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SUMMARY

To reconstruct modern human evolutionary history
and identify loci that have shaped hunter-gatherer
adaptation, we sequenced the whole genomes of
five individuals in each of three different hunter-gath-
erer populations at >603 coverage: Pygmies from
Cameroon and Khoesan-speaking Hadza and San-
dawe from Tanzania. We identify 13.4 million vari-
ants, substantially increasing the set of known
human variation. We found evidence of archaic intro-
gression in all three populations, and the distribution
of time tomost recent common ancestors from these
regions is similar to that observed for introgressed
regions in Europeans. Additionally, we identify
numerous loci that harbor signatures of local adapta-
tion, including genes involved in immunity, metabo-
lism, olfactory and taste perception, reproduction,
and wound healing. Within the Pygmy population,
we identify multiple highly differentiated loci that
play a role in growth and anterior pituitary function
and are associated with height.

INTRODUCTION

Due to recent advances in sequencing technologies, whole-

genome sequencing of multiple individuals in multiple popula-

tions is now feasible (Henn et al., 2010). This burgeoning field

of population genomics allows inference of demographic history

and natural selection that is free of SNP ascertainment bias (Lui-

kart et al., 2003; Teo et al., 2010). Initial efforts of the 1000

Genomes Project have already identified millions of variants in

diverse populations (1000 Genomes Project Consortium,
2010). However, whole-genome sequencing in the 1000

Genomes Project has generally been at low coverage, and

genetic diversity in many ethnically diverse populations is yet to

be characterized, particularly with respect to Africa, the ancestral

homeland of all modern humans (Campbell and Tishkoff, 2010).

Furthermore, differences in diet, climate, and exposure to patho-

gens among ethnically and geographically diverse African popu-

lations are likely to have produced distinct selection pressures,

resulting in local genetic adaptations. Despite the important

role that African populations have played in human evolutionary

history, they remain one of the most understudied groups in

human genomics. To date, few high-coverage African genomes

have been analyzed in published studies: four Yoruba, one

!Xhosa, and one San (1000 Genomes Project Consortium, 2010;

Bentley et al., 2008; Drmanac et al., 2010; Schuster et al., 2010).

A comprehensive knowledge of levels and patterns of variation

in African genomes is critical for a deeper understanding of (1)

human genetic diversity, (2) the allelic spectrum of functionally

important genetic variation, including disease susceptibility, (3)

the genetic basis of adaptation to diverse environments, and

(4) the origins of modern humans. Previous analyses of mtDNA,

Y chromosome, and autosomal genetic lineages in African

hunter-gatherer populations indicate that they have some of

the deepest divergence times of our species (Tishkoff et al.,

2007, 2009; Veeramah et al., 2012). The forest-dwelling Pygmies

of Cameroon include the Baka, Bakola, and Bedzan populations.

As a result of the expansion of Bantu-speaking agriculturalists

within the last few thousand years into Pygmy territories, Camer-

oonian Pygmy populations are highly admixed (Jarvis et al.,

2012) and the ancestral Pygmy language has been lost (Ber-

niell-Lee et al., 2009; Verdu et al., 2009). The Hadza and San-

dawe populations live in Tanzania and speak languages that

contain click-consonants and are classified as Khoesan, but

these languages are highly divergent from each other and from

Southern African San Khoesan-speaking populations (Sands,
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Figure 1. Genomic Variation in African Hunter-Gatherers and Other Global Populations

(A) Hunter-gatherer populations sequenced in our study (five males per population). HapMap abbreviations of publicly available genomes are also listed.

(B and C) Numbers indicate how many variants belong to each subset of populations.

(D and E) Principal component analysis of 68 high-coverage genomes. Pygmy genomes are indicated by green, Hadza by blue, Sandawe by red, and non-hunter-

gatherer by gray circles.

(F) Neighbor joining tree based on pairwise identity-by-state matrix distances using high-coverage whole-genome sequences from 68 individuals.

See also Table S1, Table S2, Figure S2, and Figure S4.
1998). At present, little is known about the genetic relationships

between click-speaking populations (Henn et al., 2011; Tishkoff

et al., 2007, 2009; Veeramah et al., 2012). The Sandawe currently

number more than 30,000 individuals, and following the Bantu

expansion, many Sandawe have switched from nomadic hunting

to an agricultural subsistence pattern (Newman, 1970). By

contrast, the Hadza have a current population size of �1,000

individuals, the vast majority of whom still practice a hunter-

gatherer lifestyle (Blurton Jones et al., 1992; Marlowe, 2010).

Data from autosomes, mtDNA, and the Y chromosome indicate

that, although the Hadza, Sandawe, Pygmy, and San popula-

tions have an ancient divergence, they also share lineages that
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are rare in other populations (Behar et al., 2008; Henn et al.,

2011; Tishkoff et al., 2007, 2009).

To extend our knowledge of genomic variation in ethnically

diverse Africans, we sequenced the genomes of five males

from each of three African hunter-gatherer populations

(Western Pygmy, Hadza, and Sandawe) at high coverage (Fig-

ure 1A). We then compared these genome sequences to a

previously published genome sequence from a San hunter-

gatherer (Schuster et al., 2010) and to publicly available whole-

genome sequence data from other ethnically, linguistically,

and geographically diverse African populations (http://www.

completegenomics.com/sequence-data/download-data/).

http://www.completegenomics.com/sequence-data/download-data/
http://www.completegenomics.com/sequence-data/download-data/


Table 1. Summary Statistics for Whole-Genome Sequences

Statistic Pygmy Hadza Sandawe

Number of individuals 5 5 5

Median coverage per genome 63.4x ± 3.43 67.33 ± 17.83 61.63 ± 6.23

Called genome fraction 94.8% ± 0.7% 96.1% ± 0.8% 95.1% ± 1.0%

Ti/Tv ratio 2.16 ± 0.01 2.14 ± 0.01 2.16 ± 0.01

Variant SNPs per genome 3.75 3 106 ± 0.04 3 106 3.54 3 106 ± 0.06 3 106 3.53 3 106 ± 0.05 3 106

Homozygous variant SNP fraction 34.04% ± 0.39% 37.7% ± 2.7% 33.2% ± 0.60%

Exonic SNP fraction 0.621% ± 0.007% 0.612% ± 0.008% 0.617% ± 0.011%

Insertions 1.26 3 105 ± 0.02 3 105 1.23 3 105 ± 0.03 3 105 1.19 3 105 ± 0.3 3 105

Deletions 1.49 3 105 ± 0.34 3 105 1.43 3 105 ± 0.03 3 105 1.39 3 105 ± 0.04 3 105

Coding indel fraction 0.116% ± 0.003% 0.115% ± 0.006% 0.118% ± 0.005%

Mean values ± one standard deviation are listed for each population. See also Figure S1.
RESULTS

Whole-Genome Sequencing
Whole-genome sequencing from 15 African hunter-gatherers

was performed by Complete Genomics (Drmanac et al.,

2010). We obtained �60-fold coverage per genome, resulting

in high-confidence calls of variants from 95% of each genome

(Table 1 and Supplemental Information available online). These

genomes were compared to publicly available high-coverage

genomes sequenced and analyzed using the same technology

and software in a diverse panel of 69 individuals (including

4 Luhya from Kenya, 4 Maasai from Kenya, 10 Yoruba from

Nigeria, and 51 non-Africans; Table S1), allowing the genomes

of African hunter-gatherers to be placed within a global

context.

After applying stringent quality control filters (Supplemental

Information and Figure S1), we identified 13,407,517 variants

(SNPs, insertions, and deletions that differ from the human

genome reference sequence, GRCh37/hg19) in the 15 hunter-

gatherer genomes. In addition, we sequenced two Hadza

genomes as technical replicates and found �28,000 discordant

calls per genome pair, corresponding to less than one error per

100 kb, consistent with previous estimates (Drmanac et al.,

2010; Lam et al., 2012). We also assessed sequence accuracy

by comparing calls between whole-genome sequencing and

the Illumina1M-Duo BeadChip genotyping array. More than

99.96% of calls were identical between platforms, and a large

proportion (>34%) of highly discordant SNPs involved known

triallelic loci.

The majority of variants are SNPs (90.9%), and we observe

a greater number of deletions than insertions relative to the

human reference genome (Table 1). We operationally define

novel variants as those that are absent from build 131 of dbSNP.

A considerable proportion of hunter-gatherer variants are absent

from dbSNP 131 (41.1%, or 5,516,366 variants). Cross-refer-

encing with the October 2011 release of the 1000 Genomes

Project reveals that 3,062,541 variants remain absent, and thus

our sequence data substantially expand the catalog of human

genetic variation. Approximately half (50.8%) of the variants

that we identify are shared among multiple hunter-gatherer pop-

ulations, and genomic regions that contain a large number of
variants in one population also contain a large number of variants

in other populations (Figures 1B and S2). However, despite

shared language and geographic proximity, we do not observe

an excess of shared variants between Hadza and Sandawe

Khoesan speakers, consistent with an ancient divergence and

diverse mtDNA haplogroups (Table S2).

Functional Classification of Variants
Of the 13.4 million variants, 3.69 million are intronic, 37,797 are

nonsynonymous, and 35,747 are synonymous variants. More-

over, 674,808 variants were located in DNase I footprints

(Rosenbloom et al., 2012), and 149,072 variants occurred in

cis-regulatory motifs within footprints. At the individual level,

each hunter-gatherer genome contains �11,500 nonsynony-

mous variants, 12,400 synonymous variants, and 256,000 vari-

ants in DNase I footprints. Using PolyPhen-2 classifications

(Adzhubei et al., 2010), we find that �60% of amino-acid-

changing variants identified in the hunter-gatherer genomes

are classified as benign, �25% as possibly damaging, and

�15% as probably damaging. In addition, benign amino acid

changes are >2.7 times more likely to be found in all three

hunter-gatherer populations than possibly damaging or probably

damaging changes (p < 10�10, Z test).

Comparing African and non-African genomes, we confirm that

non-African populations contain a slight excess in the proportion

of probably damaging nonsynonymous variants (Figure S3),

consistent with population bottlenecks due to migration out of

Africa and with prior studies (Lohmueller et al., 2008). By

contrast, proportions of synonymous and nonsynonymous

SNPs and the predicted number of probably damaging sites

are similar for African hunter-gatherers and other African popula-

tions (Figure S3). Thus, at this broad genomic scale, natural

selection appears to shape the genomes of hunter-gatherers

similarly to the genomes of other African populations. However,

analyses of larger sample sizes will be required to distinguish

subtle differences that may exist.

Population Genetics of Functionally Important Regions
of the Human Genome
The proportion of polymorphic sites, as estimated by q, are

lowest for exons in all three populations, suggesting that natural
Cell 150, 457–469, August 3, 2012 ª2012 Elsevier Inc. 459



Table 2. Population Genetic Statistics for Different Types of Variants

Statistic Intergenic 10 kb Upstream 50 UTR Exon Intron 30 UTR 10 kb Downstream Overall

Within Population

qper base pair (Pygmy) 0.001132 0.000783 0.000722 0.000503 0.000860 0.000800 0.000845 0.000966

qper base pair (Hadza) 0.000921 0.000630 0.000564 0.000390 0.000691 0.000639 0.000681 0.000782

qper base pair (Sandawe) 0.001056 0.000728 0.000663 0.000463 0.000797 0.000743 0.000789 0.000899

Mean DAF (Pygmy) 0.2785 0.2756 0.2701 0.2527 0.2728 0.2648 0.2748 0.2760

Mean DAF (Hadza) 0.3239 0.3204 0.3092 0.3015 0.3191 0.3198 0.3222 0.3219

Mean DAF (Sandawe) 0.2912 0.2883 0.2791 0.2700 0.2855 0.2814 0.2889 0.2888

Tajima’s D (Pygmy) �0.4124 �0.4350 �0.4977 �0.5955 �0.4411 �0.5010 �0.4328 -0.4272

Tajima’s D (Hadza) �0.0175 �0.0145 �0.0347 �0.0918 �0.0126 �0.0300 �0.0129 -0.0148

Tajima’s D (Sandawe) �0.3285 �0.3587 �0.4549 �0.5030 �0.3627 �0.4172 �0.3567 -0.3453

Between Population

FST (Pygmy, Hadza) 0.0727 0.0723 0.0713 0.0681 0.0727 0.0714 0.0722 0.0726

FST (Pygmy, Sandawe) 0.0485 0.0482 0.0465 0.0448 0.0483 0.0473 0.0478 0.0483

FST (Hadza, Sandawe) 0.0659 0.0654 0.0643 0.0627 0.0653 0.0647 0.0625 0.0657

Statistics are for fully called autosomal variants. Mean DAF refers to mean derived allele frequency after correcting for CpG hypermutability and biased

gene conversion. See also Table S4 and Figures S3, S6, and S5.
selection acts on coding sequences to reduce genetic variation

(Table 2). q is lower for introns than intergenic regions, a finding

that is consistent with both background selection and positive

selective sweeps. In all three hunter-gatherer populations, the

mean value of Tajima’s D is lower for genic regions. This obser-

vation reflects allele frequency distributions that are shifted

toward rare alleles in genic regions, a pattern that can be ex-

plained by both selective sweeps and purifying selection.

Consistent with findings from HapMap Phase II data (Barreiro

et al., 2008), we find that mean values of FST, a measure of allele

frequency differentiation between populations, are lower for

exons and higher for introns and intergenic regions. We also

find that 50 and 30 untranslated regions have intermediate derived

allele frequencies (DAF), q, Tajima’s D, and FST, consistent with

evolutionary constraint on regulatory regions. Furthermore,

consistent with purifying selection against slightly deleterious

mutations, the distribution of derived allele frequencies for

exon SNPs are skewed toward low-frequency alleles relative to

intergenic SNPs, and the magnitude of this shift was similar for

African and non-African populations (Figure S3 and Supple-

mental Information).

In addition, we investigated functional constraint for different

site types by calculating the neutrality index (NI), which contrasts

the levels of polymorphism and divergence of a putatively

neutral class of sites to a class of sites that may be subject to

selection (Rand and Kann, 1996). We used intergenic sites that

were at least 50 kb from protein-coding genes as our neutral

class and calculated the NI with respect to nonsynonymous,

synonymous, intronic, and DNase I footprint sites. Weak puri-

fying selection was found for all of these sites (as defined by

a NI significantly greater than 1; Table S4). Strikingly, sites clas-

sified as DNase I footprints were more constrained (NI = 1.302,

95% CI = 1.298–1.306) than nonsynonymous sites (NI = 1.153,

95% CI = 1.140–1.167), consistent with the hypothesis that

DNase I footprints are enriched for functionally important regu-

latory variants.
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Demographic History of African Hunter-Gatherers
Principal component analysis (PCA) reveals both continental and

population-specific patterns of genetic variation. PC1 distin-

guishes Africans from non-Africans (with East African popula-

tions being closer to non-Africans), and PC2 differentiates Asian

and European populations (Figure 1D). The Hadza are differenti-

ated by PC3, and subsequent principal components differentiate

Pygmies (PC4) and Sandawe (PC5) from other African popula-

tions (Figure S4).

To assess shared ancestry between diverse African hunter-

gatherer populations, we examined the percentage of shared

variants between Pygmy, Hadza, and Sandawe genomes and

a previously sequenced San genome (Schuster et al., 2010).

The percentage of San variants that are shared with one other

hunter-gatherer population is similar for Pygmy-, Hadza-, and

Sandawe-specific variants (5.6%–5.7%), suggesting that the

San diverged before other hunter-gatherer populations.

However, the D test of admixture (Green et al., 2010) indicates

that the San genome shares more derived alleles with Pygmies

than with the Hadza or Sandawe (p < 0.01; Table S3). This result

suggests that the ancestors of the Tanzanian click-speakers (the

Hadza and Sandawe) may have diverged more recently in the

past than the Pygmy/San split. However, additional possibilities

involve gene flow between the ancestors of Pygmies and the San

or stochastic loss of shared derived alleles among the ancestors

of the Hadza and Sandawe.

A neighbor joining tree indicates that Pygmies diverged before

the Hadza and Sandawe split (Figure 1F), and lack of monophyly

among Pygmy genomes reveals population substructure

involving Baka, Bakola, and Bedzan individuals. Hadza and San-

dawe genomes are nested within a cluster that also includes the

Maasai, possibly due to recent shared gene flow with neigh-

boring East African populations. With the exception of Pygmies,

clustering patterns reflect shared language families: Khoesan-

speaking Hadza and Sandawe individuals cluster together, as

do Niger-Kordofanian-speaking Yoruba and Luhya individuals.



We also observe differences in the number and cumulative

size of long runs of homozygosity in each population. Of the 15

hunter-gatherer genomes analyzed in this paper, the five

genomes with the most runs of homozygosity all belong to the

Hadza (Figure S5). Though some of these differences may be

due to a population bottleneck in the Hadza (Henn et al.,

2011), an additional cause may be cryptic inbreeding (Pember-

ton et al., 2012), as indicated by the large variance in cumulative

size of runs of homozygosity within the Hadza (Figure S5).

Indeed, cumulative runs of homozygosity in three Hadza

genomes are more than double the size of other hunter-gath-

erers analyzed in this paper (Figure S5).

Consistent with an historic bottleneck and/or inbreeding in

the Hadza, we find that the proportion of polymorphic sites,

as quantified by q, is lowest for the Hadza and highest for

Pygmies (Table 2). Depending on mutation rates, this trans-

lates to effective population sizes of 11,300–25,700 (Pygmy),

9,200–20,900 (Hadza), and 10,600–24,000 individuals (San-

dawe). Genome-wide estimates of Tajima’s D are lower for

Pygmies and Sandawe compared to the Hadza (mean values

of Tajima’s D are �0.4273 for Pygmies, �0.0148 for Hadza,

and �0.3453 for Sandawe). These results are consistent with

the observation that low-frequency-derived alleles (DAF %

0.1) are overrepresented in Pygmy and Sandawe populations

and underrepresented in the Hadza (Figure S6; p < 0.0001,

c2 tests of independence). Together, these results suggest

that Pygmy and Sandawe populations have recently expanded

in size, whereas the Hadza population has recently decreased

in size.

Hunter-Gatherer Genomes Possess Signatures
of Archaic Admixture
Gene flow between anatomically modern humans and archaic

species has been described for European, Melanesian, and

African populations (Hammer et al., 2011; Plagnol and Wall,

2006; Wall et al., 2009; Reich et al., 2010). To detect putatively

introgressed regions in the Pygmy, Hadza, and Sandawe

hunter-gatherer populations, we modified the summary statistic

S*, which searches for clusters of population-specific SNPs in

near complete LD, to be suitable for genome-scale analyses.

S* has previously been used to detect archaic admixture in indi-

viduals of European and African descent (Hammer et al., 2011;

Plagnol and Wall, 2006; Wall et al., 2009). We first verified that

our implementation of S* could accurately identify introgressed

regions by performing extensive coalescent simulations

(Supplemental Information and Figure S7) and analyzing publicly

available whole-genome sequences from nine CEPH and four

Tuscan individuals sequenced by Complete Genomics. We

calculated S* in 50 kb sliding windows and identified the top

350 regions (top �0.4%) in each population with unusually large

values of S* as high-confidence candidates for introgression.

TMRCA distributions for these regions are significantly larger

than the distribution for all loci (p < 10�16), consistent with the

hypothesis that they are enriched for introgression (Figure 2A).

Moreover, non-African genomic regions with high values of S*

were significantly enriched for Neanderthal-specific SNPs (p <

10�16, Figure 3B). Thus, S* can robustly detect genomic regions

inherited from archaic ancestors.
We next used S* to identify putatively introgressed regions in

the African hunter-gatherer samples. In all three African hunter-

gatherer samples, we found evidence of introgression from at

least one archaic population. Strikingly, the median TMRCA for

putatively introgressed haplotypes in the hunter-gatherer

samples is similar to the median TMRCA for introgressed haplo-

types in Europeans (1.2–1.3 Mya versus 1.1–1.2 Mya, respec-

tively; Figure 2A), suggesting that the archaic African population

diverged from anatomically modern humans in the same time

frame as Neanderthals (simulations suggest that relative time

of split with archaic populations can be recovered via TMRCA;

Figure 3C). Additionally, we performed a STRUCTURE analysis

of the putatively introgressed regions and of 350 random

regions. If candidate regions identified by unusually large values

of S* are enriched for genuine introgressed sequence, then we

would expect STRUCTURE to identify two populations, as intro-

gressed regions primarily consist of individuals carrying one

archaic and one anatomically modern haplotype. In contrast,

we would expect STRUCTURE to identify three populations in

the randomly selected regions corresponding to the Pygmy,

Hadza, and Sandawe populations. Indeed, this is precisely

what we find (Figures 2B and 2C), further demonstrating that

top-ranked S* regions are enriched for putatively introgressed

sequence.

There is significant overlap (p < 10�16) among putatively intro-

gressed regions in the three hunter-gatherer populations,

consistent with either gene flow among the hunter-gatherer pop-

ulations or introgression events that predate population splitting

of these populations. In addition, the TMRCA of introgressed

regions shared between all three populations is significantly

older compared to introgressed regions observed in only one

population (Wilcoxon rank-sum test, p = 2.2 3 10�5; Figure 2D),

consistent with an introgression event predating the divergence

of these populations. In contrast, we observed few introgressed

regions that overlap with those observed outside of Africa. One

exception is a 2 Mb window on chromosome 8 (Figure 2E;

chr8:3–5Mb) that contains introgressed regions in all global pop-

ulations. However, we note that because the chr8:3–5 Mb

region is enriched for CNVs, it may be more prone to false posi-

tives (Supplemental Information).

Identification of Genomic Regions with Extreme Times
to Most Recent Common Ancestry
We scanned the genomes of African hunter-gatherers to identify

regions with extremely long or short coalescence times, which

are likely to be enriched for targets of natural selection. To this

end, we calculated the time to most recent common ancestor

(TMRCA) for 50 kb sliding windows in the 15 hunter-gatherer

genomes. The mean autosomal TMRCA across all windows is

796 kya. As expected, windows spanning the HLA region, which

exhibits strong signatures of balancing selection (Barreiro and

Quintana-Murci, 2010), are the most ancient in the genome,

with a maximum TMRCA of 5.1 million years for a 50 kb window

encompassing HLA-G. The oldest genic regions outside of the

HLA locus include NSUN4, HCG9, MYO3A, and APOBEC4.

Conversely, we also found multiple genomic regions with short

TMRCA times (<10 kya), including multiple tripartite motif-contain-

ing genes (TRIM53P, TRIM64, and TRIM64B), the SPAG11A
Cell 150, 457–469, August 3, 2012 ª2012 Elsevier Inc. 461



Figure 2. Times until Most Recent Common Ancestry and Evidence of Archaic Introgression

(A) TMRCA of top candidate regions (solid lines) and of all regions (dotted lines) for the Pygmy, Hadza, and Sandawe hunter-gatherer populations and two European

populations. Note that TMRCA represents the estimated time of divergence between the anatomically modern human and candidate introgressed sequences

(Supplemental Information). TMRCA values of top candidate regions are significantly older than for random genomic regions (Kruskal-Wallis test, p < 2.23 10�16),

but TMRCA values of top candidate regions from each population are not significantly different (Kruskal-Wallis test, p = 1).

(B and C) STRUCTURE plots showing the proportion of ancestry for each individual based on the most likely number of subpopulations (K = 2 for putatively

introgressed regions in B, and K = 3 for random regions in C). For each population, a ‘‘virtual’’ genome was constructed by concatenating sequence from

individuals containing the putatively introgressed sequence (B) or from arbitrary individuals (C). Pi, Hi, and Si denote the virtual genomes constructed for the

Pygmy, Hadza, and Sandawe samples, respectively.

(D) TMRCA values of top candidate regions for introgression unique to a single hunter-gatherer population are significantly lower than TMRCA values of regions

shared between all hunter-gatherer populations (Wilcoxon rank sum test, p = 2.2 3 10�5).

(E) Genomic distribution of the top 350 introgressed regions for the Pygmy, Hadza, and Sandawe populations and for two European populations in 2Mbwindows.

Colors indicate whether windows contain introgressed regions from a single hunter-gatherer population (orange), multiple hunter-gatherer populations (blue), or

hunter-gatherer and European populations (open black circle). Counts are for hunter-gatherer regions only.

See also Figure S7.
gene that is involved in sperm maturation, and NCF1, which is

a subunit of neutrophil NADPH oxidase.

Evidence of Local Adaptation in African Hunter-
Gatherer Populations
To identify signatures of geographically restricted adaptation,

we used two complimentary approaches. First, we identified

genomic regions in each hunter-gatherer population that differ

the most from agricultural (Yoruba) and pastoral (Maasai) popu-

lations. This involved calculating locus-specific branch lengths

(LSBL; Shriver et al., 2004) for each polymorphic site in the

genome and using sliding windows to identify 100 kb regions
462 Cell 150, 457–469, August 3, 2012 ª2012 Elsevier Inc.
that are enriched for LSBL outliers (sites with the highest values

of LSBL statistics). We then focused on the top 268 (1%) most

divergent 100 kb windows in each population (Figures 4A–4C

and Table S5). Many highly divergent 100 kb windows do not

contain any genes (101/268 Pygmy, 105/268 Hadza, and 119/

268 Sandawe windows), and these windows may contain regu-

latory sequences that are important targets of adaptation. Diver-

gent 100 kb windows shared between pairs of populations

include regions containing olfactory receptors (Pygmy and

Hadza), major histocompatibility complex genes (Hadza and

Sandawe), a gene that regulates lipid content in human breast

milk (BTN1A1, Pygmy and Sandawe), and a gene involved in



Figure 3. Characteristics of S* in Real and

Simulated Data

(A and B) Neanderthal variants are not enriched in

top candidate regions for three African hunter-

gatherer populations (A) but are enriched in

top candidate regions from two European pop-

ulations (B).

(C) Box-and-whisker plot of TMRCA estimates for

top 0.5% of 50 kb regions in simulated data,

varying time of split with the archaic population

from 300 kya to 1000 kya; introgression was

simulated into Europeans (white boxes) and

Yorubans (gray boxes).

See also Figure S7.
vascular injury repair (FLNB, Pygmy and Sandawe). We find only

a single 100 kb window that is highly divergent in all three popu-

lations (located 41 kb downstream of PRDM5, a gene involved

in bone development; Galli et al., 2012), suggesting that each

African hunter-gatherer population has been subject to different

local selective pressures.

Genes in the top Pygmy-divergent regions of potential interest

based on function include TRHR (thyrotropin-releasing hormone

receptor involved in regulation of thyroid function), IFIH1

(involved in viral immunity), HESX1 (anterior pituitary develop-

ment),CYBRD1 (iron absorption), UGT2B10 (breakdown of toxic

endobiotic and xenobiotic compounds), and RGS3 (a GTPase-

activating protein gene that has been identified in other scans

of Pygmy-specific selection; Jarvis et al., 2012; Pickrell et al.,

2009). Additionally, multiple genes in Pygmy-divergent regions

are involved in spermatogenesis and fertility (ODF3, FSHR, and

SLC9A10). Functionally interesting genes in Hadza-divergent

regions include IL18R1/IL18RAP (interleukin 18 receptor and

accessory protein), CYCS (cytochrome c), CNR2 (cannabinoid

receptor), and VWF (a blood glycoprotein involved in hemostasis

and wound healing). Functionally interesting genes in Sandawe-

divergent regions include ALDH2 (aldehyde dehydrogenase),

EGLN1 (cellular response to hypoxia), HLA-DOB (MHC class II

protein), and ZPBP (zona-pellucida-binding protein).

To determine shared functional characteristics of genes within

200 kb of genomic regions enriched for high-LSBL SNPs, we

performed pathway analysis using DAVID, which includes

KEGG and PANTHER databases (Huang et al., 2009), for each

hunter-gatherer population. These analyses revealed that

immune-related pathways were overrepresented near Hadza-

divergent and Sandawe-divergent regions (p < 0.05 after Bonfer-

roni corrections), but not for Pygmy-divergent regions. However,
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these signals in the Hadza and Sandawe

were almost entirely driven by the

HLA region at 6p21 (Table S6). Addition-

ally, both Pygmy- and Hadza-divergent

regions are significantly enriched for

genes involved in olfactory transduction.

Pathway analysis also pointed toward

overrepresented retinol and porphyrin/

chlorophyl metabolism pathways in

Pygmies (p < 0.02 after Bonferroni
corrections) and a taste transduction pathway in the Sandawe

(p < 3.3 3 10�5 after Bonferroni corrections). The observation

that highly divergent regions in three different hunter-gatherer

populations are enriched for genes involved in smell or taste

suggests the potential evolutionary importance of these loci

with respect to local dietary adaptations.

Second, we identified high-frequency population-specific

variants in hunter-gatherer genomes, referred to as ancestry

informative markers (AIMs, defined here as sites with variant

allele frequencies >50% in a single hunter-gatherer sample

and absent from the other two hunter-gatherer samples and

dbSNP131). We identified <15,000 variants per population that

meet these stringent criteria (Figures 4D–4F). These AIMs are

not randomly distributed throughout hunter-gatherer genomes

(p < 10�5 for each population); instead, we observemultiple clus-

ters of AIMs in each population. AIM clusters may result from

population-specific adaptation as well as demographic factors

(Bürger and Akerman, 2011; Falush et al., 2003). The number

of AIMs is greatest for the Hadza (Figures 4D–4F), a pattern

that is consistent with population bottlenecks and greater

genetic isolation relative to the other hunter-gatherer popula-

tions. Pathway analyses of genes within 50 kb of AIMs suggest

that there is enrichment for starch and sucrose metabolism in

Pygmy genomes (p = 0.002, p = 0.247 after Bonferroni correc-

tions) and enrichment for melanogenesis in Sandawe genomes

(p = 0.0022, p = 0.168 after Bonferroni corrections, Table S6).

Identification of Candidate Genes for Short Pygmy
Stature
Analyses of LSBL and AIM clusters in the Pygmies are particu-

larly informative for identifying variants that play a role in popula-

tion-specific traits, including short stature. The largest Pygmy
9, August 3, 2012 ª2012 Elsevier Inc. 463



Figure 4. Divergent Genomic Regions between Hunter-Gatherers and Non-Hunter-Gatherers and Genomic Distributions of Ancestry

Informative Markers

Each dot represents a nonoverlapping 100 kb window. Colors correspond to different chromosomes. For each population, genes found in the top ten windows

are listed in bold. If no genes are present in a top ten window, the nearest gene is listed in normal font.

(A–C) Number of LSBL outliers (top 1%) per 100 kb window.

(D–F) Number of AIMs per 100 kb window. The 3p14.3 AIM cluster spans multiple 100 kb windows and includes the genesHESX1, APPL1, ASB14, andDNAH12.

See also Table S5 and Table S6.
AIM cluster spans 170 kb at 3p14.3 and contains a high

(70%) frequency haplotype in our sample of 10 genomes, with

44 Pygmy-AIMs in 100% linkage disequilibrium (chr3:57,211,
464 Cell 150, 457–469, August 3, 2012 ª2012 Elsevier Inc.
368–57,383,846; Figure 5A). Four genes lie within this cluster:

HESX1 (which encodes a homeobox-containing transcriptional

repressor that plays a critical role in development of the anterior



Figure 5. Pygmy AIMs, Allele Frequencies, and Height Associations

(A) Pygmy ancestry informative markers (AIMs) (green lines) located on chromosome 3. Green shading in the LSBL plot indicates genomic regions with an excess

of LSBL outliers near the 3p14.3 and 3p11.2 AIM clusters. Black triangles indicate SNPs genotyped in a larger sample of Pygmy and Bantu individuals.

(B) Allele frequencies of Pygmy AIMs genotyped in a broad sample of Central African Pygmy and Bantu individuals. Significant associations (p < 0.05) with height

are indicated for males (green asterisks) and for both sexes pooled together (black asterisks). Sample sizes are also listed (n = the number of genotyped indi-

viduals per population).

See also Table S7.
pituitary, the site of growth hormone synthesis and secretion),

APPL1 (which is involved in crosstalk between adiponectin and

insulin-signaling pathways), ASB14 (which encodes a SOCS

box protein), and the sperm motility gene DNAH12. Mutations

withinHESX1 in humans cause septo-optic dysplasia, combined

pituitary hormone disease, and/or isolated growth hormone defi-

ciency, resulting in short stature (Dattani, 2005). AlthoughHESX1

is expressed early in embryonic development in mouse and

plays a critical role in forebrain and pituitary development, it

continues to be expressed in adult pituitary in humans, where

it may play a role in the maintenance of anterior pituitary cell

types and function (Mantovani et al., 2006). Analysis of the

October 2011 release of the 1000 Genomes database (1000

Genomes Project Consortium, 2010) indicates that the 44

SNPs encompassing the Pygmy 3p14.3 AIM haplotype are in
complete LD and at very low frequency (<5%) in Yoruba and Lu-

hya populations and are absent from non-African populations.

Additionally, the Pygmy 3p14.3 AIM haplotype includes a previ-

ously identified nonsynonymous SNP within HESX1 (rs9878928;

Asn125Ser), which has been shown to be associated with pitui-

tary developmental defects and growth hormone deficiency

(Brickman et al., 2001; Gat-Yablonski et al., 2009). This nonsy-

nonymous SNP is at moderate frequency (Pickrell et al., 2009)

but on distinct haplotype backgrounds in other African popula-

tions. Interestingly, this Pygmy AIM cluster lies within a 15 Mb

region that shows high levels of differentiation between Pygmies

and neighboring Bantu populations and is associated with height

in Pygmies (Jarvis et al., 2012).

Anadditional cluster of 11PygmyAIMswas identifiedat 3p11.2

(chr3:87,657,988–87,681,226; Figure 5A). The closest gene,
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located �330 kb upstream, is POU1F1 (also known as PIT1),

which encodes a pituitary-specific transcription factor that plays

an important role in anterior pituitary development and regulation

of growth hormone gene expression (Hunsaker et al., 2012), and

mutationswithin this gene cause growth hormone deficiency and

short stature (Kiess et al., 2011). These SNPs, referred to as the

Pygmy 3p11.2 AIM cluster, are at >60% frequency in sequenced

Pygmies and at <12% frequency in African and non-African pop-

ulations from the 1000 Genomes Project. Both the 3p14.3

(HESX1) and3p11.2 (POU1F1) AIMclusters are embeddedwithin

4.2 and 3.3 Mb blocks, respectively, where every 100 kb window

contains an excess of LSBL outliers (the largest continuous runs

of increased LSBL in Pygmy genomes; Figure 5A).

To examine the geographic distribution and frequency of

PygmyAIMs,wegenotypeda panel of 57Pygmies (Baka, Bakola,

andBedzan ancestry) and 38 neighboringBantu individuals (Tikar

and Ngumba ancestry), as well as 5 Mbuti Pygmies and 5 Biaka

Pygmies, at 15 AIM SNPs on chromosome 3 (Figure 5 and Table

S7). We find that the HESX1-containing AIM cluster at 3p14.3 is

common (>5% frequency) in Baka, Bakola, and Bedzan Pygmies

from Cameroon and Mbuti Pygmies from the Democratic

Republic of the Congo and is absent from Cameroonian Bantu

populationsandBiakaPygmies fromtheCentralAfricanRepublic.

Among Baka, Bakola, Bedzan Pygmies, and a single Mbuti

Pygmy, the 3p14.3 AIM haplotype extends 172 kb (complete

LD), but in three other Mbuti Pygmies, this haplotype is broken

down (with 100% LD extending 97 kb from chr3:57273811 to

chr3:57370649). The presence of a highly divergent AIM haplo-

type in multiple Pygmy populations suggests that this haplotype

predates the divergence of Eastern and Western Pygmies.

Additionally, we tested for genetic associations between

height and 15 SNPs, located in the 3p21.31, 3p14.3, and

3p.11.AIM clusters, in a panel of Cameroonian Pygmy and Bantu

individuals (Figure 5A). Treating sex as a covariate, we find signif-

icant associations between height and two SNPs located at 48.7

Mb and three SNPs located at 87.6 Mb, �330 kb from POU1F1

(p < 0.03; Figure 5B and Table S7). Two of these SNPs remain

significant after conservative Bonferroni corrections (chr3:

48738472 and chr3:87681226). In addition, we find a significant

association between the PygmyHESX1 AIM haplotype at 3p14.3

and shorter height in males (p < 0.02; Figure 5B). When signifi-

cant associations are found, the alleles associated with shorter

height are all Pygmy AIM variants.

DISCUSSION

The deluge of data from next-generation sequencing has begun,

with massively large data sets of low-coverage whole-genome

sequences (1000 Genomes Project Consortium, 2010) and

high-coverage exome sequences (Tennessen et al., 2012) being

reported in thousands of individuals. Here, we described high-

coverage whole-genome sequencing of individuals from three

African hunter-gatherer populations, who harbor a large amount

of previously unknown genetic diversity that is inaccessible by

studying individuals of non-African ancestry or by focusing

only on protein-coding regions. Despite evidence of inbreeding

and a population bottleneck in the Hadza, high levels of genetic

diversity are maintained in all three hunter-gatherer populations.
466 Cell 150, 457–469, August 3, 2012 ª2012 Elsevier Inc.
Additionally, we found significant genetic divergence among the

three African hunter-gatherer populations, including between the

Hadza and Sandawe, who are geographically close (�150 km

apart) and have languages that contain click consonants,

demonstrating the continued need to broadly sample human

populations in order to comprehensively assess the spectrum

of human genomic diversity.

We find evidence of selective constraint near genes, and these

patterns are replicated in each hunter-gatherer population. We

also observe signatures of local adaptation in Pygmy, Hadza,

and Sandawe populations, including high locus-specific branch

lengths for genes involved in taste/olfactory perception, pituitary

development, reproduction, and immune function. These

genetic differences reflect differences in local diets, pathogen

pressures, and environments. Thus, Pygmies, Hadza, and San-

dawe have continued to adapt to local conditions while

sustaining their own unique cultures of hunting and gathering.

Evidence of Archaic Introgression
A striking finding in our data set is that compelling evidence

exists that extant hunter-gatherer genomes contain introgressed

archaic sequence, consistent with previous studies (Hammer

et al., 2011; Plagnol and Wall, 2006; Reich et al., 2010; Shimada

et al., 2007; Wall et al., 2009). We note that unambiguous

evidence of introgression is difficult to obtain in the absence of

an archaic reference sequence, which currently does not exist

and may never be feasible given the rapid decay of fossils in

Africa. Although we carefully filtered our data set in an attempt

to analyze only high-quality sequences (Supplementary Informa-

tion), it is possible that unrecognized structural variants or other

alignment errors could generate a spurious signature similar to

introgression. Encouragingly, we did not see an enrichment of

structural variation calls in our candidate introgression regions.

Additionally, through extensive simulations and analysis of Euro-

pean whole-genome sequences (Supplementary Information),

we have demonstrated that the signatures of introgression that

we observed are unlikely to be entirely accounted for due to

other aspects of population demographic history, natural selec-

tion, or sequencing errors. Moreover, we did not find strong

evidence that introgressed regions were clustered in the genome

more often than expected by chance (p > 0.05; Supplemental

Information). Nor did we find significant evidence that intro-

gressed regions were enriched in genic regions (p > 0.05); rather,

genic regions were significantly depleted for introgression in

several populations (Supplemental Information). Therefore, the

simplest interpretation of these data is that introgressed regions

in extant human populations represent neutrally evolving

vestiges of archaic sequences. In short, we find that low levels

of introgression from an unknown archaic population or popula-

tions occurred in the three African hunter-gatherer samples

examined, consistent with findings of archaic admixture in

non-Africans (Reich et al., 2010).

Short Stature, Pituitary Function, and Local Adaptation
in Western African Pygmies
Short stature in African Pygmies is thought to be an adaptation to

a tropical forest environment. Several possible fitness advan-

tages of short height have been proposed, including



thermoregulation, early cessation of growth as a trade-off for

early reproduction to compensate for shorter life expectancy,

easier mobility in a dense forest environment, and reduced

caloric requirements (Migliano et al., 2007; Perry and Dominy,

2009). Although stature in Europeans is a highly complex trait

(Lango Allen et al., 2010), the genetic architecture of this trait in

Pygmies may differ (Pygmy LSBL hits are not enriched for height

genes found in largely EuropeanGWAS, p = 0.888 for the top 268

LSBL windows, confirming Jarvis et al. [2012]. AIMs within and

near HESX1 and POU1F1 are strong candidates for the short

stature phenotype in Pygmies, together with previously identified

(chr3:45–60Mb region; Jarvis et al., 2012) and other as yet undis-

covered loci. The observation of long-range LD maintained in

diverse populations at these loci raises the possibility that unde-

tected inversions in these chromosome 3 regions play a role in

population differentiation and adaptation. Additionally, the

observation that third-chromosome AIM clusters exist at a very

low frequency in other African populations suggests that, if

selection has altered the frequency of AIM haplotypes in

Pygmies, then it may have acted on standing variation, which ex-

isted prior to the divergence of Eastern and Western Pygmies

from other African populations. Furthermore, AIM variants are

not included in commercially available genome-wide SNP

arrays, emphasizing the critical importance of whole-genome

sequencing for identifying variants of potential functional signif-

icance that may be geographically or ethnically restricted due

to distinct selection pressures and/or demographic histories.

In addition to the 3p14.3 (HESX1) and 3p11.2 (POU1F1) AIM

clusters, we have identified other candidate loci that may play

a role in local adaptation, height, and pituitary function in

Pygmies. These loci include TRHR (thyrotropin-releasing

hormone receptor), APPL1, FSHR, and genes associated with

Williams Syndrome (Supplemental Information). Overall, we

find that highly divergent regions of Pygmy genomes (as identi-

fied by LSBL scans) are enriched for genes that play a role in

pituitary function (p = 0.0082, c2 test of independence).

Together, these results point toward the possibility that devel-

opment and expression of hormones produced by the anterior

pituitary may play a central role in the Pygmy phenotype, poten-

tially influencing a number of traits, including growth, reproduc-

tion, metabolism, and immunity. Further studies of pituitary func-

tionanddevelopment in vitro andusing transgenic animalmodels

will be necessary to elucidate the importance of this system in

Pygmy development and physiology and to clarify the role of

variants within the 3p14.3 and 3p11.2 Pygmy AIM clusters.

Conclusions
In summary, this is one of the first population genomics analyses

to use high-coverage whole-genome sequencing. Our results

indicate the importance of whole-genome data for reconstruct-

ing human origins, identifying targets of local adaptation, recon-

structing demographic history, and identifying functionally

important variants for complex traits like height. We have identi-

fied many novel targets of natural selection that play a role in

immunity, reproduction, metabolism, and height in diverse

hunter-gatherer populations. As sequencing costs continue to

decrease, it will become feasible to do whole-genome

sequencing of increasingly larger sample sizes across ethnically
diverse global populations and to integrate genomic data with

functional studies using in vitro and in vivo models. Such studies

will shed light on human evolutionary history and the origin of

traits that make each of us unique.

EXPERIMENTAL PROCEDURES

Samples Used for Whole-Genome Sequencing

Prior to sample collection, informed consent was obtained from all research

participants, and permits were received from the Ministry of Health and

National Committee of Ethics in Cameroon and from COSTECH and NIMR in

Dar es Salaam, Tanzania. In addition, appropriate IRB approval was obtained

from both the University of Maryland and the University of Pennsylvania. The

genomes of five Pygmy (three Baka, one Bakola, one Bedzan), five Hadza

(plus two technical replicates), and five Sandawe individuals were sequenced

using the combinatorial probe-anchor ligation and DNA nanoarray technology

of Complete Genomics (Drmanac et al., 2010). The standard Complete Geno-

mics bioinformatics pipeline (Assembly Pipeline version 1.10 and CGA Tools

1.4) was used for sequence alignment, read mapping, assembly, and data

analysis. As additional quality control filters, we eliminated variants found in

poorly called regions (<20% missing data required) and sites heterozygous

in every individual (using a departure from Hardy-Weinberg proportions test).

Population Genetic Statistics and Functional Classification

of Variants

Considering only fully called sites, q and Tajima’s D were calculated. Derived

alleles were obtained using ancestral states inferred via maximum likelihood

(chimpanzee, orangutan, and rhesus macaque genomes were used as out-

groups), and FST was calculated using corrections for small sample size

(Weir and Cockerham, 1984). DNase I hypersensitive sites and footprints

were obtained from the ENCODE project (Rosenbloom et al., 2012). The

neutrality index for different site types was calculated as previously described

(Rand and Kann, 1996). Strength of purifying selection was analyzed in nine

different populations: African hunter-gatherers (Pygmies, Hadza, and San-

dawe), African farmers and pastoralists (YRI,MKK, and LWK) and non-Africans

(CEU, CHB, and JPT; three-letter HapMap population codes are listed in Fig-

ure 1). To control for sample size differences, we randomly chose four

genomes per population, and as per Lohmueller et al. (2008), we calculated

mean derived allele frequencies, proportion of ‘‘probably deleterious’’ variants

(PolyPhen-2), and relative numbers of nonsynonymous and synonymous vari-

ants per genome for each population.

Principal Component Analysis and Hierarchal Clustering

of Genomic Data Using a Neighbor Joining Tree

After randomly selecting 50,000 unlinked autosomal SNPs at fully called sites,

the prcomp() function in R was used for PCA. Individuals chosen for PCA

include 15 hunter-gatherers and 53 unrelated individuals from the Complete

Genomics public data release (because of cryptic relatedness, one Maasai

individual was excluded). We constructed a neighbor joining tree using Phylip

from 1,260,982 autosomal SNPs using the chimpanzee genome as an out-

group. The 61 individuals chosen for the neighbor joining tree were a subset

of those analyzed by PCA (PUR and MXL individuals excluded).

Tests of Ancient Admixture

To detect putatively introgressed archaic sequence, we employed a modified

version of the S* statistic (Plagnol and Wall, 2006). To mitigate potential con-

founding effects of mutation rate heterogeneity and paralogous variants,

CpGs and repetitive sequences (as defined by RepeatMasker) were removed,

and only fully called sites were considered. After filtering, 1.2 Gb of sequence

was retained. To enable comparisons between windows, we modify S* by

dividing by the square of the sequence length after filtering of each window.

S* also requires a target population (in which we search for introgressed

sequence) and a reference population. For African populations, we used

13 European genomes (9 CEPH and 4 Tuscan) as the reference, and for

non-African populations, we used 9 unrelated Yoruban genomes (each

genome sequenced by Complete Genomics).
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We calculated S* in 50 kb windows, using a step size of 20 kb. Windows

were removed from consideration if they did not contain at least 20 kb of unfil-

tered sequence, leaving�2 Gb of sequence. The top 350 windows (�0.4%) as

ranked by S* were considered as high-confidence candidates for introgres-

sion, which is likely a very conservative threshold as determined by extensive

coalescent simulations and STRUCTURE analyses.

TMRCA Estimates

TMRCA was calculated using a previously described approach (Hudson, 2007;

Thomson et al., 2000), which computes the average coalescent time from

nucleotide substitutions assuming that mutations are Poisson distributed.

This value is then converted to an estimate of TMRCA in years by computing

the divergence between chimpanzee and humans for this region (D) and setting

the molecular clock to 12My/D (assuming the divergence time between hu-

mans and chimpanzee is 6 million years). Human/chimpanzee alignments

were downloaded from the UCSC Genome Browser (reference versions

GRCb37 and panTro2, http://hgdownload.cse.ucsc.edu/goldenPath/hg19/

vsPanTro2/syntenicNet/).

Tests of Local Adaptation Using Locus-Specific Branch Lengths and

Identification of Ancestry Informative Markers

Locus-specific branch lengths (LSBL) were obtained by constructing evolu-

tionary trees for each polymorphic site in the genome, calculating genetic

distances (FST) between pairs of populations for each fully called site, and

calculating LSBL statistics for each hunter-gatherer population. LSBL outliers

are defined here as sites with LSBL statistics in the top 1% of the empirical

distribution for each population. The 268 (top 1%) most divergent 100 kb

windows in each population were found using a c2 test statistic (comparing

observed and expected numbers of LSBL outliers for each autosomal 100 kb

window). AIM clusters were operationally defined as sets of at least 10 AIMs

that are no more than 25 kb distant from other AIMs. For each population,

DAVID 6.7 was used to run pathway analyses (KEGG and PANTHER) on the

set of genes located near highly divergent LSBL windows (within 200 kb of

theof the top1%windows) andon theset of genes locatedwithin 50kbofAIMs.

Tests of Association of Pygmy AIM SNPs and Height

Fifteen Pygmy AIM SNPs were genotyped using TaqMan assays (Applied

Biosystems) in 95 Pygmy and Bantu samples analyzed in Jarvis et al. (2012)

and 10 additional Pygmy samples (5 Biaka and 5 Mbuti) from the Coriell Insti-

tute for Medical Research. Height data and identity by state data were avail-

able for 94 of the samples from Jarvis et al. (2012). Association between AIM

SNPs and height was determined using EMMAX, a mixed-model linear regres-

sion approach that corrects for both relatedness within populations and struc-

ture between them via a pair-wise matrix of genetic relationships among

individuals (Kang et al., 2010). Ancestry was treated as a covariate (using an

identity by state matrix generated from Illumina1M-duo genotyping), and

SNP-height associations were calculated for males, females, and both sexes

pooled together (with sex as a covariate).
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