Arterial Performance Measures, Data Sources and Application

September 12, 2016 ITS Carolinas Annual Meeting

I95 Corridor Coalition / UMD CATT / TRAFFAX

ITS Carolinas – 2016 Annual Meeting

September 12, 2016

Work Shop Order

Collecting Arterial Performance Data

- Outsourced Probe Data
- Re-identification Data
- High Resolution Controller Data

Arterial Performance Measures

- Quality of Flow signal coordination
- Capacity utilization cycle/phase failures
- Travel time and travel time reliability

Outsourced Probe Data Recommendations (Jan 2015)

✓ RECOMMENDED	SHOULD BE TESTED	
= 1 signal per mile	 1 to 2 signals per mile 	 >= 2 signals per mile
• AADT > 40,000 vpd (2-way)	 AADT 20K to 40K vpd (2-way) 	 AADT < 20K (2-way) - low volume
 Limited curb cuts 	 Moderate number of curb cuts 	 Substantial number of curb cuts
Principal Arterials	Minor Arterials	Major Collectors
Likely to be accurate	Possibly accurate, test	Unlikely to be accurate

- Data quality most correlated to signal density
- Consistently over-reports speed during congestion
 - As probe data improves, delay will increase
- Other issues / challenges:
 - Challenged by queuing, multi-cycle failures
 - Follows faster mode in bi-modal traffic
 - Insensitive to signal timing changes
- Improvement anticipated ...

Full Report posted to the I-95 Corridor Coalition Website

Results since 2015 (1/4)

Results since 2015 (3/4)

Results since 2015 (2/4)

Results since 2015 (4/4)

Vehicle Probe Arterial Data Quality

- Statistically significant movement since 2015
- Anticipate updated report later in 2016

 Contacts Masoud Hamedi and Elham Sharifi
- 'Slowdown Analysis' to become part of standard VPP reporting

VPPII Data Validation

- Three data vendors, HERE, INRIX and TomTom
- Data Collection:
 - Validation balanced, but emphasized arterials
 - Approximately monthly
 - Moving toward Bluetooth + WiFi
- Individual validation reports are produced for each state & each vendor
- Assessing additional quality metrics

VPPII Data Validation

- Additional performance measures are monitored including:
 - **Data availability:** to check for time lapses in the data
 - Real-time share: indicating the proportion of real-time data according to the criteria set by each vendor
 - Latency: the time offset between the time that a change in traffic pattern occurs, and the time that it is reported by probe data.
 - The current latency measurement method is only applicable to freeways

ITS Carolinas – 2016 Annual Meeting

September 12, 2016

Other VPP and Probe Initiatives

- Real-time Volume and Turning Movement from Probe Data
 - UMD CATT / NREL / INRIX / HERE / TomTom
 - Calibration Network from I95 Coalition members count stations
 - Serves as 'Base Stations' to estimate network wide volumes
- TMC White Paper 2016, webinar May 11

Outsourced Probe Data & APM Framework

- Proposed Top Level Arterial
 - **Performance Measures**

I95 Corridor Coalition / UMD CATT / TRAFFAX

ITS Carolinas – 2016 Annual Meeting

Roadmap for Arterial Management Systems

- Arterials perform fundamentally different than Freeways
- THEN, continuous monitoring/measurement was infeasible
 - Performance had to be modeled or periodically sampled.
- NOW, technology-enabled continuous, ubiquitous performance assessment
 - Vehicle probe, Re-identification, High-Resolution Controller data
- DATA perspective, we are NOW (2016) with arterials, where we were in 2008/9 with freeways
- Significant opportunity significant challenge
 - Common language, lexicon, tools, performance measures
 - Bridge culture divide between traffic, planning and operations
 - Legacy thinking and approaches

Technologies Enabling Arterial Management Systems

Re-identification

High-Res Signal Data

Both enabled by consumer wireless communication and big data processing. Available Now – Multiple Vendors - Cost Effective

- Direct samples vehicle travel time (5% 20% BT & WiFi)
- Works best at corridor level
- Independent of Signal System
- Provides top-level user experience information

- Logs *all* actuation and phasing information
- Works at intersection level
- Integrated with Signal System
- Provides detailed intersection analysis and data for optimizing signal system

Not one or the other... but both!

Emerging Arterial Performance Measures

- Travel Time & Travel Time Reliability based on sampled travel time sources
 - Enabled by re-identification data
 - Fundamentally linked to statistical distribution of travel time
- Quality of progression Percent Arrivals on Green
 - Supported by Purdue Coordination Diagram tools

• Split Failures (frequency of occurrences)

- Reflects capacity constraints
- Related to GOR / ROR

Arterial Performance Measures

THEN

NOW

Both fundamentally based on delay

- TEMPORAL:
 - Sampled yearly 'typical day in May'
 - Weekday peak peroid
- DATA: Travel time runs, and counts
 - Manually collected
- Intersection & corridor
- MEASURES:
 - HCMLOS based on Delay
 - User complaints
- Annual Performance Measures

- TEMPORAL
 - Continuous ubiquitous coverage
 - All Days, every signal cycle
- DATA: Probe, Re-ID, & HRCD
 - Automated
 - Integrated with Signal System
- Intersection, corridor, & network
- MEASURES: Emerging
 - Travel Time & Reliability
 - Corridor Progression Quality
 - Capacity Utilization
- Supports maintenance, operations, and annual performance measures

Moving to Real-time Dynamic Feedback!

Travel Time and Travel Time Reliability

- Based on directly sampled travel time measurements
- Directly reflects concerns of the traveling public
 - Efficient and predictable travel
- Measures can be applicable to other modes of travel

– Freeway, transit, air, etc.

Travel Time

Travel Time Reliability

Travel time impact of the Inter-County Connect (ICC)(MD-200) in Maryland

I95 Corridor Coalition / UMD CATT / TRAFFAX

ITS Carolinas – 2016 Annual Meeting

Before / After Maryland Route 24 Signal Timing Plan

I95 Corridor Coalition / UMD CATT / TRAFFAX

ITS Carolinas – 2016 Annual Meeting

High Resolution Signal Data

- Logging of sensor and phase information
- Data forwarded periodically to central server
- Applications
 - Purdue Coordination Diagram
 - Red-Occupancy Ration / Green Occupancy Ratio
 - Volume / Demand Analysis (per movement)
 - Streamlined Maintenance

THIS IS CONNECTED INFRASTRUCTURE!!!!

Percent Arrival on Green (PAG) and Split Failures

- Percent Arrivals on Green
 - Measure on how effectively signals are coordinated, moving vehicles through the system
 - ► The higher the PAG, ...
 - ► Less stops, happier customers
 - ► Higher corridor speed , better fuel economy, less emissions
 - Direct indicator of signal system performance
- ► Split Failures (i.e. Capacity Constraint)
 - Measures percent of system (time and space) suffering from lack of capacity
 - The 'need more capacity' metric, or 'get off my back' metric, its 'time to spread the pain' metric ...
 - Something more than signal optimization required capacity/demands need to be addressed

Products of SBIR Initiative

- Arterials Performance Measures Framework Main
- Two Case Studies
- Technical Reports
 - Real-time Measures
 - Graphics Report
 - Network Performance Measures
 - Measuring how arterials are used
- Software Tools

- Standard data format and reference implementations

Conclusions – Final Thoughts

- Vehicle Probe Data Validation
 - Arterial Data Accuracy is Improving
 - Anticipate updated report in 2016
 - Expand to data availability, real-time perf., latency
- Arterial Performance Measures Framework
 - Travel time and travel time reliability with re-id
 - Quality of progression and capacity analysis with HRCD
 - Next generation of Arterial Performance Management