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Abstract

Video data, generated by the entertainment industry, security and
traffic cameras, video conferencing systems, video emails, and so
on, is perhaps most time-consuming to process by human beings.
In this paper, we present a novel methodology for “summarizing”
video sequences using volume visualization techniques. We outline
a system pipeline for capturing videos, extracting features, volume
rendering video and feature data, and creating video visualization.
We discuss a collection of image comparison metrics, including the
linear dependence detector, for constructing “relative” and “abso-
lute” difference volumes that represent the magnitude of variation
between video frames. We describe the use of a few volume vi-
sualization techniques, including volume scene graphs and spatial
transfer functions, for creating video visualization. In particular,
we present a stream-based technique for processing and directly
rendering video data in real time. With the aid of several exam-
ples, we demonstrate the effectiveness of using video visualization
to convey meaningful information contained in video sequences.

CR Categories: I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—Video Analysis; I.3.8 [Computer Graphics]: Ap-
plications; I.4.10 [Image Processing and Computer Vision]: Image
Representation—Volumetric

Keywords: Video visualization, volume rendering, video surveil-
lance, change detection, image-swept volume.

1 Introduction

In February 2002, it was reported that there were 25 million CCTV
cameras in operation worldwide [Wakefield 2002]. In some parts of
the world, such as the United Kingdom, it is estimated that on av-
erage a citizen is caught on security and traffic cameras 300 times a
day. Along with digital camcorders, digitized movies, video confer-
encing and video emails that are also making their ways into every-
day life, it is almost certain that there will be a multi-fold increase
in video data in the coming years.

A video is a piece of ordered sequential data, and viewing videos
is a time-consuming and resource-consuming process. For exam-
ple, an increasing problem in the security industry is the ratio of
surveillance cameras to security personnel. Imagine that security
officers have to review an overnight collection of video tapes when
they arrive at their desks in the morning. It is simply not possible
for any security officer to study a large number of video tapes every-

∗e-mail: {csgareth, m.chen}@swansea.ac.uk

day. It is hence highly desirable to develop methods for extracting
and highlighting interesting features in video sequences.

Automated video processing is a research topic that is of signifi-
cant importance to the security and entertainment industries. There
is a rich collection of techniques for analyzing imagery data, and for
computing various statistical indicators. However, there is a general
lack of effective techniques to convey complex statistical informa-
tion intuitively to a layperson such as a security officer, except using
line graphs to depict 1D signal levels. Most of the techniques have
not reached such an intelligent level that they can be relied upon to
make decisions in place of a human.

Figure 1: Visualization of four experimental videos based on dif-
ferent scenarios, namely walking, running, mischief and burglary.

http://www.cs.swan.ac.uk/~cschenm/ftp/Vis2003.pdf


In this paper, we present a novel approach to the handling of a
very large amount of video data. We propose to employ volume
visualization techniques for “summarizing” video sequences, and
to render video volumes into appropriate visual representations that
can be used to assist in the decision making processes of a human
operator. For example, every morning, security officers can be pre-
sented with one or a few visualizations for each surveillance camera
that has been monitoring a premise during the previous night. Fig-
ure 1 shows the visualization of four experimental videos of differ-
ent staged activities that simulate some typical scenarios which may
take place in a university building at night. From the visualizations,
one can observe the levels and patterns of the activities recorded.
We believe that such visualizations can convey much more informa-
tion, especially spatial information, than a few statistical indicators
or line graphs. With carefully prepared visualizations, the human
vision system, perhaps the most intelligent vision system, is able
to become accustomed to certain kinds of “normal” visual patterns,
and react to unusual levels or patterns of activities that need further
investigation. Video visualization can also be used to assist in pro-
cessing videos, such as video segmentation, and video annotation.

Video data is a type of volume data. Hence the key to our ap-
proach is the volume visualization technology, which has been suc-
cessfully and extensively deployed in medical imaging and scien-
tific visualization. Localized statistical indicators of video data can
also be represented in a volumetric form. This conceptual similarity
allows us to utilize some powerful volume visualization and volume
graphics techniques, such as, volumetric scene graphs, opacity and
color transfer functions and spatial transfer functions.

In Section 2, we will briefly review the previous work on video
processing, focusing on methods for change detection, and recent
work on video cube rendering. In Section 3, we will propose three
hypotheses and outline our contributions in this context. In Sec-
tion 4, we will consider a conceptual pipeline for capturing, man-
aging, processing, rendering and visualizing videos. We will briefly
describe the design and development of a prototype system, called
V3 (short for Volume Visualization for Videos). In Section 5, we
will discuss various ways for extracting and creating feature vol-
umes, and we will focus on several image comparison metrics for
detecting changes in video sequences. This is followed by Sec-
tion 6, where we will describe the use of a set of volume modeling
and rendering techniques for video visualization. In Section 7, we
will present some visualization results and discuss the effectiveness
of different change detection methods for presenting visual features
in video visualizations. We will offer our concluding remarks and
an indication of future work in Section 8.

2 Related Work

In order to overcome the sequential and time-consuming process of
viewing video [Yeo and Yeung 1997], a noticeable amount of effort
has been made, largely by the image processing and vision com-
munity, to devise methods for processing video data automatically.
One of the research focuses is change detection. A common goal
in change detection is to ascertain image differences that relate to
object changes in a scene. [Narasimhan et al. 2002] outlined many
factors, such as reflectance, illumination and atmospheric condi-
tions, which might complicate such a process. A variety of methods
were proposed, including thresholding [Rosin 1997], different im-
age comparison metrics [Young et al. 1999; Zhou et al. 2002], mor-
phological filters [Stringa 2000], statistical models [Brocke 2002],
combined audio-visual analysis [Tsekeridou et al. 2001], linear
dependence models [Durucan and Ebrahimi 2001a; Durucan and
Ebrahimi 2001b], color edge detection [Cavallaro and Ebrahimi
2001], and homomorphic filtering [Toth et al. 2000]. Many re-
searchers studied video processing in the context of video surveil-
lance [Collins et al. 2000], for instance, monitoring crowds [Yin

et al. 1996], monitoring vehicles [Cutler et al. 1999], and recogniz-
ing pedestrians [Vannoorenberghe et al. 1997].

However, two problems remain in automatic video processing:
(i) How will the results of video processing, such as detected
changes, be communicated to human operators? Statistical results
are not easily comprehensible, while sequences of difference im-
ages again require sequential viewing. (ii) How reliable will these
automatic techniques be in different circumstances? It is generally
difficult to develop an automatic video processing technique that
can adapt to different situations with little or no calibration.

An alternative approach is to help users obtain an overview of
a video by extracting interesting information from video data, and
present the information to users in a meaningful way. One sug-
gestion was to use browsing techniques for viewing a video like
flipping through a book [Yeo and Yeung 1997]. A number of re-
searchers noticed the structural similarity between video data and
volume data commonly seen in medical imaging and scientific
computation. For the latter, there is a large collection of meth-
ods [Lorensen and Cline 1987; Levoy 1988] that enable 3D infor-
mation in a volumetric dataset to be selectively rendered into a sin-
gle 2D image. Attempts were made to render videos as inter-related
image frames by [Hertzmann and Perlin 2000], and as volume data
sets by [Klein et al. 2002]. Both focused on non-photorealistic ren-
dering for creating an artistic visual experience, and both treated
videos as solid video cubes or cuboids. There was also a recent
report on an initial investigation, in the context of sign language
analysis, into the volumetric representation of object movement in
a simple video sequence [Hajek 2002].

3 Our Hypotheses and Contributions

Considering video visualization as a new scientific subject, we pro-
pose the following three hypotheses:

1. Video visualization is an (i) intuitive and (ii) cost-effective
means of processing large volumes of video data.

2. Well constructed visualizations of a video are able to show
information that numerical and statistical indicators (and their
conventional diagrammatic illustrations) cannot.

3. Users can be accustomed to visual features depicted in video
visualizations, or can be trained to recognize specific features.

To ascertain these hypotheses will no doubt require a substantial
amount of scientific investigation and technical development. As no
previous work on this subject was found in the literature, we hope
this paper will serve as a brave path-finder. Our main contributions
include:

• We have initiated an original investigation into the subject,
and offered a general solution by utilizing volume visualiza-
tion techniques, focusing on difference volumes, spatial and
opacity transfer functions, and stream-based rendering.

• We have designed and implemented a video visualization
pipeline by integrating a collection of techniques, and we have
demonstrated that it is technically feasible to offer video vi-
sualization as a practical tool to applications such as video
surveillance and video segmentation.

• We have conducted several case studies, including television
programmes, and indoor and outdoor video sequences. The
results of these studies have provided the first set of evidences
to support hypotheses (1) and (2).

For the third hypothesis, we believe that some comprehensive user
studies are necessary, but we are confident about the likelihood of a
positive conclusion.



4 Video Visualization Pipeline

A video visualization pipeline is a data flow pipeline, consisting of
a series of functional components, namely video capture ⇒ data
communication ⇒ data management ⇒ video processing ⇒ video
visualization. Each component may accommodate a range of mech-
anisms and techniques. For example, the video capture component
may capture videos from a set of security cameras, or be a tool that
receives video emails. The video processing component may house
a collection of image processing techniques and statistical methods.

V3 – Volume Visualization for Videos – is a prototype system
designed to demonstrate the technical feasibility of such a pipeline.
Its primary design objective is to facilitate quick analysis of recently
archived video data, such as in the security industry, through the use
of volume visualization. This objective is reflected strongly in the
design of the V3 system architecture and user interface (Figure 2).
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Figure 2: The system architecture and UI of V3.

V3 allows multiple sites to be monitored concurrently in real-
time from a single control center. At each remote site, we have a
set of cameras that can be interactively controlled (e.g., EVI-D31/B
Sony video cameras). The imagery data captured by the cameras
are combined by, and transported through, an MV87 Quad box,
with which an individual or combined view can be selected at the
control center. The main software system of V3 is expected to be in-
stalled in a control center, where users can interactively control the
remote cameras, select views, setting up recording processes, and
most importantly “visualizing” the captured data in many forms.

There are three major algorithmic modules in the software
framework of V3, namely feature processor, statistical analyzer
and volume renderer. The feature processor module consists of a

number of image processing filters and image comparison metrics.
The module takes the raw imagery data as inputs, and generates
appropriate outputs for the statistical analyzer and volume renderer
modules. The statistical analyzer takes inputs from the feature pro-
cessor module and produces numerical statistical indicators, which
are then forwarded to the visualization module where the statistical
indicators are presented as 2D charts (such as line graphs). The vol-
ume renderer module handles only volumetric data, which includes
the raw video data as well as that generated by the feature processor
module. This modular design gives us the flexibility to replace ex-
isting metrics, filters and algorithms, and add new ones, whenever
necessary.

One of the design objectives of V3 is to provide novice users with
some intuitive but powerful visual representations that facilitate a
quick decision-making process. After having experimented with
many visual designs, we selected five representations as standard
options in V3 for the default display as shown in Figure 3.

Figure 3: A video is a volumetric object. V3 provides five standard
visual representations of a video object.

The Microsoft Visual C# .NET development environment has
been used to implement the main software components of V3,
though many filters, metrics and algorithms were first implemented
in C and tested in a Linux environment.

5 Creating Feature Volumes

A video data set V is composed of a series of images I1, I2, . . . , Itn,
where all images are normally of the same resolution xn × yn.
Hence V can be considered as a collection of voxels that are or-
ganized into a 3D regular grid as:

V = {vx,y,t |1 ≤ x ≤ xn,1 ≤ y ≤ yn,1 ≤ t ≤ tn}.

Each voxel v is addressed by its grid coordinates (x,y, t), and is as-
sociated with one or more scalar values representing imagery prop-
erties such as intensity and color components. In volume visualiza-
tion, such a structure is commonly referred to as a volume data set,



3D raster or a volume buffer. Because the temporal dimension t is
of a different nature from that of the spatial dimensions x and y, V
should normally be manipulated as an anisotropic grid, whenever
the spacing between neighboring voxels is a matter of interest.

The primary objective of video visualization is to extract mean-
ingful information from original video data sets, i.e., solid video
cuboids. In principle, the extracted information can be represented
using any data type. In the context of this work, we concentrate our
discussions on information that is suited to volumetric represen-
tations. We conveniently call a volumetric representation of such
extracted information a feature volume.

Given an RGB video volume V , a feature volume F can be con-
structed using a filter as F = Θ(V ). In general, such a filter may
operate on a sub-domain of V , and generate a sub-domain of F .
Some example filters considered in this work include:

• color space converters – Each filter converts a video volume
in the RGB space to that in an alternative color space such as
YIQ and HSV.

• opacity filters – Each filter creates an opacity feature volume
that highlights or de-highlights particular components of an
RGB volume. Figure 4 shows a visualization supported by
such a filter that determines the opacity of each voxel based
on the hue values and edge properties in a small window as-
sociated with that voxel.

• change detection filters – Each filter typically creates a feature
volume that represents the magnitude of temporal changes in a
video volume V . This is the focus of the following discussions
in the rest of this section.

Figure 4: The application of an opacity filter.

We have considered two types of temporal changes, namely rel-
ative difference between consecutive images in V :

Fr = {∆(I1, I2),∆(I2, I3), . . . ,∆(Itn−1, Itn)}

and absolute difference between a reference frame R and each frame
in V :

Fa = {∆(I1,R),∆(I2,R), . . . ,∆(Itn,R)}

where Fr and Fa are the corresponding feature volumes, and ∆ is
an image comparison metric that returns a grey-scale image repre-
senting the magnitude of changes between two input images. Fr
typically gives an indication of the pace of movement or changes,
and for instance, it can be used to depict the boundaries between
different segments in a TV news programme and the speed of cars
on a road. Fa usually gives a good indication of the scale of occu-
pancy, such as the size of a pedestrian crowd in a shopping center.
We will further examine the use of these two types of feature vol-
umes, with some examples, in Section 7.

There is a large collection of image comparison metrics in the lit-
erature [Young et al. 1999; Zhou et al. 2002]. We have studied the
effectiveness of several image comparison metrics in the context of
a number of case studies, three of which are discussed in this paper.
They are (i) a short TV news programme of 1262 frames recorded
from a terrestrial broadcast (Figure 3), (ii) a set of indoor experi-
mental videos, each of 90 seconds and 1770 frames (Figure 1), and
(iii) a 12-hour outdoor surveillance video of a university car park of
662 frames (Figure 5). All frames are of the same resolution, i.e.,
352×288.

A (06:30:00) B (07:34:00)

C (12:23:49) D (18:20:00)

Figure 5: Four images extracted from an outdoor surveillance video
of a car park. Image B will be used as a reference image in com-
puting absolute differences in Figure 6.

All our image comparison metrics have a built-in RGB-to-YIQ
converter. They take RGB images as the inputs, but computes dif-
ference in the YIQ space, often using only the luminance channel
Y. In order to differentiate the effectiveness of video visualization
in depicting features to users, and that of computer vision in iden-
tifying features for users, it is important to consider some less so-
phisticated, or algorithmically trivial metrics. Among many metrics
studied, four have been found interesting. They are:

• Y-DIF(I1, I2) – simple difference metric – It takes two input
images, I1 and I2, and computes a grey-scale output image
O where each pixel represents the linear distance between the
Y-values of two corresponding pixels in I1 and I2 respectively.

• Y-NMSE(I1, I2) – normalized mean squared error metric – In-
stead of the linear distance, it computes the squared distance
(i.e., error) between the Y values of each pair of correspond-
ing pixels. The name of the metric is inherited from the cor-
responding statistical indicator that calculates the mean of the
squared errors of all pairs of pixels in two images. In addition,
the Y-component of each input image is normalized based on
its mean value and standard deviation prior to the computation
of mean squared errors. This may reduce the luminous differ-
ence caused by different lighting and atmospheric conditions.

• IQ-DIF(I1, I2) – color difference metric – It computes the an-
gle between the IQ vectors of the two corresponding pixels in
I1 and I2, and sets the corresponding pixel value in O to the
angle. It gives a result similar to that obtained by computing
the hue difference in the HSV space.



• Y-LDD(I1, I2) – linear dependence detector (LDD) – We use
the improved version proposed by [Durucan and Ebrahimi
2001b]. This is an illumination invariant change detector, and
it examines the changes from a reference image R = I2 to an-
other image I1 using a small window. Given a k× k window
centered at (x,y), for each of the two input images, we place
the Y values of all pixels in the window into a vector, that
is, vector M = (m1,m2, . . .) for image I1, and N = (n1,n2, . . .)
for R. We normally increase the values in M and N by one to
ensure no zero component is in either vector. Based on the al-
gebraic properties of the two vectors, the level of dependence
between the two vectors can be measured by:

c =

(

1

k2

k2

∑
i=1

mi

ni

)2

−
1

k2

k2

∑
i=1

mi

ni

When c = 0, Y-LDD detects no changes; when c < 0, it detects
illumination changes; when c > 0, it detects other changes,
including object changes.

Figure 6 shows the application of the above four metrics when
comparing images in Figure 5. As image B represents an empty
car park in a reasonably good lighting condition, it is chosen as a
reference image. Images A, C and D were chosen as they exhibit
different levels of activities and different lighting conditions. The
value ranges of all resultant images have been re-mapped to the [0,
255] domain for maintaining a fair comparison in the evaluation.
All resultant images have been inverted for clearer printing. Hence,
in Figure 6, the darker the color is, the higher the level of changes
detected.

Y-DIF(A,B) Y-DIF(C,B) Y-DIF(D,B)

Y-NMSE(A,B) Y-NMSE(C,B) Y-NMSE(D,B)

Y-LDD(A,B) Y-LDD(C,B) Y-LDD(D,B)

Y-QDIF(A,B) Y-QDIF(C,B) Y-QDIF(D,B)

Figure 6: Images A, C and D in Figure 5 are compared with the
reference image, B, using four different metrics.

From all three figures, we can see that IQ-DIF does not perform

as well as what one would expect. This is partially due to the fact
that all images were JPEG-compressed by the image capturing de-
vice. The compression seems to be optimized for luminance at the
cost of redistributing colors within small regions across the image.
IQ-DIF is also not so effective when handling noise in a video se-
quence. It performed poorly when it was applied to the TV news
programme recorded from terrestrial broadcast.

Y-DIF seems to be affected badly by the lighting conditions, and
has a lot of difficulties in distinguishing object changes from lu-
minance changes. Y-NMSE has substantially reduced the level of
false detection of changes, but it suffers from the fact that global
normalization is influenced by dynamic changes such as the move-
ment of cars and office lights, in the scene. In other words, it is not
able to maintain a consistent correction of lighting conditions. For
Y-LDD, we used a 3×3 window for the above tests. It has shown its
effectiveness in illumination-invariant change detection. The criss-
cross yellow lines painted on the ground is hardly detected in all
three resultant images of Y-LDD. The pixel values of the images
returned by Y-NMSE and Y-LDD are normally very low. Appro-
priate re-scaling is thus necessary prior to the generation of output
images. In practice, it is essential to apply a constant scaling factor
for an entire video sequence.

6 Rendering Video/Feature Volumes

A video volume and its associated feature volume(s) can be
treated exactly as conventional volume data sets during render-
ing. From such data sets, we can construct a spatial object o,
which is composed of a set of geometrically-bounded attribute
fields (A0,A1, . . . ,Ak) [Chen and Tucker 2000]. Let R denote the
set of all real numbers, and E

3 denote 3D Euclidean space. Each
attribute field is a scalar field function A : E

3 → R. A typical raw
RGB video data set is thus a discrete specification of a spatial ob-
ject with three attribute fields, namely red, green and blue channels.
Its bounding box in effect defines a solid video cuboid, and its vol-
ume contents define a solid texture. In V3, each spatial object o
is defined with four attribute fields, (O,R,G,B), namely opacity,
red, green and blue. For example, the spatial object o shown in
Figure 3 is in fact associated with a uniform, fully opaque, opacity
field within the bounding volume.

Opacity and color transfer functions (which are often referred to
simply as transfer functions) are an intrinsic part of volume visu-
alization. We may use color transfer functions to indicate different
magnitudes of changes as in Figure 1, where red depicts a higher
level of change detected and green depicts a lower level. In this
case the color fields of each spatial object is defined upon a fea-
ture volume. We may use opacity transfer functions to remove or
de-highlight parts of a spatial object. As shown in Figure 4, we
can assign a feature volume to the opacity field of a spatial object,
which turns the parts with blue as the dominant wavelength into
translucent amorphous matter. In the visualization, it is noticeable
that the blue background behind the newscaster has almost disap-
peared from the video volume.

A technique called image-swept volume [Winter and Chen 2002]
has been employed to facilitate the horseshoe view, which in gen-
eral conveys more information than the other four views if they
are constrained by the same display space. Instead of deforming
a video volume during modeling, we associate the object with a
spatial transfer function, Ψ : E

3 → E
3. Ψ defines a sweeping trans-

formation for every point p in E
3. Ψ is used to modify the sam-

pling position of a scalar field A during rendering in the form of
A′(p) = A(Ψ(p)). Rendering of a spatial object using a ray casting
algorithm is essentially a discrete sampling process for evaluating
scalar fields. With Ψ, an evaluation of A′ at p implies the evaluation
of A at q = Ψ(p).



The spatial transfer function for the horseshoe view is a semi-
circular sweep. Consider our video volume is defined in a normal-
ized coordinate system of a domain [0,1]3. Let r =

(

(px −0.5)2 +

(py −0.5)2 +(pz −0.5)2
)1/2 and φ = arctan(pz −0.5, px −0.5) ∈

[−π,π]. We have:

qx =

{

2−4r r ∈ [0.25,0.5]

0 r /∈ [0.25,0.5]
qz =

{

1−φ ÷π φ ≥ 0
0 φ < 0

qy = 1− py

[Chen et al. 2003] recently demonstrated that spatial transfer func-
tions can be defined as spatial objects, and they can be integrated
into a volume scene graph [Chen and Tucker 2000] in the same way
as conventional spatial objects. As V3 is a special purpose visual-
ization system, we purposely moderate its complexity and memory
consumption by not equipping it with the facilities for building an
arbitrary scene graph. Instead, we have a reconfigurable object tree
with a fixed set of built-in tree nodes. For the five standard visual
representations shown in Figure 3, we have (a) an internal node with
a union operator, (b) an internal node with a spatial transfer opera-
tor, (c) a leaf node for a video object, which a video volume and/or a
feature volume may be loaded onto, (d) a leaf node for a box frame,
and (e) a leaf node for an object that defines a sweeping function
using a set of scalar fields. Depending on the view selection and the
requirement of the box frame, the system reorganize the object tree
into one of the four optional configurations (Figure 7).
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Figure 7: Four configurations of object trees in V3.

A stream-based rendering algorithm can benefit video visual-
ization enormously. Video data sets and their feature volumes can
be excessively large, containing thousands of frames. Such data
sets not only consume a huge among of memory, but also put a
lot of strain on the rendering speed largely due to memory swap-
ping. However, in many applications, such as surveillance, videos
are coming in streams as image frames. It is hence desirable to
start the rendering process as soon as the first frame arrives, and to
continue the construction of a visualization progressively following
the receipt of each new frame. This strategy is well suited for con-
structing summary visualizations from overnight video recordings.

With the ray casting method, we need to build both front-to-back
and back-to-front rendering into the stream-based algorithm, be-
cause of the order of arriving video frames. Consider the five visual
representations in Figure 3. The vertical view and the downward
diagonal view require back-to-front ray casting, whilst the upward
diagonal view requires front-to-back ray casting. The horseshoe
view requires both mechanisms, with front-to-back on the left and
back-to-front on the right. Similarly the horizontal view also re-
quires both mechanisms.

In general, for an arbitrary view, one may determine the ray di-
rection for each pixel in an initialization stage where the ray-box
intersection is computed. One must note that it is possible for a

ray to enter a horseshoe object twice, if we allow arbitrary viewing
positions. Fortunately, the ray casting direction will always remain
the same for both intersections. However, this observation cannot
be generalized to arbitrary spatial transfer functions.

For the standard viewing options in V3, the ray casting direc-
tion for each pixel, and the ray-box intersection points, are pre-
determined and stored in a set of system files. The data is loaded
into a “t-buffer” before rendering starts. The t-buffer also maintains
the current rendering status, including the accumulated opacity and
color, and the point on the ray where the last casting paused. The
algorithm is outlined below:

initialize TBuffer;

NumRenderedPixels := 0;

while NumRenderedPixels < TotalPxels do
wait for new video frames;

for each pixel P do
End := RayCast(TBuffer[P]);

if End = TRUE then
NumRenderedPixels := NumRenderedPixels + 1;

end-if;
end-for
display intermediate visualization;

end-while;
for each pixel P do

add background color;

end-for;
display final visualization;

With this stream-based algorithm, the system needs only to keep
a small collection of “active” frames of an incoming video stream
and its feature stream(s) in an in-core volume buffer as shown in
Figure 8. The rendering of the each intermediate visualization is on
average less than 0.2 second on a 2 GHz Pentium station.
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Figure 8: Dynamic management of the in-core volume buffer.

7 Results and Remarks

Referring to the three case studies mentioned in Section 5, we have
examined the effectiveness of the image comparison metrics in con-
junction with video visualization. Here we report a selection of our
tests and findings.

One common task in video segmentation is to identify transition
frames in a video and select a representative image for each seg-
ment. Any automatic algorithm for the task will face various chal-
lenges such as blending between segments, fast camera movement
and flash photography. It is most likely that its parameters would
also require frequent adjustments for different scenes. Hence errors
are inevitable. For example, we applied Y-DIF, Y-NMSE and Y-
LDD metrics to the TV news video in Figure 3 to compute Fr, the
relative difference between consecutive images in the video vol-
ume. Figure 9 shows a line graph for each metric depicting the
mean intensity of every frame in Fr. All three metrics have resulted



in some errors, in comparison with the transition frames determined
manually. Verifying the correctness of such a process usually re-
quires the viewing of the video sequentially, which nevertheless
undermines the advantages of using an automatic algorithm.

Figure 9: Line graphs depicting the change-detection results pro-
duced by Y-LDD, Y-NMSE, Y-DIF, and human decision. A visual-
ization (based on Y-NMSE) of transition frames and representative
images can help identify errors in the numerical results.

Video visualization can provide an effective means to the verifi-
cation, for instance, using the 3D visualization in Figure 9, which
shows the transition frames (in the form of �) identified using Y-
NMSE and representative images in individual segments. The bot-
tom quarter of the video is also displayed to offer a visual cue for
different segments. By examining the visualization, we can observe
some anomalies that indicate possible errors. These include (a) the
sharing of a representative image by two segments, (b) a possibly
over-segmented region featuring similar color patterns, and (c) a
missing representative frame after the “presenter” segment (cf. the
presenter on the left). When future development enables interactive
navigation through such a visualization, identifying these errors in
video segmentation will become even easier.

In Section 5, we have found that Y-LDD have shown to be capa-
ble of detecting object changes in different illumination conditions,
and it has generally performed better than other metrics with out-
door images. Y-NMSE was also shown to be reasonably reliable.
Figures 10 shows the visualizations of relative and absolute differ-
ence volumes of the car park video, which were computed using the
Y-LDD and Y-NMSE metrics respectively. All these feature vol-
umes were visualized on their own with a color transfer function,
indicating the scale of changes (i.e., red for large intensity changes,
green for medium and blue for small).

The visual representations of the relative difference indicates the
level of activities during the recording period, that is, movement of
cars. The similar pattern of activities are shown in the visualizations
created with both Y-LDD and Y-NMSE. In general a feature volume
of relative difference created by Y-LDD may contain more noise
than that by Y-NMSE as Y-NMSE seems to be more effective in

relative, Y-LDD relative, Y-MNSE

absolute, Y-LDD absolute, Y-MNSE

Figure 10: The visualization of relative and absolute difference vol-
umes computed from the car park video sequence.

dealing with images taken in similar lighting conditions.
The feature volumes showing absolute difference have resulted

in interesting visualizations, where the swept lines indicate many
stationary cars in most parts of the recording period. Such a visu-
alization shows the level of usage of the car park, with little occu-
pancy in the early morning, a full car park during the day, and some
dynamic activities in the evening when staff were leaving for home
and evening students were coming to the university. The Y-NMSE
resulted in a slightly more noisy visualization, as it cannot remove
unwanted features such as the criss-cross yellow lines as effectively
as Y-LDD. On the video, there was a major change of the weather
condition during the afternoon, and this change is clearly visible
from both visualizations A line graph depicting mean intensity of
each frame could easily misinform us of some extra activities or oc-
cupancy. However, in the visualizations, it is much easier to discard
such changes as the amorphous green patterns are perpendicular to
the time line.

We have found that Y-LDD and Y-NMSE did not perform as
effectively as Y-DIF for the indoor experimental videos. All visu-
alizations in Figure 1 were generated with absolute difference de-
tected by Y-DIF. Some interesting features can be identified from
such visualizations, once an observer is accustomed to some reg-
ular patterns. For example, as shown in Figure 11(a), after a man
ran up the corridor, some changes to papers on the noticeboards
remained, and such changes were shown as sweeping lines in the
corresponding visualization (similar to parked cars). A wavy pat-
tern in Figure 11(b) was largely the result of the arm movement of
the lady walking up the corridor. The opening of an office door
also has a noticeable pattern as shown in Figure 11(c). In fact, one
can find a few similar patterns in Figure 1, all resulting from the
opening of the door on the left of the scene.

8 Conclusions

We have described an approach that can effectively “summarize”
a video sequence and can be deployed to deal with the problem
of rapid explosion of video data. We have shown that video data
can be processed and visualized in the same manner as other volu-
metric data. We have examined several image comparison metrics,
and have found that in different circumstances, some perform bet-
ter than others. In well-controlled environments, such as the ITN
news video and the indoor experimental videos, simple Y-DIF can
be used effectively to create feature volumes. In more dynamic
conditions, Y-LDD and Y-NMSE performed better. With the aid of



(a) changes that remain for a period.

(b) walking with moving arms

(c) door opening

Figure 11: Visual patterns in the visualizations for the experimental
videos, where corresponding features are manually highlighted.

three sets of examples, we have provided the first set of evidences to
support two of the three hypotheses outlined in Section 3, and have
demonstrated the usefulness of video visualization in applications
such as video surveillance, and video processing and labeling.

Our future work will be focused on further investigation into im-
age comparison metrics in order to improve the effectiveness of
change detections in outdoor conditions, and the capabilities of de-
picting more features.
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