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Abstract 26 
 27 

In criminal and civil investigations, postmortem interval is used as evidence to help sort 28 

out circumstances at the time of human death.  Many biological, chemical, and physical 29 

indicators can be used to determine the postmortem interval – but most are not accurate.  30 

Here, we sought to validate an experimental design to accurately predict the time of death 31 

by analyzing the expression of hundreds of upregulated genes in two model organisms, 32 

the zebrafish and mouse.  In a previous study, the death of healthy adults was conducted 33 

under strictly controlled conditions to minimize the effects of confounding factors such as 34 

lifestyle and temperature.  A total of 74,179 microarray probes were calibrated using the 35 

Gene Meter approach and the transcriptional profiles of 1,063 significantly upregulated 36 

genes were assembled into a time series spanning from life to 48 or 96 h postmortem.  In 37 

this study, the experimental design involved splitting the gene profiles into training and 38 

testing datasets, randomly selecting groups of profiles, determining the modeling 39 

parameters of the genes to postmortem time using over- and/or perfectly- defined linear 40 

regression analyses, and calculating the fit (R2) and slope of predicted versus actual 41 

postmortem times.  This design was repeated several thousand to million times to find the 42 

top predictive groups of gene transcription profiles.  A group of eleven zebrafish genes 43 

yielded R2 of 1 and a slope of 0.99, while a group of seven mouse liver genes yielded a 44 

R2 of 0.98 and a slope of 0.97, and seven mouse brain genes yielded a R2 of 0.93 and a 45 

slope of 0.85.  In all cases, groups of gene transcripts yielded better postmortem time 46 

predictions than individual gene transcripts.  The significance of this study is two-fold: 47 

selected groups of upregulated genes provide accurate prediction of postmortem time, 48 

and the successfully validated experimental design can now be used to accurately predict 49 

postmortem time in cadavers.  50 

51 
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 52 

Introduction 53 

The postmortem interval (PMI) is the elapsed time between death of an organism and the 54 

initiation of an official investigation to determine the cause of death.  Its determination is 55 

important to civil investigations such as those involving life insurance fraud because 56 

investigators need to determine if the person was alive or not when the policy was in 57 

effect [1].  The PMI is also important to criminal investigations, especially suspicious 58 

death cases where there are no witnesses, because it can help determine the time 59 

relationship between a potential suspect and the victim and eliminate people from a 60 

suspect list, which speeds up investigations.  Accurate prediction of PMI is considered 61 

one of the most important and complex tasks performed by forensic investigators [2].  62 

Several studies have suggested that RNA could be used to estimate PMI [3,4,5,6,7].  63 

While most studies focused on the degradation of mRNA gene markers, some examined 64 

gene expression.  The RNA degradation studies include: a model to predict PMI based on 65 

the degradation of Beta actin (Actb), Glyceraldehyde-3-phosphate dehydrogenase  66 

(Gapdh), Cyclophilin A (Ppia) and Signal recognition particle 72  (Srp72) genes in 67 

mouse muscle tissue samples [3], a model to predict PMI based on degradation of an 68 

amplified Actb gene and temperature in rat brain samples [4], and a study that predicted 69 

PMI based on the degradation of Gapdh, Actb and 18S rRNA genes in the spleens of rats 70 

[5].  The gene expression studies include: a study that found increased expression of 71 

myosin light chain 3 (Myl3), matrix metalloprotease 9 (Mmp9) and vascular endothelial 72 

growth factor A (Vegfa) genes in human body fluids after 12 h postmortem [6], a study 73 

that found increased expression of Fas Ligand (Fasl) and ‘phosphatase and tensin 74 

homologue deleted on chromosome 10’ (Pten) genes with postmortem time in rats [7], 75 

and a study that found individual gene transcripts did not increase using PCR-based gene 76 

expression arrays of frozen human brain cadaver samples [8].  Common to these studies 77 

is the requirement: (i) to amplify cDNA by polymerase chain reaction (PCR) and (ii) to 78 

normalize the data with a control in order to facilitate sample comparisons.  These 79 

requirements introduce methodological biases that could significantly affect 80 

interpretation of the data.  An approach that minimizes or eliminates these biases is 81 

highly desirable because it might lead to better PMI predictions. 82 
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Since conventional DNA microarray approaches yield noisy data [9], in 2011 we 83 

developed the “Gene Meter” approach that precisely determines specific gene 84 

abundances in biological samples and minimizes noise in the microarray signal [10,11].  85 

The reason this approach is precise is because the behavior of every microarray probe is 86 

determined by calibration – which is analogous to calibrating a pH meter with buffers.  87 

Without calibration, the precision and accuracy of a meter is not known, nor can one 88 

know how well the experimental data fits to the calibration (i.e., R2).  The advantages of 89 

the Gene Meter approach over conventional DNA microarray approaches is that the 90 

calibration takes into consideration the non-linearity of the microarray signal and 91 

calibrated probes do not require normalization to compare biological samples.  Moreover, 92 

PCR amplification is not required.  We recognize that next-generation-sequencing (NGS) 93 

approaches could have been used to monitor gene expression in this study.  However, the 94 

same problems of normalization and reproducibility are pertinent to NGS technology 95 

[12].  Hence, the Gene Meter approach is currently the most advantageous high 96 

throughput methodology to study postmortem gene expression and might have utility for 97 

determining the PMI. 98 

The Gene Meter approach has been used to examine thousands of postmortem gene 99 

transcription profiles from 44 zebrafish (Danio rerio) and 20 house mice (Mus musculus) 100 

[13].  Many genes were found to be significantly upregulated (relative to live controls).  101 

Given that each sampling time was replicated two or three times, we conjectured that the 102 

datasets could be used to assess the feasibility for predicting PMIs from gene expression 103 

data.  Although many approaches are available to determine PMI (see Discussion), an 104 

approach that accurately determines the time of death is highly desired and it is the goal 105 

of our study to determine if specific gene transcripts or groups of gene transcripts could 106 

accurately predict postmortem time.  Zebrafish and mice are ideal for testing 107 

experimental designs because the precise time of human deaths is often not known, and 108 

other variables such as lifestyle, temperature, and health condition are also often not 109 

known or sufficiently controlled in human studies.  Given that these variables could have 110 

confounding effects on the interpretation of gene expression data in human studies, 111 

testing experimental designs under controlled conditions using model organisms is ideal.   112 

In our study, the timing of death and health of the zebrafish and mice are known, which 113 
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enables the testing of different experimental designs to provide “proof of principle”.  It is 114 

our intent to use the best design to determine PMI of cadavers for future studies.   115 

The objectives of our study are twofold: (1) to identify specific upregulated genes or 116 

groups of upregulated genes that accurately predict the PMI in the zebrafish and mouse, 117 

and (2) to design and evaluate a robust experimental approach that could later be 118 

implemented to predict PMI from cadavers.  119 

Materials and Methods 120 

Although the details of zebrafish and mouse processing, the extraction of RNA, and 121 

microarray calibrations are presented in a previous study [13], we have provided relevant 122 

experimental protocols to aid readers in the interpretation of the results of this study.  123 

Zebrafish processing. The 44 zebrafish were maintained under standard conditions in 124 

flow-through aquaria with a water temperature of 28oC.  Prior to sacrifice, the zebrafish 125 

were placed into 1 L of water of the same temperature as the aquaria.  At zero time, four 126 

fish were extracted and snap frozen in liquid nitrogen.  These live controls were then 127 

placed at -80oC.  To synchronize the time of death, the remaining 40 fish were put into a 128 

small container with a bottom made of mesh and placed into an 8 L container of ice water 129 

for 5 mins.  The small container with the mesh bottom was placed into the flow-through 130 

aquarium with a water temperature of 28oC for the duration of each individual’s 131 

designated postmortem time.  The postmortem sampling times used for the zebrafish 132 

were: 0, 15 min, 30 min, 1, 4, 8, 12, 24, 48 and 96 h.  At each sampling time, 4 133 

individuals were taken out of the small container in the flow-through aquarium, snap 134 

frozen in liquid nitrogen and then stored at -80oC.  One zebrafish sample was not 135 

available for use (it was accidentally flushed down the sink) however this was taken into 136 

account for calculation of extraction volumes.  137 

Mouse processing.  Twenty C57BL/6JRj male mice of the same age (5 months) and 138 

similar weight were used.  Prior to sacrifice, the mice had ad libitum access to food and 139 

water and were maintained at room temperature.  At zero time, the mice were sacrificed 140 

by cervical dislocation and each mouse was placed in a unique plastic bag with pores to 141 

permit the transfer of gases.  The mice were kept at room temperature for the designated 142 

postmortem sampling times.  The sampling times used were: “zero” time, 30 min, 1, 6, 143 
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12, 24 and 48 h.  At each sampling time, a brain and two liver samples were obtained 144 

from each of three mice, except for the 48 h sampling where only two mice were 145 

sampled.  The samples were immediately snap frozen in liquid nitrogen and placed at -146 

80oC. 147 

RNA Processing and Labeling. Gene expression samples for each PMI were done in 148 

duplicate for zebrafish and in triplicate for mice (except for the 48 h PMI sample that was 149 

duplicated).  The zebrafish samples were homogenized with a TissueLyzer (Qiagen) with 150 

20 ml of Trizol.  The mouse brain and liver samples (~100 mg) were homogenized in 1 151 

ml of Trizol.  One ml of the homogenate was placed into a centrifuge tube containing 200 152 

µl of chloroform.  The tube was vortexed and placed at 25oC for three min.  Following 153 

centrifugation for 15 min at 12000 RPM, the supernatant was placed into a new 154 

centrifuge tube containing an equal volume of 70% ethanol.  Purification of the RNA was 155 

accomplished using the PureLink RNA Mini Kit (Life Technologies, USA). The purified 156 

RNA was labeled using the One-Color Microarray-based Gene Expression Analysis 157 

(Quick Amp Labeling).  The labeled RNA was hybridized to the DNA microarrays using 158 

the Tecan HS Pro Hybridization kit (Agilent Technologies).  The zebrafish RNA was 159 

hybridized to the Zebrafish (v2) Gene Expression Microarray (Design ID 019161) and 160 

the mouse RNA was hybridized to the SurePrint G3 Mouse GE 8x60K Microarray 161 

Design ID 028005 (Agilent Technologies) following the manufacturer’s recommended 162 

protocols. The microarrays were loaded with 1.65 µg of labeled cRNA for each 163 

postmortem time and sample. 164 

Calibration of the DNA microarray. Oligonucleotide probes were calibrated by 165 

hybridizing pooled serial dilutions of all samples for the zebrafish and the mouse.  The 166 

dilution series for the Zebrafish array was created using the following concentrations of 167 

labeled cRNA: 0.41, 0.83, 1.66, 1.66, 1.66, 3.29, 6.60, and 8.26 µg. The dilution series 168 

for the Mouse arrays was created using the following concentrations of labeled cRNA: 169 

0.17, 0.33, 0.66, 1.32, 2.64, 5.28, 7.92, and 10.40 µg. The behavior of each probe was 170 

determined from these pooled dilutions as described in the previous studies [10,11].  The 171 

equations of the calibrated probes were assembled into a dataset so that they could be 172 

used to back-calculate gene abundances of unknown samples (Supporting Information 173 

Files S1 and S2 in Ref. 13). 174 
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Statistical analyses. Gene transcription profiles were constructed from the gene 175 

abundance data determined from the 74,179 calibrated profiles.  Expression levels were 176 

log-transformed for analysis to stabilize the variance.  A one-sided Dunnett’s T-statistic 177 

was applied to test for upregulation at one or more postmortem times compared to live 178 

control (fish) or time 0 (mouse).  A bootstrap procedure with 109 simulations was used to 179 

determine the critical value for the Dunnett statistics in order to accommodate departures 180 

from parametric assumptions and to account for multiplicity of testing.  The profiles for 181 

each gene were centered by subtracting the mean values at each postmortem time point to 182 

create “null” profiles. Bootstrap samples of the null profiles were generated to determine 183 

the 95th percentile of the maximum (over all genes) of the Dunnett statistics. Significant 184 

postmortem upregulated genes were selected as those having Dunnett T values larger 185 

than the 95th percentile.  Only significantly upregulated genes were retained for further 186 

analyses.  The significantly upregulated transcriptional profiles are found in the 187 

Supporting Information - Compressed/ZIP File Archive.  The archive contains 3 files: 188 

zebrafish_calib_probe_abundance.txt, mice_liver_probe_log10_abundance.txt, and 189 

mice_brain_probe_log10_abundance.txt.  Each file has the following four columns: 190 

Agilent Probe Identification Tag, sample time, sample number and log10 concentration. 191 

The software for calculating the numerical solution of the over- and perfectly-defined 192 

linear regressions was coded in C++ and has been used in previous studies [14,15].  The 193 

C++ code allowed us to train and test thousands to millions of regression models.  A 194 

description of the analytical approach can be found in the original publication [15].  195 

Briefly, the abundances of each gene transcript in a gene set was numerically solved in 196 

terms of predicting the postmortem times with modeling parameters (i.e. coefficients).  A 197 

version of the C++ source code is available at http://peteranoble/software under the 198 

heading: “Determine the coefficients of an equation using matrix algebra”. The web page 199 

includes a Readme and example files to help users implement the code.  To aid readers in 200 

understanding the linear matrix algebra used in the study, we have provided a primer in 201 

the Supplemental Information section.  The postmortem time was predicted from the sum 202 

of the product of the gene abundances multiplied by the coefficients for each gene 203 

transcript.  Comparing the predicted to actual PMIs with the testing dataset was used to 204 

assess the quality of the prediction (the fit (i.e., R2) and slope. 205 
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Gene annotation. The genes were annotated by performing BLASTN searches using the 206 

NCBI databases.  Genes that had a bit score of greater than or equal to 100 were 207 

annotated. 208 

Experimental design. Three different datasets were used in this study: the whole 209 

zebrafish transcriptome, the mouse brain transcriptome, and the mouse liver 210 

transcriptome.  The datasets were split into training and testing data.  The training data 211 

was used to build the regression equations and the testing data was used to validate the 212 

equations.  Three different experimental designs were tested. 213 

1. Simple linear regressions using individual genes.  We examined if simple linear 214 

regressions (PMIpredict=m* transcript abundance + b) of individual gene transcripts 215 

could be used to predict PMIs.  The values of m and b were determined using the 216 

training dataset.  The performance of the regression was assessed using the R2 of 217 

the predicted versus actual PMIs with both training and testing datasets.   218 

2. Over-defined linear regressions using top performing genes from Experimental 219 

Design 1.  An over-defined linear regression is used when the data consisted of 220 

more rows (postmortem times) than columns (gene transcripts).  The top three 221 

individual gene transcripts in Experimental Design 1 were combined and trained 222 

to predict PMIs using an over-defined linear regression model.  The performance 223 

of the model was assessed using the R2 of the predicted versus actual PMIs of 224 

both training and testing datasets. 225 

3. Perfectly defined linear regressions using randomly selected gene transcript sets. 226 

A perfectly-defined linear regression is used for data consisting of equal number 227 

of rows (postmortem times) and columns (gene transcripts).  A random number 228 

generator was used to select sets of genes from the datasets in order to find the top 229 

PMI predictors.  The analysis yields a set of coefficients (i.e., m’s), one 230 

coefficient for each gene transcript in a set.  The coefficients were used to predict 231 

the PMIs of a gene set.  The R2 and slope of the predicted versus actual PMIs 232 

were determined using the training and testing data.  The procedure of selecting 233 

the gene transcript sets from the training set, determining the coefficients, and 234 

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/058370doi: bioRxiv preprint first posted online Jun. 12, 2016; 

http://dx.doi.org/10.1101/058370


testing the coefficients was repeated at least 50,000 or more times and the gene 235 

transcript sets generating the best fit (R2) and slopes were identified (Fig 1).  236 

 237 

 238 

Fig 1. Cartoon of experimental design for three different datasets. Bold box was repeated 239 
10,000+ times.  The top 3 probe datasets were determined by the R2 between predicted 240 
versus actual PMI and the slope closest to one using the test dataset. If X=’zebrafish’ then 241 
n=548, t=11, p=11; if X=’mouse brain’ then n=478, t=7, p=7; if X=’mouse liver’ then n=36, 242 
t=7, p=7.  243 

 244 

Results 245 

The 36,811 probes of the zebrafish and 37,368 probes of the mouse were calibrated.  Of 246 

these, the transcriptional profiles of 548 zebrafish genes and 515 mouse genes were found 247 

to be significantly upregulated.  Of the 515 upregulated genes, 36 were from the liver and 248 

478 genes were from the brain.  It is important to note that each datum point in a 249 

zebrafish transcriptional profile represents the mRNA obtained from two zebrafish and 250 

each datum point in a mouse profile represents the mRNA obtained from one mouse.  In 251 

other words, each datum point represents a true biological replicate.  Duplicate samples 252 

were collected for each postmortem time for the zebrafish profiles, and triplicate samples 253 

were collected for the mouse (with exception of the 48 h postmortem sample which was 254 

duplicated) at each postmortem time.   255 

Predicting PMI with 1 or 3 gene transcripts.  256 

The ability of individual gene transcripts to accurately predict PMIs was assessed using 257 

the simple linear regression: 258 

PMIpredict=m log2 G + b,  259 

with m as the slope (i.e., the coefficient), G is the individual gene transcript abundance, 260 

and b is the intercept. 261 
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For the zebrafish, one of the duplicates (at each postmortem time) was used to determine 262 

the linear regression equation (i.e., m and b) and the other one was used to test the 263 

regression equation.  For the mouse, one of the triplicates at each postmortem time was 264 

used to determine the linear equation and the remaining data (2 data points) were used to 265 

test the regression equation. The three gene transcripts of the zebrafish, mouse brain, and 266 

mouse liver with the highest fits (R2) between predicted and actual PMIs are shown in 267 

Table 1.  268 

Table 1. Top three fits (R2) of predicted and actual PMIs by organism/organ based on the 269 
training and testing datasets of individual probes (probe names were designated by Agilent) 270 
targeting specific transcripts.  Corresponding gene names and functions are shown. Whole, 271 
RNA was extracted from whole organisms; Brain, RNA extracted from mouse brains; 272 
Liver, RNA extracted from mouse livers.  273 
Organism/ 

Organ 
Oligonucleotide 

Probe Name R2 Number of data points Gene Name and Function 
Zebrafish         

Whole A_15_P121158 0.94 11 duplicates Non-coding 
 A_15_P295031 0.84 11 duplicates Non-coding 
 A_15_P407295 0.82 11 duplicates Non-coding 

    
 

 
Mouse         

Brain A_66_P130916 0.67 6 triplicates and 1 duplicate 
Histocompatibility 2, O region beta 
locus 

  A_55_P2127959 0.61 6 triplicates and 1 duplicate Zinc finger protein 36, C3H type-like 3  
  A_55_P2216536 0.60 6 triplicates and 1 duplicate E3 ubiquitin-protein ligase 

Liver A_55_P2006861 0.94 6 triplicates and 1 duplicate Triple functional domain protein 
  A_30_P01018537 0.91 6 triplicates and 1 duplicate Prokineticin-2 isoform 1 precursor 

  A_51_P318381 0.90 6 triplicates and 1 duplicate 
Placenta growth factor isoform 1 
precursor 

 274 

For the zebrafish, the gene transcript targeted by probe A_15_P121158 yielded a fit 275 

(combined training and testing data) of R2=0.94, while the other gene transcripts yielded 276 

moderate fits (R2<0.90).  The top predictors of PMIs for the mouse brain samples yielded 277 

weak R2-values (0.61 to 0.67), and the top predictors for the mouse liver samples yielded 278 

reasonable R2-values (0.90 to 0.94) (Table 1) suggesting that the liver was more suitable 279 

for predicting PMI than the brain. 280 

In addition to assessing the PMI prediction of individual gene transcripts, we investigated 281 

if a combination of the top gene transcripts would improve upon PMI predictions.  Using 282 

an over-defined linear regression:  283 

PMIpredict= ∑3
i=1 mi log2 Gi  284 
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and one of the duplicate/triplicate samples from each postmortem time as the training 285 

data, we determined the coefficient for each gene transcript and tested the regression 286 

equation using the remaining test data.  For the zebrafish, the derived coefficients for 287 

genes targeted by probes A_15_P295031, A_15_P121158, and A_15_P407295 were  288 

-162.97, 22.44, and 35.10, respectively. Using the gene transcript abundances for these 289 

probes at 48 h postmortem (-0.33 a.u., -0.89 a.u., and -0.25 a.u., respectively) and the 290 

equation above, the predicted PMI is ~25.3 h.  For the mouse brain gene transcripts 291 

targeted by probes A_66_P130916, A_55_P2127959, and A_55_P2216536, the derived 292 

coefficients were 3.70, -3.57, and 45.25, respectively.  Using the gene transcript 293 

abundances for these probes at 48 h postmortem (1.21 a.u., 0.36 a.u., and 0.80 a.u., 294 

respectively) and the equation above, the predicted PMI is ~39.2 h.  For the mouse liver 295 

gene transcripts, the derived coefficients targeted by probes A_51_P318381, 296 

A_30_P01018537, and A_55_P2006861 were -3.75, 36.21, and -13.93, respectively. 297 

Using the gene transcript abundances for these probes at 48 h postmortem (1.04 a.u., 1.65 298 

a.u., and 0.48 a.u., respectively) and the equation above, the predicted PMI is ~49.3 h.  299 

The fits (R2) of the predicted versus actual PMIs for the zebrafish, the mouse brain and 300 

mouse liver were 0.74, 0.64, and 0.86, respectively.  301 

 302 

While some of the individual gene transcript abundances yielded reasonable PMI 303 

predictions using simple linear equations (Table 1), combining the individual gene 304 

transcript abundances and using an over-defined linear regression did not significantly 305 

improve upon PMI predictions based on individual genes.  306 

 307 

These experiments showed that neither simple linear regression equations derived from 308 

the individual gene transcripts, nor over-defined linear regressions derived from the top 309 

three individual gene transcripts satisfactorily predicted PMIs.   310 

Predicting PMI with many genes  311 

 312 

To predict PMIs using perfectly defined linear regressions, the number of gene transcripts 313 

used for the regression has to equal the number of postmortem sampling times.  The 314 

zebrafish was sampled 11 times and the mouse was sampled 7 times, therefore 11 and 7 315 
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genes could be used for the regressions, respectively. The regression equation for the 316 

zebrafish was:  317 

 318 

PMIpredict= ∑11
i=1 mi log2 Gi  319 

 320 

The regression equation for the mouse was:  321 

 322 

PMIpredict= ∑7
i=1 mi log2 Gi  323 

 324 

The procedure to find gene transcript sets that provide the best PMI predictions included: 325 

assigning randomly-selected genes to gene transcript sets, determining the coefficients of 326 

the gene transcripts in the set using a defined least squared linear regression, and 327 

validating the regression model with gene transcript sets in the test data.  We rationalized 328 

that if this process was repeated thousands to millions of times, groups of gene transcripts 329 

could be identified that accurately predict PMIs with high R2=>0.95 and slopes of 0.95 to 330 

1.05.    331 

 332 

The number of upregulated genes in the zebrafish, mouse brain, and mouse liver 333 

transcriptome datasets is relevant to determining the optimal gene transcript set for PMI 334 

predictions because of the magnitude of possible combinations to be explored.  For 335 

example, there are 2.85 x 1022 combinations of 11 gene transcripts for the zebrafish 336 

dataset (n=548), 1.08 x 1015 combinations of 7 gene transcripts for the mouse brain 337 

dataset (n=478) and 8.35 x 106 possible combinations of 7 gene transcripts for the mouse 338 

liver dataset (n=36).  Therefore, for some transcriptome datasets (i.e., zebrafish and 339 

mouse brain), the determination of the best gene transcript set to accurately predict PMI 340 

was constrained by the number of possible combinations explored in reasonable 341 

computer time. 342 

Validation of PMI prediction 343 

After training 50,000 random selections, about 95% (n=47,582) of the selected gene 344 

transcript sets yielded R2 and slopes of 1 with the training datasets.  The remaining 345 
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selections (n=2,418) did not yield R2 and/or slopes of 1 because the equations could not 346 

be resolved, or else the fits and/or slopes were <1.  The R2 and slopes of the predicted 347 

versus actual PMIs using the testing data were used to identify the top gene sets. 348 

The top three gene transcript sets with the highest R2 and slopes closest to one are shown 349 

in Fig 2.  The gene transcript set used in Panel A had smaller confidence intervals than 350 

those found in Panels B and C.  At the 99% confidence level, the predicted PMIs for the 351 

gene set in Panel A ranged from 7 to 11 h for the actual PMI of 9 h, from 8 to 16 h for the 352 

actual PMI of 12 h, from 21 to 27 h for the actual PMI of 24 h, from 46 to 50 h for the 353 

actual PMI of 48 h, from 96 h for the actual PMI of 96 h.  These results suggest that PMIs 354 

could be accurately predicted using zebrafish gene sets and the derived coefficients.   355 

 356 

 357 

Fig 2. Predicted versus actual PMIs determined for the zebrafish by three equations 358 
representing different gene transcript sets.  R2 and slopes are based on both training and 359 
testing datasets. Gray line represents 99% confidence limits of the linear regression. Open 360 
circles, training data; closed circles, testing data.  See Table 1 for information on the genes 361 
and annotations. 362 
 363 

The gene transcription profiles of the 11 genes used in Fig 2, Panel A are shown in Fig 3.  364 

Note that the gene transcript abundances of the duplicate samples used for training and 365 

testing are similar at all sampling times.  These results show the high precision of the 366 

Gene Meter approach since each datum point represents different zebrafish.  Note that 367 

each gene has a different postmortem transcriptional profile. 368 
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369 
Fig 3. Zebrafish transcriptional profiles contributing to Fig 2, Panel A. Open circles, 370 
training data; closed circles, testing data; black line, average.  See Table 2 for information 371 
on the equations and probe annotations. 372 
 373 

Table 2 shows the probe labels for the gene transcript sets used in Fig 2 Panels A to C 374 

and their corresponding coefficients derived from the training dataset.  Note that only 375 

some genes could be annotated using NCBI.  We assumed that genes not annotated 376 

represent non-coding mRNA.  The PMIs in Panel A to C could be predicted by adding 377 

the products of the log2 abundance of each gene to its corresponding coefficient. For 378 

example, the equation for Table 2 Panel A is:  379 

PMI = -13.39P1 - 5.72P2 + 5.72P3 + 12.82P4 – 7.07P5 – 10.26P6 + 13.13P7 – 16.00P8 + 380 

5.44P9 – 4.39P10 +11.94P11; 381 
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where Pi are the gene abundances represented by the probes A_15_P105218 (0.39 a.u.), 382 

A_15_P427235 (-0.54 a.u.), A_15_P485935 (-0.39 a.u.), A_15_P163931 (1.27 a.u.), 383 

A_15_P110717 (-0.53 a.u.), A_15_P204076 (0.16 a.u.), A_15_P197726 (0.82 a.u.), 384 

A_15_P164061 (0.58 a.u.), A_15_P105411 (-0.40 a.u.), A_15_P405455 (-1.13 a.u.), 385 

A_15_P569742 (0.46 a.u.).  In this example, the predicted PMI is ~24 h.  Based on 386 

Figure 2 panel A, the 99% confidence interval is between 20.9 and 27.1 h. 387 

 388 

Table 2. Zebrafish genes used to predict PMI by Panel. The gene annotations of the probes were 389 

determined using NCBI with a 100 bit minimum.  390 

Panel Probe Label Coefficient Gene Gene Name 

A A_15_P105218 -13.39 Gpr98 G-protein coupled receptor 98 precursor  

  A_15_P427235 -5.72   Noncoding 
  A_15_P485935 5.72   Noncoding 
  A_15_P163931 12.82 Moxd1 DBH-like monooxygenase protein 1 homolog precursor 
  A_15_P110717 -7.07 Svep1 Sushi von Willebrand factor type A, EGF and pentraxin  
  A_15_P204076 -10.26 Pde4b 5'-cyclic-AMP and -GMP phosphodiesterase 11 
  A_15_P197726 13.13 Plek2 Pleckstrin-2 
  A_15_P164061 -16.00 Rassf6 Ras association domain-containing protein 6 
  A_15_P105411 5.44 Grm7 Metabotropic glutamate receptor 7-like  
  A_15_P405455 -4.39   Noncoding 
  A_15_P569742 11.94 Trim25 E3 ubiquitin/ISG15 ligase TRIM25-like 
          
B A_15_P104895 19.66   Noncoding 
  A_15_P522677 -26.62   Noncoding 
  A_15_P105411 13.32 Grm7 Metabotropic glutamate receptor 7-like 
  A_15_P119193 15.64   Noncoding 
  A_15_P401770 5.89 Lrrc59 Leucine-rich repeat-containing protein 1 
  A_15_P104490 -27.55 Wif1 Wnt inhibitory factor 1 precursor  
  A_15_P177366 -3.88 Bmpr2 Bone morphogenetic protein receptor, type II a 
  A_15_P586597 -7.64   Noncoding 
  A_15_P168556 6.77 Sema6d Semaphorin-6D isoform X1 
  A_15_P105618 17.47 Gpr143 G-protein coupled receptor 143 
  A_15_P171831 6.86 Il20 Interleukin-20 isoform X1 
          
C A_15_P569842 3.20 Myo3a Myosin-IIIa 
  A_15_P176341 2.03 Prrt4 Proline-rich transmembrane protein 4 
  A_15_P107601 8.59 Atf3 Cyclic AMP-dependent transcription factor ATF-3 
  A_15_P168526 -5.03 Pglyrp1 Peptidoglycan recognition protein 1 
  A_15_P328806 -5.37 Kdm5b Lysine-specific demethylase 5B 
  A_15_P309786 2.33 FimC Integumentary mucin C.1-like 
  A_15_P120901 0.31 Gnai1 Guanine nucleotide-binding protein G(i) subunit alpha-1 

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/058370doi: bioRxiv preprint first posted online Jun. 12, 2016; 

http://dx.doi.org/10.1101/058370


  A_15_P165836 6.98 C3ar1 C3a anaphylatoxin chemotactic receptor-like 
  A_15_P576307 1.91   Noncoding 
  A_15_P110820 -34.27 Gucy1a3 Guanylate cyclase soluble subunit alpha-3 
  A_15_P105618 32.01 Gpr143 G-protein coupled receptor 143 

 391 

Mouse 392 
After training 50,000 random selections (each selection consisted of 7 genes), about 96% 393 

(n=47,847) of the selected gene sets yielded R2 and slopes of 1.  The remaining selections 394 

were not used for validation because the equations (n=2,153 selections) could not be 395 

resolved, or they had fits and/or slopes that were <1 (n=25 selections). The R2 and slopes 396 

of predicted versus actual PMIs determined using the testing dataset identified the top 397 

performing gene sets. 398 

The top selected gene transcript sets for the mouse liver and brain are shown in Fig 4.  As 399 

indicated by the R2, slopes, and size of the 99% confidence intervals, gene transcript sets 400 

from the liver were better at predicting PMIs than those from the brain.  The mouse genes 401 

used in the gene transcript sets, their coefficients, and annotations are shown in Table 3 402 

and the transcriptional gene profiles for the mouse liver samples are shown in Fig 5.  403 

Note that the high similarity in the gene transcript abundance between the data used for 404 

training and testing of the selected genes.  In most cases (but not all), the duplicate 405 

samples (represented by dots) are located on top of one another.   406 

 407 

Fig 4. Predicted versus actual PMI determined for the mouse for three different equations 408 
as represented by the panels.  R2 and slopes are based on both training and testing datasets. 409 
Gray line represents 99% confidence limits of the linear regression. Open circles, training 410 
data; closed circles, testing data.  See Table 3 for information on the equations and probes. 411 
 412 

The poor predictability of the brain gene transcript sets (i.e., R2<0.95) could be attributed 413 

to the low number of repeated selections of gene transcript sets and the variability in gene 414 
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abundances between the training and testing datasets. We repeated the analysis of the 415 

brain samples an additional 1,000,000 times, which resulted in some improvement.  The 416 

best fit and slope for 50,000 gene transcript set selections was R2=0.83 and m=0.77 (not 417 

shown).  The best fit and slope for 1,000,000 selections was R2=0.93 and m=0.85 (Fig 4, 418 

Panel B) with the second best being R2=0.92 and m=0.86 (Fig 4, Panel C).  Hence, the 419 

number of combination of gene transcript sets examined is important for selecting the 420 

best ones.  It is important to emphasize that the computation time for running 1,000,000 421 

selections was approximately 1 week using a Mac OS X 10.8.6. 422 

The PMIs in Panel A to C could be predicted by adding the products of the log2 423 

abundance of each gene to its corresponding coefficient. The predicted PMIs for mouse is 424 

calculated same way as for zebrafish (shown above). 425 

 426 
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Table 3. Mouse probes used to target gene transcripts and their coefficients used to predict 427 
PMIs by Panel. The annotations of probes were determined by using NCBI database with 428 
100 bit minimum. 429 

Panel Organ Probe Coefficient Gene Gene Name 

A Liver A_55_P2007991 12.7 Tuba3b Tubulin, alpha 3B 
    A_51_P227077 -21.43 Mdh1b Malate dehydrogenase 1B, NAD (soluble) 
    A_55_P2112609 14.97   Non-coding 
    A_30_P01028777 -1.6   Non-coding 
    A_51_P318381 9.91 Pgf Placental growth factor 
    A_55_P2197847 18.41   Non-coding 

    A_30_P01026843 7.59 Ifitm2 
Interferon induced transmembrane protein 
2  

           
B Brain A_52_P627085 14.2729 Mrps18c 28S ribosomal protein S18c, mitochondrial 
    A_30_P01025266 -59.3569 Klf14 Krueppel-like factor 14 
    A_55_P1955891 -5.57821 Ppm1e Protein phosphatase 1E 

    A_55_P2109107 1.92003 Gfra2 
GDNF family receptor alpha-2 isoform 3 
precursor 

    A_30_P01031213 -61.0776 Acsl1 
Long-chain-fatty-acid--CoA ligase 4 
isoform 1 

    A_52_P418795 -11.3343 Grk4 G protein-coupled receptor kinase 4 
    A_66_P100268 59.9399   Non-coding 
           
C Brain A_30_P01028032 9.30294 Flo11l Flocculation protein FLO11-like 
    A_55_P1972018 -37.7273 Hist1h4a Histone H4 
    A_55_P2410304 -10.5218   Non-coding 
    A_52_P1082736 15.8909 Sept1 Septin-1 
    A_66_P117204 9.66267 Gpc3 Glypican-3 isoform 

    A_30_P01020727 6.36972 Adam2 
Disintegrin and metalloprotease domain 4b 
precursor 

    A_52_P236705 5.9439 Ripply3 Protein ripply3 
 430 
 431 

We compared the variability in gene transcript abundances between training and testing 432 

data sets for the mouse liver and mouse brain.  Transcriptional gene profiles of the gene 433 

sets used in Fig 4 Panels A and B are shown in Figs 5 and 6, respectively.  While most of 434 

the mouse liver gene transcript abundances are similar for the training and testing data 435 

sets in Fig 5, many of the mouse brain gene transcript abundances are not similar in Fig 436 

6.  A two-tailed T-test of the standard deviations of the gene transcript abundances in the 437 

training and testing datasets for the liver and brain samples (Fig 5 versus Fig 6) by 438 

postmortem time were significantly different (P< 0.006), with higher standard deviations 439 

in the brain samples than the liver.  This finding indicates that variability in the gene 440 

transcript abundances affects PMI predictability.   441 
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 442 

Fig 5. Mouse liver transcriptional profiles contributing to Fig 4, Panel A. Open circles, 443 
training data; closed circles, testing data; black line, average. See Table 3 for information 444 
on the equations and probe annotations. 445 
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Fig 6. 446 
Mouse brain transcriptional profiles contributing to Fig 4, Panel B. Open circles, training 447 
data; closed circles, testing data; black line, average. See Table 3 for information on the 448 
equations and probe annotations. 449 
 450 

To further test this phenomenon, a small amount of random noise was added to the 451 

abundances of mouse liver gene transcripts (Fig 5), which originally had very low 452 
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standard deviations by postmortem time.  When the introduction of noise approached 453 

10%, the fit and slopes were drastically altered, indicating that similarity in the gene 454 

transcript abundances between the training and test data sets can directly affect the fit and 455 

slopes of predicted versus actual PMIs. 456 

Randomization challenge   457 

Experiments using perfectly-defined linear regressions revealed that 95% of the training 458 

data for the zebrafish and mouse yielded fits (R2) and slopes of 1 for predicted versus 459 

actual PMIs.  To demonstrate that the ‘perfect’ fits and slopes are functions of the linear 460 

regressions, we randomized gene transcript abundances at every postmortem time for all 461 

genes in the zebrafish dataset.  This randomization maintained the variance in the dataset 462 

at each postmortem time so that the variance of the first postmortem time in the 463 

randomized dataset was the same as the variance of the gene transcript abundances at the 464 

first postmortem time in the original dataset and so on for the gene transcript abundances 465 

at all postmortem times.   466 

As anticipated, training of the randomized zebrafish dataset using perfectly-defined linear 467 

regressions (11 genes by 11 postmortem times x 50,000 repeated gene transcript 468 

selections) yielded fits (R2) and slopes of 1 for predicted versus actual PMIs for 95% of 469 

the regressions. When we tested the 50,000 regressions using a test dataset, not one of the 470 

gene transcript sets approached a fit (R2) and slope of 1.   In fact, most yielded slopes of 471 

zero and R2 <0.80.  The significance of this experiment is twofold: (i) it confirms that 472 

‘perfect’ fits and slopes using the training datasets are a function of ‘perfectly-defined’ 473 

linear regressions, and (ii) it confirms the need to validate the regression equations using 474 

testing datasets.  475 

Discussion 476 

In addition to the different stages of body decomposition (i.e., rigor mortis, livor mortis, 477 

algor mortis and putrefaction) [16,17,18], there are many biochemical, biological, 478 

chemical, and physical ways to determine PMI.  Biochemical indicators and 479 

corresponding sample sites include: pH and spectrophotometer readings of blood and 480 

serum [19], cardiac troponin-I and cadaveric blood in the heart [19,20], lactate and malate 481 

dehydrogenase in the liver [21], melatonin in the brain, sera, and urine [22], DNA 482 
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degradation in many tissues and organs [23,24,25,26], endothelial growth factors in the 483 

brain, heart, liver, and kidneys [27], insulin and glucagonin in pancreatic beta cells 484 

[28,29], cells in the cerebrospinal fluid [30],  apoptotic cells in skin bruises [31] and 485 

histology of labial muscosa [32]. Biological indicators and sample sites include: ciliary 486 

motility in the nose [33], sweat gland morphology in the arm pit [34], muscle contraction 487 

[35] and pyrosequencing of the buccal cavity, rectum and GI tract samples [36], 488 

entomological [37,38,39] and botanical processes occurring in and around the body 489 

[40,41]. Chemical indicators and sample sites include: electrolytes in human vitreous 490 

humour [42], biomarkers (e.g. amino acids, neurotransmitters) in body organs and 491 

muscles [43], hypoxanthine in the vitreous humour or cerebrospinal fluid [44,45,46] and 492 

potassium in the vitreous humour [47,48,49].  Physical indicators and sample sites 493 

include: microwave probe to the skin [50], infrared tympanic thermography and 494 

temperature of the ear [51,52], and temperature of the eye and body core [53,54,55].  495 

Several formulae have also been developed to estimate PMI that are based on multiple 496 

environmental and physicochemical conditions [e.g., 56].  Despite these many 497 

approaches, accurate PMI prediction remains an enigma [43].  The motivation for this 498 

study was to test experimental designs that could accurately predict PMI using 499 

upregulated gene expression data in order to provide “proof of principle”. 500 

The abundance of a gene transcript is determined by its rate of synthesis and its rate of 501 

degradation [57].  In this study, the synthesis of mRNA had to far exceed its degradation 502 

to be a significantly upregulated gene (at some postmortem time) in our study.  As 503 

demonstrated in the previous study [13] and shown in this study (Figs 3, 5, and 6), the 504 

timings of the upregulation differed between genes.  Some gene transcripts, such as the 505 

one targeted by probe A_15_P105218, were upregulated right after organismal death and 506 

reached maximize abundance at 24 h postmortem while, others, such as the one targeted 507 

by probe A_15_P569742, increased substantially at 48 h postmortem (Fig 3).  It is 508 

presumed that differences in the transcript profiles affect the value of the coefficients in 509 

the linear equations because it is not possible to generate coefficients if the gene 510 

transcript abundances changed in the same way.  That is, a numerical solution could not 511 

be mathematically resolved.  512 
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It should be noted that the upregulation of postmortem genes is optimal for PMI 513 

prediction because only about 1% of the total genes of an organism were upregulated in 514 

organismal death – which is rare indeed.   In contrast, a focus on downregulated genes 515 

would not be practical because one does not know if downregulated genes are due to 516 

repression, degradation of the total RNA, or exhausted resources such as those needed for 517 

the transcript machinery function (e.g., dNTPs and RNA polymerase). 518 

Given that gene transcripts from the liver were better at PMI predictions than those from 519 

the brain suggests that mRNA transcripts from some organs are better than others.  It is 520 

conceivable that upregulated postmortem genes could be found in the heart, kidney, 521 

spleen or muscle, which needs further exploration.   522 

It is important to recognize that this study would probably not be possible using 523 

conventional microarray approaches because normalizations could yield up to 20 to 30% 524 

differences in the up- or down-regulation depending on the procedure selected [59-62].  525 

The Gene Meter approach does not require the data to be normalized since the microarray 526 

probes are calibrated.  Moreover, in the processing of samples, the same amount of 527 

labeled mRNA was loaded onto the DNA microarray for each sample (1.65 µg), which 528 

eliminates the need to divide the microarray output data by a denominator in order to 529 

compare samples. 530 

We recognize that our experimental design did not consider factors such as temperature, 531 

which have been considered in other models [e.g., 4].  To do so would go beyond the 532 

stated objectives of providing a “proof of principle” for the optimal experimental design 533 

(i.e., perfectly-defined linear regressions based on multiple gene transcripts) using a high 534 

throughput approach.  Nonetheless, future studies could make our experimental design 535 

more universal by integrating temperature and other factors into the regression models.   536 

In addition to providing “proof of principle” of a new forensic tool for determining PMI, 537 

the approach could be used as a tool for prospective studies aimed at improving organ 538 

quality of human transplants.   539 
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Conclusion 540 

We examined if significantly upregulated genes could be used to predict PMIs in two 541 

model organisms using linear regression analyses.  While PMIs could be accurately 542 

predicted using selected zebrafish and mouse liver gene transcripts, predictions were poor 543 

using selected mouse brain gene transcripts, presumably due to high variability of the 544 

biological replicates.  The experimental design of selecting groups of gene transcripts, 545 

extracting the coefficients with linear regression analyses, and testing the regression 546 

equations with testing data, yielded highly accurate PMI predictions.  This study warrants 547 

the implementation of our experimental design towards the development of an accurate 548 

PMI prediction tool for cadavers and possibly a new tool for prospective studies aimed at 549 

improving organ quality of human transplants. 550 
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Supplemental Information 558 

Primer on Matrix Algebra 559 

Our PMI prediction approach using a perfectly defined system relies on matrix linear 560 

algebra.  The following is an explanation of matrix linear algebra and how it was used in 561 

our study to predict PMI with gene expression profiles.  A matrix is defined as a 562 

rectangular array of related values.  These values, which are called elements, usually are 563 

scalars.  Scalars are numbers that represent physical quantities.  Elements in a horizontal 564 

line are called rows and elements in a vertical line are columns and the number of rows 565 

and columns describe a matrix.  A matrix, S, with y number of rows and z number of 566 

columns is denoted as a y x z matrix.  This matrix can also be notated with subscripts and 567 

appears as Sy,z .  Mathematical operations can be performed using matrices, including 568 
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multiplication.  Matrices can be multiplied by one another if one matrix has as many 569 

columns as the other matrix has rows.  We used linear equations to obtain a matrix 570 

product.  The number of gene transcripts used in a selected gene transcript set was limited 571 

by the number of postmortem sample times. 572 

Example: 573 
If we arrange individual genes with their transcript abundances at specific postmortem 574 

times in columns then, essentially, we have a matrix A where the columns are the 575 

transcriptional profiles for individual genes. Furthermore, we can construct another 576 

matrix, B, which defines the data in a different way. In this matrix the values are the 577 

actual postmortem sampling times that are ordered in the same way as the abundances of 578 

individual gene transcripts.  Finally, we can define another matrix, consisting of one 579 

column of coefficient values.  These are the weighing factors that we will determine 580 

using the rules of linear matrix algebra.  To deconvolute the transcriptional profiles from 581 

the mixtures and solve for the weighing factors, we set up the matrices like so: A x C = 582 

B.  When this is done we are left with several equations.  To solve for x and y we need to 583 

follow the rules of linear matrix algebra.  First, we must transpose A, which becomes AT, 584 

then multiply both sides of the equation A x B = C with AT.  Next, we are required to 585 

invert the matrix product of AT x A, thus A becomes A-1 and also multiply both sides of 586 

our original equation A x C = B.  Our modified equation, which looks like this (AT * A)-587 

1AT*A*C = (AT*A)-1 * AT * B, is now ready to be solved for x and y in matrix C. 588 

Solving for C, we get C = (AT * A)-1 * AT * B. Now the values in the matrix C are x and 589 

y. Next, we plug our values for x and y into our matrix equations to obtain predicted 590 

(calculated) PMI values.  To ascertain whether the predicted PMIs from our group of 591 

gene transcripts is accurate, we plotted the actual and predicted PMIs and determined the 592 

slope and fit of the regression line.  The R2 and the slope of the line was observed to 593 

determine how well a group of gene transcripts predicted PMI.  The R2 is the measure of 594 

how much variability is accounted for by the model.  For example, if the R2 is 0.95, then 595 

the model accounts for 95% of the variability.  The other 5% is due to undetermined 596 

phenomena.   597 

 598 
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