, and the static configuration scheme of AUTOSAR likely also makes it difficult to meet ob-

jective 13 related to a flexible resource usage. 

To better support computing-intensive tasks and more flexible architectures in the vehicle needed for 

todays and future use cases like automated driving, multimedia applications and over-the-air software 

updates, a new AUTOSAR Adaptive platform [7] has been introduced, which for instance breaks 

with the static configuration paradigm. AUTOSAR Adaptive would likely be able to better fulfil the 

railway requirements, as it also foresees: 

• A service-oriented API to access the hardware and network resources, thus simplifying the 

hardware and software integration;  

• Ability to develop Electronic Control Unit (ECU) applications independently of one another in 

distributed work groups; 



RCA / OCORA White Paper on a Generic Safe Computing Platform for Railway Applications Version 1.1, June 2021 Page 19/24 

 

• Multiple applications with different SIL level can be run on the same platform, in order to 

improve performance and reduce certification cost;  

• Dynamical linking of services and clients during runtime; 

• Applications can be reconfigured on spare hardware modules if the primary module is detected 

faulty during operations, increasing the overall availability of the applications. 

 

On a different level, the IEEE Time-Sensitive Networking (TSN) suite of standards is in develop-

ment and could gain the capabilities relevant for critical applications in automotive, industrial and 

IoT applications. Other technologies such as Software-Defined Networking (SDN), DetNet or Wave-

length Division Multiplexing (WDM) can expand the range of system integration options in critical 

integrated systems over the longer term (10-15 and more years).  

The robotic sector is also currently developing a middleware supporting robotics, known as Robotics 

Operating System (ROS). In the long term, middleware approaches could be capitalised for stand-

ardised railway middleware solutions supporting good performing computing platforms. 

In conclusion, none of the most popular computing platform approaches in the automotive and avia-

tion sectors is perfectly applicable to the railway sector, but the approaches from other sectors clearly 

provide a source of inspiration and orientation. Input obtained from vendors of non-rail sectors during 

the conducted RFI has especially indicated a range of solution components from the automotive or 

aviation sectors that may be reused in a railway context, see also Section 9. It should be stressed that 

different from the other sectors, the railway sector is characterised by an internationally rather har-

monised set of railway applications and a rather limited vendor ecosystem. This may in fact make it 

possible to strive for a more decisive and bold computation platform and API design than a design 

that has to accommodate the individual needs of a large number of market players, as in the case of 

AUTOSAR. 

8. Considerations on Certification and Authorisation 

 

Certification and authorisation are important aspects to be anticipated in the computing platform de-

sign as they are today a key cost driver and often delay the start of operation. The challenge is partic-

ularly pronounced when using digitalised and virtualised functions which are not state-of-the-art so-

lutions in the railway sector. 

The starting point for the European railway sector for certification and authorisation is the mandatory 

application of standards EN 50126, EN 50128 and EN 50129 in the CCS regulations (often referred 

to as the EN CCS regulations). Classically, when a railway application and the underlying computing 

platform are provided monolithically by the same vendor, the vendor provides the end-to-end safety 

assessment to obtain the authorization for a specific implementation of both application and platform. 

When application and platform are separated and potentially provided by different vendors, it be-

comes essential that the safety assessment can be performed on a modular basis. For instance, a plat-

form vendor could certify that a specific platform implementation fulfils the stated norms for any 

generic application, as long as the application fulfils a set of safety-related application conditions 

(SRACs) provided with the platform. In return, an application vendor would assess that a specific 

application implementation meets the relevant norms and satisfies the SRACs of the platform. Based 

on this, a subsystem integrator could then obtain the overall authorisation for both application and 

platform, as shown in Figure 9. It is expected that this form of modular safety assessment may slightly 

differ for the two platform and API approaches compared in Section 6, namely: 

• In the approach where applications are programmed against the PI API, the overall subsystem 

approval would likely be rather simple and could be conducted by any entity (i.e., the 
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platform vendor, application vendor or a third party), as the safety mechanisms reside solely 

in the platform; 

• In the approach where applications reside in virtual machines or partitions, it may be required 

that the application vendor also provides the overall subsystem integration, as safety mecha-

nisms in application and platform have to jointly contribute to the safety case.   

 

 
Figure 9. Expected responsibility split in the context of a modular safety assessment. 

 

An important aspect to consider is also how (re-)authorisation is handled when for a given application 

and platform setup the platform is modified or replaced. A first and somewhat intuitive step would 

be to standardise the SRACs imposed by the platforms, as then the effort for re-authorisation of the 

application could likely be minimised. In the longer term, it would be desirable to aim for an author-

isation approach that allows replacing the platform without any re-authorisation of the application. 

 

Clearly, a modular safety assessment is only possible if there is a clear split of safety-related mecha-

nisms in application and platform, and a clear separation of hardware resources for safety-critical and 

non-safety-critical applications, as discussed earlier in this paper. In general, it is in this respect of 

course desirable that (standardised) SRACs are maximally simplified. 

 

Required evolution of the certification framework 

 

Enhancements of certification (process and regulatory framework) will serve the computing platform 

design when they contribute to: 

• Improved verification and validation (V&V) at subsystem and system level (e.g., allow-

ing that a functionality can be changed or added in a CCS onboard without the need to per-

form testing for each train type and class): Means and methodologies for checking non-re-

gression (from specification to design and V&V) should be developed and standardised, and a 

virtual environment (lab) shall be an acceptable solution for validation and certification; 

• Authorisation for generic configuration: Investigation is needed on the possibility to certify 

as interoperability constituents either the computing platform, the software application hosted 

by it, the peripheral connected to it, or each of these components. The certification process of 

interoperability constituent(s), as it is set in the interoperability directive (EU) 2016/797, 

could be a practical solution allowing to capitalise on a single certification for the component 

valid for a wide range of use. 
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In other industries, there are several alternatives (e.g., IEC 61508) for the EN CCS regulations that 

provide a similar level of quality and safety, are globally accepted, are regularly applied in safety-

critical industry branches including the transportation industry and are more suitable regarding the 

application of state-of-the-art technologies. In principle, also the EN CCS regulations allow for a use 

of similar standards, if equivalence can be demonstrated. The core activities of equivalence demon-

stration, if anticipated and agreed at sectoral level, can reduce the time-to-certification and conse-

quently the time-to-market and delays in the authorisation process. 

  

9. Summary of initial Industry Interaction on the Safe Computing Platform concept 

 

In the beginning of 2021, the joint working group has conducted an RFI to obtain feedback on the 

Safe Computing Platform (SCP) concept and API considerations from possible application and plat-

form vendors within and beyond the rail sector. In particular, the working group aimed to obtain 

• general feedback on the Safe Computing Platform concept and API considerations in terms of 

whether these are in general seen as feasible, or whether any potential showstoppers could 

arise (e.g., for parts of the expressed ambition); 

• feedback and judgment on the requirements listed in the initial version of [6] w.r.t. how easy 

or difficult it may be to fulfil these;  

• insight into possible technical solutions to support the vision of the railways;   

• pointers to any additional aspects that should be considered in the context of the Safe Compu-

ting Platform; 

• an indication of when the Safe Computing Platform concept could be prototyped (from the 

perspective of suppliers) and when applications and platform products could ultimately be 

available which are compliant to the Safe Computing Platform concept.     

 

Sixteen companies participated in the RFI: from hardware suppliers for on-board and edge devices 

up to railway signalling vendors and hybrid data centre and high-performance computing experts. 

The field of participants further reached from mission-critical system builders supplying RTOS, sep-

aration kernel and hypervisor solutions, to experts or consulting suppliers in the automotive domain 

and providers of orchestrated hybrid cloud solutions, big data and business applications.  

  

In summary, the RFI responses offered highly valuable and detailed feedback on the White Paper 

and the requirements. While the high-level objectives as listed in Section 0 were generally con-

firmed as reasonable and achievable, one general feedback was that platform security aspects need a 

higher focus. In fact, OCORA and RCA are already addressing security as an overall system aspect. 

As such, all security issues are handled in a dedicated workstream and its results [11][12] will later 

shape the security requirements of the Generic Safe Computing Platform. 

 

On a high-level, the proposed solution approaches fall into three categories: 

Onboard embedded solutions, primarily focusing on Separation Kernel and Hypervisors 

• Certifiable products are available; however certification artefacts mostly comply only with 

standards of other industries; 

• Solutions could serve as possible foundation for specific on-board SCP implementations; 

• Platform Independent API including the abstraction of the safety mechanisms from functional 

applications are not yet existing in these products. 
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Data Center solutions, primarily focusing on Orchestrated Containerization 

• Orchestrated Hybrid Cloud, Kubernetes, Docker, Big Data solutions; 

• Industrial standards for communications as implemented in other industries (e.g., DDS, OPC 

UA, MQTT); 

• Only a few vendor responses show awareness and experience regarding development of func-

tional safety systems and their certification (no artefacts, no certification in other domains). 

 

Proprietary approaches 

• Neither a separation kernel / hypervisor nor a containerization approach is used; 

• No use of industrial standard communication protocols – solely relying on proprietary proto-

cols. 

 

The following specific pain points and challenges were raised by the respondents to the RFI: 

• The ambition of portable applications running unchanged on different platform implementa-

tions dramatically increases the general integration complexity. Throwing a multivendor con-

cept into the mix raises serious questions regarding integration responsibilities; 

• Due to contradicting safety concepts of different platform vendors, the standardisation of the 

safety solution will be very challenging;  

• The dynamic resource allocation and orchestration (both standard features of today’s data 

centre solutions) lack a functional safety implementation. 

10. Summary and Next Steps 

 

In the context of the ongoing digitalisation of rail operation, leading railways envision to introduce a 

generic safe computing platform, with the particular aim to separate railway applications from com-

puting platform technology and hence reflect the different life cycles of the domains, and to leverage 

latest advances in the IT sector, while still meeting the stringent homologation requirements for 

safety-critical railway applications. 

As detailed in this paper, there is already a common understanding among key railway players on the 

high-level objectives for a generic safe computing platform, which indicates a large extent of synergy 

among trackside and onboard platform requirements, and there is an agreement on key design prin-

ciples. A first RFI has been conducted to obtain feedback on the plans of the railway players, which 

has triggered a large number of responses from industry players, and through which the general 

achievability of the objectives could be broadly confirmed. 

Further, detailed concepts are available regarding the likely API between applications and computing 

platform, and for possible platform realisation approaches, which have been further enhanced through 

input obtained via the RFI, though many detailed design aspects are still open and ultimately need to 

be assessed through prototyping. Also, many questions are still open regarding how the railway sector 

could possibly leverage solutions or at least the experience from the automation and aviation sectors, 

or on how authorisation and certification could be handled more efficiently when applied to a new 

safe computing platform. 

The envisioned next steps are the following: 

• In the months following the publication of this White Paper update, a first draft specification 

of the PI API, i.e. the API between application and platform, is to be developed. For this, it is 

currently being explored how this could be done in collaboration of the railways in RCA and 

OCORA together with a reasonably-sized set of suppliers (selected through a tender); 
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• It is expected that a first draft of the API specification is available and published for further 

broad review by the end of 2021; 

• From 2022 on, prototyping of the Safe Computing Platform approach is envisioned, likely 

separately for onboard and trackside deployments. The details and timeline for prototyping 

are still under discussion. 

The initiatives RCA and OCORA would like to thank the respondents to the recent RFI for their 

support of the work and valuable further input to the Safe Computing Platform concept, and are look-

ing forward to continuing and expanding the dialogue to further railways and vendors, explicitly also 

from different sectors, to jointly perform the big technology leap the railways are aiming at.   

  

Abbreviations 

 
Abbreviation Explanation 

API Application Programming Interface 

ATO Automatic Train Operation 

AUTOSAR AUTomotive Open System Architecture 

CCS Control Command and Signalling 

COTS Commercial-off-the-shelf 

CRC Cyclic Redundancy Check 

E2E End-to-End 

ECU Electronic Control Unit 

ETCS European Train Control System 

FRMCS Future Railway Mobile Communication System 

HW Hardware 

OCORA Open Control Command and Signalling Reference Architecture 

OS Operating System 

OSI Open Systems Interconnect 

PI Platform Independent 

RCA Reference Control Command and Signalling Architecture 

RFI Request for Information 

ROS Robotics Operating System 

RTOS Real-Time Operating System 

SCP Safe Computing Platform  

SDN Software Defined Networking 

SIL Safety and Integrity Level 

SMR State Machine Replication 

SPEM Software Process Engineering Metamodel 

SRAC Safety Related Application Condition 

SW Software 

TCO total cost of ownership 

TCP Transmission Control Protocol 

TMS Traffic Management System 

TSN Time-Sensitive Networking 

V&V Verification & Validation 

WDM Wavelength Division Multiplexing 
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