
                                                                                                                           

RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 1/22 

 

 

 

 
 

 

Reference CCS Architecture   

An initiative of the ERTMS users group and 
the EULYNX consortium 

  

 

 

 

 

 

 

Concept: Architectural approach and 
System-of-systems Perspective 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Document id: RCA.Doc.13 

Version: Gamma.1 

Date: 31.01.2020 

© EUG and EULYNX partners 

 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 2/22 

 

Figures 

Figure 1. Elements of an architectural description ....................................................................................................................... 6 
Figure 2. Reference schema for architectural elements ............................................................................................................... 7 
Figure 3. Architectural elements provided by RCA ....................................................................................................................... 8 
Figure 4. Architectural elements and how the RCA specification is defined ................................................................................. 9 
Figure 5. Architectural elements and how the RCA specification is applied ................................................................................ 10 
Figure 6. Different options for “procurement granularity” ............................................................................................................ 11 
Figure 7. Overview architectural layers ...................................................................................................................................... 15 
Figure 8. Overview allocation of functions to layers ................................................................................................................... 18 
Figure 9. Example: Architecture of SESAR ................................................................................................................................ 19 
Figure 10. Relation of EULYNX, RCA and OCORA ................................................................................................................... 20 
 

Tables 
Table 1. Architectural Principles for RCA 13 
Table 2. Rules for splitting components in RCA 14 
Table 3. RCA layers and their characteristics 17 
 
 

 Table of contents 

1. Introduction 4 
 Purpose of the document 4 
 Relevance of architectural approach for RCA 4 
 Relevance of system-of-systems perspective for RCA 4 
 Relevant RCA documents 4 
 Terms and abbreviations 4 
 Concepts and Examples in other domains 4 
 Reference material 5 

2. Architectural Approach in RCA 6 
 Understanding of the term ‘architecture’ in RCA 6 
 Simple architecture framework 7 
 Architectural modelling, methods and tooling 7 
 Deliverables from the RCA process 7 
 Which architectural elements are necessary to define RCA? 8 
 Which architectural elements are necessary to use / apply RCA? 10 
 Where does the “harmonised” RCA component architecture come from? 10 
 How the interface architecture is linked to procurement options 10 
 Relation of RCA to “harmonised operational processes” 11 

3. Architectural design principles for RCA 12 
 General architectural principles for “RCA-based” systems 12 
 Rules for splitting functions into components 14 
 Layering principle for the architecture 14 
 Concepts of Objects and Devices 17 
 Allocation of functions to layers 18 

4. System-of-systems perspective in RCA 19 
 System-of-systems perspective in this document 19 
 Combining RCA with other systems into a system-of-systems of railways 20 
 Important criteria for integration into a system-of-systems 20 

5. Summary and outlook 21 

6. Architectural FAQ 22 
 What kind of architecture does RCA provide? 22 
 Why does RCA start at the “bottom” (components)? 22 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 3/22 

Version history 

Beta.1 26.8.2019 Bernhard Rytz First publication after review by the RCA core group 

Gamma.1 31.01.2020 Bernhard Rytz Update (new document structure) after review by the RCA core group 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 4/22 

1. Introduction 

 Purpose of the document 

The publication of RCA has generated interest among railways and suppliers.  

This document addresses the following questions: 

 What kind of architecture does RCA try to describe (functional, logical, physical…) and why? 

 What architectural design principles does RCA apply? 

 How does RCA fit into existing architectures or with on-going initiatives? Does RCA lend itself 

to be a part of a system-of-systems approach? 

 

This document complements the document: 

 RCA System Concept: Essence of RCA rationale, goals, scope and system concept 

[RCA.Doc.15] 

 

 Relevance of architectural approach for RCA 

If the goal of the chosen architectural approach in RCA is not well understood, RCA may be difficult to 

understand or may be lacking in content. Therefore, it is important to understand:  

 the issues addressed by the RCA 

 the issues that are (on purpose) omitted 

 the principles on which design decisions are founded. 

 Relevance of system-of-systems perspective for RCA 

Since RCA does not describe the complete architecture for an IM or the whole railway system, RCA 

will only be a “piece of the puzzle” and will need to be combined with other architectures. We will give 

a first overview of how this can be accomplished.  

 Relevant RCA documents 

The RCA Documentation Plan [RCA.Doc.6] describes all published documents. The notation [Id] be-

low refers to the document identifier in the documentation plan. The following documents are most rel-

evant to get started with RCA. 

 RCA System Concept: Essence of RCA rationale, goals, scope and system concept 

[RCA.Doc.15] 

 RCA Concept: Informal Architecture Overview [RCA.Doc.43] 

 RCA System Architecture: starting point for the model-based specification of RCA 

[RCA.Doc.35]. 

 Terms and abbreviations 

The terms and abbreviations are listed in the RCA Glossary [RCA.Doc.14]. 

 Concepts and Examples in other domains 

 SESAR (single European Sky ATM research) JU has published in [2] an overall architecture 

for ATM, taking a very broad perspective. 

 System-of-Systems Engineering is an established discipline (see https://en.wikipe-

dia.org/wiki/System_of_systems_engineering). 

 The discipline Enterprise Architecture offers a perspective of applying architectural thinking to 

enterprises including also non-technical concepts, see https://en.wikipedia.org/wiki/Enter-

prise_architecture. For an application of EA (Enterprise Architecture) to railways, see [7]. 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 5/22 

 Model-based systems engineering (MBSE) is a methodology of systems engineering focusing 

on (architectural) models and capturing more than technical implementation decisions 

https://en.wikipedia.org/wiki/Model-based_systems_engineering.  

 TOGAF is well-known architectural framework. RCA reuses some of the principles of TOGAF, 

see https://pubs.opengroup.org/architecture/togaf92-doc/arch/)  

 Reference material 

 [1] Reference removed. 

 [2] SESAR JU. “A proposal for the future architecture of the European airspace” 

https://www.sesarju.eu/sites/default/files/2019-05/AAS_FINAL_0.pdf.  

 [3] ISO/IEC 42010:2011Systems and software engineering — Architecture description.  

 [4] SysML is a systems modelling language (i.e., notation) derived from UML and the founda-

tion for many system engineering methods. https://en.wikipedia.org/wiki/Systems_Model-

ing_Language. 

 [5] Arcadia is a systems engineering method with a clear derivation process from need to solu-

tion. https://www.polarsys.org/capella/arcadia.html.  

 [6] EULYNX Modelling Standard is available as part of the (public) documentation set of every 

EULYNX release. https://eulynx.eu/index.php/documents/documents-overview/published-doc-

uments/open-availability.   

 [7] Network Rail “"Enterprise architecture within railway systems engineering" https://digital-

library.theiet.org/content/journals/10.1049/iet-its.2018.5062?originator=ietauthorOffprint&iden-

tity=483079&timestamp=20200611101749&signa-

ture=397b95ccc00e2fca902d256f6a63d395&tinyUrl=http://ietdl.org/t/I9MA0.  



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 6/22 

2. Architectural Approach in RCA 

RCA is a reference architecture, which leads to 2 important points: 

 RCA is not a complete system architecture but provides a reference, i.e., a blueprint for build-

ing/procuring a concrete CCS for a specific IM. 

 We will distinguish the architectural elements needed to define / develop RCA from the archi-

tectural elements needed when applying RCA. 

 

This chapter will describe the architectural approach of RCA including: 

 What is the understanding of the term “architecture” in RCA? 

 What are the architectural definitions coming from the RCA process? 

 Which architectural elements are necessary to define RCA?  

 Which architectural elements are necessary to use / apply RCA? 

 Understanding of the term ‘architecture’ in RCA 

The term “architecture” is frequently used, but with different perspectives. We apply the definitions 

from ISO/IEC 42010:2011 “Systems and software engineering — Architecture description”.  

 

The following concepts are central for the discussion (simplified from [3]): 

 

 
Figure 1. Elements of an architectural description 

 

Important points here are: 

 The distinction between the architecture of a system and the architecture description of a sys-

tem. 

 Architecture: fundamental concepts or properties of a system in its environment embodied in 

its elements, relationships, and in the principles of its design and evolution. 

 Architecture description: work product used to express an architecture. 

 Architecture viewpoints are used to define architectural views which address certain concerns 

of stakeholders with respect to the system.  

 

There are different architectural contexts that use quite different architectural modes. These contexts 

include enterprise architecture, systems engineering, software engineering.  

 

RCA has a very specific target and therefore selects a small subset of architectural viewpoints for its 

description. We will therefore describe below which architectural viewpoints are important in RCA. 

 

When integrating with other architectures (see also Chapter 4 “System-of-systems perspective in 

RCA”), it will be important to take into the account the fact that architectural descriptions may be quite 

different. 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 7/22 

 Simple architecture framework 

We introduce here a simple reference schema (architecture framework) to facilitate the discussion 

about which architectural elements are addressed by RCA. The diagram shows:  

 commonly used “layers” used in the disciplines EA (enterprise architecture) and SE (systems 

engineering). 

 topics (such as requirements, Safety-View, RAM-View) being refined & allocated from top to 

bottom. 

 the solution design results in the rectangle “component specifications”.   

 

Since terminology in architecture has not been standardised yet, we have reused terms from SysML 

[4] and Arcadia [5]. 

 
Figure 2. Reference schema for architectural elements 

Note:  

 physical architecture and implementation will be separate from a component supplier point of 

view. We keep them together here for simplicity. 

 Architectural modelling, methods and tooling 

RCA is applying MBSE (model-based systems engineering) and a subset of SysML [4] as defined by 

the modelling standard of EULYNX [6]. Since the system scope and component complexity are differ-

ent from EULYNX, some extensions to the modelling standard are being considered. 

 Deliverables from the RCA process 

The main purpose / outcome of RCA are specifications for RCA components. These RCA component 

specifications can be used:  

 by IMs as building blocks in designing / building a CCS system, and 

 by suppliers as input to their product requirements. 

 

The RCA components are not abstract functions, but buildable, procurable, runnable components (im-

plementing, of course, the allocated functions). RCA components need not be physical boxes, but 

most components can also be implemented by “pure” software solutions (see also the topic “platform 

independence” in [RCA.Doc.11]). 

 

The RCA components specifications consists therefore of two (largely) orthogonal aspects (see Chap-

ter 4 in “RCA System concept” [RCA.Doc.15]): 

 Interface architecture of RCA. This includes the following elements: 

o component decomposition 

o component behaviour definition 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 8/22 

o component interface definition, including information modelling 

 Technical architecture of RCA. This includes: 

o the platform or runtime environment for the execution of a component 

o the communication stack providing the communication channel between components 

 

 

The parts marked “Full spec” in the following diagram are the core of the architectural deliverable of 

RCA. Additionally, RCA will contain “Helper material”. Helper material is not necessarily sufficient to 

derive a system but contains design rationale and information that is reusable for a system derivation 

by an IM. 

 
Figure 3. Architectural elements provided by RCA 

 

 Which architectural elements are necessary to define RCA?  

In the design / specification process for RCA we use existing requirements and design inputs from 

several IMs.  

 

Regarding the “RCA components specs”, the RCA process works in 2 directions (see Fig. 4): 

 “top–down” (from needs to solution): 

The RCA component specification is checked against the needs / design constraints. A new / 

different need may lead to an extension of the RCA component spec. 

 “bottom–up” (from solution to needs): 

If an RCA component specification would be required to cover the sum of all existing needs / 

design constraints, the specification would become too complex, the opportunity for harmoni-

sation would be missed, and the cost of products may be too high. Therefore, before consider-

ing an extension of the RCA component spec, an attempt at harmonising the requirements 

among IMs is necessary. 

 

So, for a given existing requirement on which 2 or more railways diverge, 3 outcomes are possible: 

1. The requirement is harmonised among railways (preferred) 

2. The requirement can be handled by functionality / processes outside RCA components, the 

RCA components implement a “superset” of functionality to support the requirements. 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 9/22 

3. The RCA component specification implements the sum of the requirements (expressed as 

variants). 

 

The process needed to manage the 2 directions “top–down” and “bottom–up” will involve constant 

trade-offs and will require a clear governance. See also “Variability management” in RCA System con-

cept” [RCA.Doc.15]. 

 

Regarding the helper material, the RCA process will document needs and design constraints that pro-

vide the rationale for the RCA component specification and which may be material for reuse in IM 

rollout programs. 

 
Figure 4. Architectural elements and how the RCA specification is defined 

 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 10/22 

 Which architectural elements are necessary to use / apply RCA? 

Figure 5 shows how an IM rollout program will “import” RCA deliverables into their overall architecture 

and program. The RCA deliverables come in 2 categories: 

 RCA components specifications: 

RCA specifications are to be used as tender templates to procure components. The RCA 

specs will also be used to plan integration, acceptance, linking to existing systems, etc.  

 RCA “helpers”: 

These are requirements and design material that can be reused in the IM rollout program but 

will have to be extended and merged with the specific requirements material of each IM. 

 
Figure 5. Architectural elements and how the RCA specification is applied 

 

 

 Where does the “harmonised” RCA component architecture come from? 

The harmonised RCA is the result of applying functional and non-functional requirements of the partici-

pating IMs to the RCA interface architecture and checking for completeness / fit. RCA therefore contrib-

utes to the harmonisation of the ongoing programs of different IMs. 

 This "RCA interface overview" does not show a pure functional structure since the defined de-

composition principles (see chapter 3.2) are already applied. They combine aspects of the func-

tional, system, lifecycle, and technical architectures, to support the scoping of real products 

(HW, MW, SW) that make sense as standard products for the railways. The decomposition rules 

follow different architectural quality attributes, e.g., exchangeability and independence, differ-

ence of lifespan or lifecycle type, isolation of safety cases (“modular safety”), no combination of 

functionality that is not always used together, etc. 

 In general, the split that leads to the "RCA components" describes interfaces at positions in the 

CCS automation pyramid1 where different products are able to work together on a standardised 

basis. However, these interfaces can also be used within a product or product cluster. There 

could be a requirement in a tender to have the flexibility to react to unexpected lifecycle events 

(e.g., discontinued products, strong price hikes) by changing the supplier or product type only 

for RCA components at a later stage in the lifecycle. How many RCA interfaces are used is 

decided by the individual railways during the design of the lifecycle strategy for their CCS archi-

tecture, their migration programs and their tenders.  

 How the interface architecture is linked to procurement options 

By way of example, Figure 6 shows that IMs can choose different procurement strategies for an RCA-

based system, these procurement strategies lead to different integration needs. 

                                                      
1 https://en.wikipedia.org/wiki/IEC_62264 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 11/22 

Granularity of procuring RCA components: 

 Upper left: The RCA specification defines interfaces for the RCA components. These interfaces 

include “functional” interactions with other components and interactions with technical building 

blocks, including runtime environments and communication stacks; 

 Upper right: an IM can choose to procure in a fine-granular way, isolating all RCA components in its 

procurements; 

 Lower left and right: an IM can choose to bundle RCA components in larger procurement units. 

Whether the internal interfaces are part of the procurement requirements is up to the IM. 

 

 
Figure 6. Different options for “procurement granularity” 

 

 

Implications of fine- vs coarse-granular procurement: 

 With fine-granular procurement the task of integration becomes more important. Integration can be 

performed by an IM or can be tasked out to a third party; 

 When procuring bundled components, the IMs should make the “internal” interfaces between RCA 

components a part of their requirements to a) ensure future exchangeability and b) help drive har-

monised specifications; 

 An IM may procure in an even more fine-granular way, by splitting up an RCA component. In this 

case, the IM must define their own specifications for the new interfaces. These interfaces could be 

candidates for inclusion in RCA. 

 

 Relation of RCA to “harmonised operational processes” 

Full harmonisation of operational processes is not in scope of the RCA. When changing to a new archi-

tecture for the future railway system in large migration programs, some harmonisation of operational 

processes becomes possible (compare to standardised DMI, etc.).   

RCA has excluded full harmonisation of operational processes from its scope because the processes 

have too many dependencies, such as national laws; national affordability of the same safety, perfor-

mance or availability targets; processes are “programmed” into hundreds of products and thousands of 

installed systems; processes are part of thousands of safety cases, etc. 

Migrating to the RCA will support the harmonisation of operational processes. However, the harmonisa-

tion methodology even in this case needs certain steps and depends on the initial situation of the IM 

and the structure and duration of the migration. 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 12/22 

3. Architectural design principles for RCA 

 General architectural principles for “RCA-based” systems 

The following table gives an overview of the currently identified principles. Some of these principles 

need more work to be applicable by the RCA group or the Working Groups.  

 

Principle Rationale Consequences 

Target state requirements and 

migration requirements have 

equal priority in RCA  

= 

RCA design for a “pure” future 

state and includes necessary 

mechanisms for migration 

ERTMS/ETCS deployment les-

sons learned 

- importance of considering 

operations and degraded 

mode, being stuck with a 

supplier-specific solution 

due to lack of common in-

terfaces 

- importance of agreeing on 

a target state and func-

tional needs and then con-

sidering migration. Starting 

from the current state and 

working forward leads to in-

cremental development, 

which may not provide an 

optimum solution and is 

likely to lead to solutions 

with a national flavour.   

- Architecture supports sev-

eral migration (and sourc-

ing) strategies. 

- IMs must define their re-

quirements for a migration 

towards RCA into the RCA 

process. 

In RCA every function is only 

designed once (no large set of 

functional alternatives in the 

target state) 

In a target state with “pure” 

ETCS “L3+” there is no objec-

tive reason for functional diver-

sity. Diversity has led to poor 

performance / cost and poor in-

novation.   

- Harmonisation of require-

ments has to take place.  

- If needed, variability speci-

fied through configuration / 

parametrisation. 

- A certain degree of variabil-

ity can be achieved by us-

ing different configurations 

of RCA components. 

- Note: this does not require 

total harmonisation of oper-

ational processes. 

Minimum trackside assets pos-

sible 

Trackside assets exist in higher 

numbers, in harsher conditions 

and are more difficult to access. 

Reducing them reduces LC-

cost / function and increases 

reliability (environment, MTTR). 

Safe and reliable alternatives 

have to be developed (e.g. lo-

calisation, train integrity moved 

from trackside to vehicle). 

Modularity: Exchangeability of 

components 

Key to ensuring keeping LC-

cost down and ensuring evolva-

bility. 

Requires careful interface 

specifications. Requires inter-

facing techniques for up- and 

downward compatibility, e.g., 

capability-based protocols. 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 13/22 

Principle Rationale Consequences 

Scalable to different needs 

(e.g. achieving safety levels by 

choosing the right (number of) 

devices) 

Ensure broad applicability of 

RCA-based systems. 

Need to consider several target 

configurations. 

Functions are allocated to Soft-

ware. Software is separated 

from Hardware 

- In many cases, SW has 

better quality- / price-ratio.  

- SW is easier to evolve. 

- The SW / HW interface has 

to be specified2.  

- Procedures for updating 

SW securely are needed. 

Communication (carrier, lower-

level protocols) is exchangea-

ble 

Key to ensuring keeping LC-

cost down and ensuring evolva-

bility. 

- Functional and communi-

cation aspects are sepa-

rated in SW.  

- Communication is properly 

layered. 

Slim SIL 4 components: No 

combined implementation of 

business processes and safety 

functions 

Development on higher SIL lev-

els is disproportionately more 

expensive. Safety related func-

tions kept to a minimum. 

Architecture needs to provide 

the corresponding interfaces. 

These interfaces may be critical 

from an NFR-point of view. 

High ability to automate func-

tions (“transactional complete-

ness”) 

The architecture must allow 

(not necessarily enforce) full 

automation to support corre-

sponding goals by implement-

ers. 

The functional architecture 

must not rely on “miracle” func-

tions but describe functional 

blocks, that can (at least in 

principle) be automated3. 

Interfaces are upward and 

downward compatible 

Evolvability (see also modular-

ity) 

Profile- / capability-based inter-

faces 

Modular safety: Ability to iso-

late safety cases and homolo-

gation 

Evolvability - Design of components (in-

terfaces) must allow isola-

tion of safety cases. 

- Early evaluation of “modu-

lar safety” concepts with 

assessors necessary 

“Core” systems and their inter-

faces are “process-agnostic” 

Ensure broad applicability of 

RCA-based systems. 

E.g., Business processes only 

implemented in the TMS, other 

layers are process independent 

and focus on the basic “phys-

ics” of rail control and com-

mand. 

“Cutting edge” technology is 

properly isolated, i.e., integra-

ble, but not mandatory 

The speed of technological 

maturation is difficult to predict. 

The architecture must be open 

for foreseeable evolutions while 

allowing implementations “here 

and now”. 

E.g., Flexibility concerning the 

connection and mixture of lo-

calisation devices 

Table 1. Architectural Principles for RCA 

                                                      
2 In some cases, an integrated stack may be procured, at the cost of having lock-in between SW and 

HW. 
3 RCA focuses on interfaces. To provide context for the interfaces, components/blocks/subsystems 

and behaviour will have to be described to some extent. 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 14/22 

 Rules for splitting functions into components 

These rules are rough guidelines that help to provoke thought about the functional break-down.  

Reason to split Explanation 

Different NFRs (non-functional requirements like 

safety, RAM or security) 

NFRs drive the needs for the SW development pro-

cess and for the deployment configuration. Packing 

functions with very different requirements together 

may lead to waste / over-design. 

The right split creates simple interfaces and self-suffi-

cient systems 

The classic modularity principle: high cohesion / low 

coupling. 

Independent lifecycle 

 Independent installation timing or installation 

process 

 Independent change 

 Independent lifespan 

Separated functions may help upgradability (e.g., 

need for retesting). 

Usage only in a part of all installations Possibility not to deploy a function at all. 

Necessary hardware topology (e.g., regional) Available devices (computing power, storage capac-

ity) and / or communication access to the devices 

and / or realms of responsibility (e.g., in a vehicle) 

can make this necessary.  

Different markets or supplier types “Unusual” bundles may lead to difficult / inefficient 

procurements. 

Smaller components make it easier for more vendors Lower market entrance hurdles BUT additional inte-

gration work. 

Split of homologations and safety cases Reduce procedural effort. 

Split the work / Division of labour Ability to distribute / parallelise work. 

Reuse potential Possibility to reuse important existing work. 

Table 2. Rules for splitting components in RCA 

 

 Layering principle for the architecture 

The RCA is divided into architectural “layers”. Layers play an important role in structuring architectures 

and have successfully been used in computer architecture, communication architecture, etc.  

In RCA, every layer has special types of blocks, and may have special design rules for interfaces (ge-

neric for all blocks in the layer) and especially special “abstraction levels”. Example: On the device-

control layer a function will know about the type of hardware (point, level crossing, TDS) it controls. On 

the safety-control layer “objects” are only known by their abstract hardware-independent capabilities 

(e.g., “trafficability on a node-edge-model”). 

RCA components are assigned to exactly one layer.  

 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 15/22 

 
Figure 7. Overview architectural layers 

 

The following table describes the layers in more detail:  
Layer 
name 

Interface up-
wards 

Interface 
downwards 

Type of functions 
on the layer Layer characteristics 

Plan-
ning 

  Operation Plan These functions cre-
ate the plans (for 
customers and for 
the production) 

  

Move-
ment 
Control 

“Execution 
State” = Pro-
gress of the 
plan execu-
tion  
 
“Operational 
Status” = 
States and 
actual capa-
bilities of all 
objects = 
trackside as-
sets (“TA” 
like tracks, 
switches, 
crossings….), 
all moveable 
objects 
(“MOB” like 
trains, Per-
sons, obsta-
cles). 
  

Object control 
requests 
(OCR) (update 
movement per-
mission, control 
object, change 
object status, 
etc.) 

These functions im-
plement the opera-
tion plan by issuing 
single object-control 
requests when the 
condition regarding 
the current opera-
tional status are met 
These OCRs can, 
for example, change 
a switch position or 
update a movement 
permission. 

“Process independent”. No implicit assump-
tions for process rules on this layer. Every 
process- or company-specific rule should be 
implemented on a higher architecture layer 
(planning). The operation plan (and deliv-
ered static descriptions for process rules), 
that is converted to device requests shall 
fully describe the process, that must be exe-
cuted - also in degraded modes.  
Layers from here downwards are “real-time” 
layers. The functional design has to take the 
system implementation into account (high 
workload, some hundred thousand events 
per second for a small network, so efficient 
simple functions have to be designed, deci-
sion processes shall be fast). 
This layer is very important for the migration. 
The functional interfaces to legacy systems 
must be designed and shall be taken into ac-
count in the functions for the target architec-
ture. 
All interfaces down from this level are asyn-
chronous (cut up functional sequences, 
queueing, locking, necessary for scalability). 
All functions of this layer shall be designed 
for a maximum autarchy duration with step-
wise degrading modes when the planning 
system is offline. 
This and higher layers shall support the 
most simple functionality in the lower safety 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 16/22 

Layer 
name 

Interface up-
wards 

Interface 
downwards 

Type of functions 
on the layer Layer characteristics 

layers by relieving lower layers from func-
tionality that is not safety critical. Lower lay-
ers shall only have “check and driver” func-
tionality. 

Safety 
Control 

Operational 
Status 

Object control 
commands for 
the control of 
MOB/TA 

These functions 
check requests from 
upper layers or us-
ers: Do they lead to 
a safe state of the 
production? If yes, 
then they are exe-
cuted.  
They also check 
events and overall 
status of all objects 
and invoke emer-
gency reactions for 
unsafe situations. 

On this layer no hardware-, asset-, asset-
layout-, track-layout, train-type-,  
track-usage-condition- or train-capability- 
specific requirements shall exist. 
All these attributes are described as abstract 
object attributes that shall fit together for a 
safety check function. Functions shall be im-
plemented that allow a generic safety case 
for a specific parameter- and rule-set that is 
set for a whole network. 
The parameter- and rule-sets shall allow the 
definition of different safety targets and prin-
ciples without ever changing the imple-
mented system. 

Object 
Abstrac-
tion 

Addressable 
abstracted 
objects with 
functions and 
attributes  

Actor coordina-
tion: Coordi-
nated device 
control com-
mands for the 
control of 
MOB/TA 

These functions 
combine devices for 
an abstracted object 
representation. They 
co-ordinate devices 
(actors) for the exe-
cution of object-con-
trol commands, 
which should work 
“hand-in-hand”. 

Devices are handled on this layer in a ge-
neric way. They are described only by their 
generic attributes and capabilities (functions, 
methods), not as hardware models or hard-
ware types. 
Aggregating devices to objects (e.g., to 
trains or train-components) is done by a 
rule-interpreter for configurable rules, where 
each has its own verification (extendibility). 
An object is defined by one or more attrib-
utes (like ID, start-position, end-position, 
length, type, etc.) and devices deliver one or 
more of these attributes together with an ob-
ject ID, to whom they belong. 
The execution of object-control commands 
can influence more than one device inside of 
the moveable object and in parallel on the 
track.  

Device 
Abstrac-
tion 

Abstract de-
vice capabili-
ties. 
Abstract de-
vice address-
ing. 

System-specific 
protocols 

These functions of-
fer abstracted de-
vice capabilities 
(functions and infor-
mation) and an ab-
stracted device ac-
cess (e.g., topology-
related). 

The downward interfaces (and on the layer 
below) shall implement the “modular safety” 
strategy which reduces the effort to integrate 
new pre-certified devices to a minimum. This 
shall be achieved by a small and stateless 
protocol (small capability protocol modules) 
and fully testable behaviour on both sides of 
the interfaces. 
This layer shall allow different device models 
to be treated as the same generic device-
type.  

Device 
Control 

(safe) Device 
status  

(safe) Device 
management 
and control 

The device-control 
functions steer and 
administrate de-
vices. They assure 
the quality of the de-
vice control. They 
offer easy access to 
devices via data net-
work for the layer 
above.  

  



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 17/22 

Layer 
name 

Interface up-
wards 

Interface 
downwards 

Type of functions 
on the layer Layer characteristics 

Generic 
func-
tions 

Information 
for Manage-
ment systems 

Remote man-
agement con-
trol or prepared 
static data 

Generic functions in-
teract with every 
layer (e.g., diagnos-
tics) or are not part 
of the main control 
loops (e.g., data 
prep). 

This layer contains cross-cutting-concern 
functions and aspect-concern-functions. The 
design of these functions shall be done as a 
flexible service layer. 

De-
vices 

System-specific interfaces 

Devices (=device 
functions) are actors 
or sensors like in 
trains, switches, …. 

  

Table 3. RCA layers and their characteristics 

 

 Concepts of Objects and Devices 

To understand some of the architectural decisions in RCA, it is helpful to discuss the role of “Objects” 

and “Devices”.  

The diagram shows that: 

• Objects are monitoring and managing 1..* 

devices; 

• “Object Aggregation” combines multiple 

device information to a single object rep-

resentation of the “real world object”. 

 

 

 

 

Examples include:  

 Train with ETCS-OBU at the front and a localization tag at the rear and / or using trackside TDS; 

 Movement permission to the ETCS-OBU and / or to a trackside signal (e.g. border signal); 

 Level crossing with separate device for intersection scanning or warning lights; 

 New devices in the future. 

 

Object Aggregation is an important function, because: 

• Object Aggregation provides an abstract view of controlled objects to the upper layer 

• How objects are connected with devices is hidden from the upper layers 

Advantages: 

• Changes for new device combinations only affect the OA and not the upper layers 

 Similar to Hardware-Abstraction Layer in Operating System; 

• Object Aggregation can support many different combinations of devices; 

• Migration from old to new can be encapsulated in Object Aggregation. 

• The problem of aggregation is independent of the problem of the safety logic. 

Advantages: 

• Good “separation of concerns” ( Reducing complexity of each problem); 

• Independent lifecycle of independent changing logic; 

• This follows the proven pattern of an “layered architecture” and an “automation pyramid”, where 

each layer solves a specific problem.  



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 18/22 

 

 Allocation of functions to layers 

The following diagram shows the allocation of (simplified) functions to the layers of the RCA. For each 

function there will be one or more RCA components (based on the defined decomposition principles).  

 
Figure 8. Overview allocation of functions to layers 

 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 19/22 

4. System-of-systems perspective in RCA 

This chapter will describe the system-of-systems perspective of RCA including: 

 How do we use the system-of-systems perspective in this document? 

 How can an RCA-based system be integrated in a systems-of-systems perspective of the rail-

ways? 

 System-of-systems perspective in this document 

The concept “system-of-systems” is very broadly defined (see https://en.wikipedia.org/wiki/Sys-

tem_of_systems). In the context of RCA, the components of RCA can be seen as systems and, thus, 

RCA is a system of systems. In this document, however, we take a higher-level perspective, looking at 

the “railway system” as a system-of-systems, of which the RCA may be a part (i.e., a system). 

 

Relation to “Enterprise Architecture”: EA is a form of system-of-systems approach, often focusing on 

one enterprise (including its interfaces). Enterprise Architecture deals not only with technical systems 

but also with “soft systems” such as goals, organisations, processes, capabilities.  

 

As an example from another domain, in [2] the SESAR JU proposes an overall architecture for the Eu-

ropean airspace, including governance, regulatory, organization and technical systems issues.  Figure 

9 shows the proposed services in this context.  

 
Figure 9. Example: Architecture of SESAR 

 

 

In the telecoms sector, there are models (such as eTom4) which provide a shared reference architec-

ture (without being binding).  

 

In the railway sector, there seems to be no widely adapted, shared, overarching reference architecture 

(yet). It is not the purpose of RCA to provide such a model. From the RCA perspective it would be 

helpful to have such models and RCA will help map / integrate RCA into such an overarching architec-

ture. There is a proposal in Shift2Rail IPX to start working on such an architecture. 

                                                      
4 https://en.wikipedia.org/wiki/Business_Process_Framework_(eTOM) 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 20/22 

 Combining RCA with other systems into a system-of-systems of railways 

Figure 10 shows that RCA is already preparing integration into a system-of-systems: 

 EULYNX, RCA and OCORA each have a clear specification scope that is complementary 

among the 3 initiatives (no overlaps). To efficiently implement the overall CCS functionality, 

the functionality has to be apportioned and some concepts and interfaces have to be jointly 

prepared. 

 The ERA TSI CSS is shown behind RCA and OCORA, since RCA and OCORA act on the 

foundation / background of the existing TSIs to ensure interoperability. When needed, CR 

(change requests) will be submitted to the defined process.  

 
Figure 10. Relation of EULYNX, RCA and OCORA 

 

 Important criteria for integration into a system-of-systems 

For architectures / systems to be easily integrable, the following characteristics are important: 

 Very clear and explicit scope:  

 what elements (needs, functions, component) are in scope and will be defined by 

the architecture? 

 dealing with the system border: ownership of interfaces (definitions, exported con-

ditions, assumptions); 

 Explicit (and mostly shared) architectural principles: what are the architectural goals (mod-

ularity, reuse, evolvability, …) and what criteria drive the architecture process? 

 Clean and precise modelling: applying a well-defined modelling standard, using tools that 

support an open process; 

 Open process: open availability of all architectural artefacts, easy access to the artefacts 

(tools), transparent change-management process. 

 

RCA adheres to these criteria in its development process. 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 21/22 

5. Summary and outlook 

The focus of RCA is to provide component specifications based on harmonised requirements for use 

as tender templates by IMs planning ETCS rollouts.  

 

RCA is therefore only an (important) piece of the overall system / architecture puzzle: in the CCS do-

main it covers most logical component aspects on the trackside. Other architectural aspects of the 

CCS domain and architectural aspects of other railway domains must be integrated in a system-of-

systems perspective. 

 

The current approach of RCA with a clear scope will facilitate the integration of RCA.  

 

Next steps: 

 The European Commission and ERA are working on how to address the overall CCS architec-

ture and its evolution. 

 RCA, OCORA and EULYNX will continue to align their respective architectural scope. 

 The S2R project Linx4Rail, starting 2020, will provide an opportunity to link RCA, OCORA and 

EULYNX work with S2R activities. 

 

 



RCA_Concept_Architectural_Approach_and_Systems_of_Systems.docx / RCA.Doc.13 

 

© EUG & EULYNX partners Gamma.1 (31.1.2020) 22/22 

6. Architectural FAQ 

 What kind of architecture does RCA provide? 

In a nutshell: 

 Component spec: 

o RCA interface architecture: consists of a logical architecture of components with de-

fined interfaces, including component behaviour, component states, message behav-

iour (sequences), message payload, data model for the message payload. 

o RCA technical architecture: consists of a logical/physical architecture describing the 

interaction of applications (the components of the interface architecture) with a plat-

form (a component including physical aspects) over a well-defined API (see also “Plat-

form Independence”). 

 Helper material: includes material providing the rationale for the component specification and 

focusing on the architectural aspects on the level of “functional need / system analysis”. This 

includes the definition of end-to-end functions and their allocation to components. 

 Why does RCA start at the “bottom” (components)? 

As shown in Sections 2.5 ”Which architectural elements are necessary to define RCA?” and in 2.7 

”Where does the “harmonised” RCA component architecture come from?”, the process does not start 

at the bottom, but goes back and forth between needs (top) and solution (bottom). Many years of IT 

experience has shown that “top-down / waterfall” approaches (e.g., do a full requirement & functional 

analysis before thinking about the solution design) is wasteful and often leads to over-generic, unwork-

able architectures. 

 


