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Abstract 

We develop a classification scheme for the evolutionary state of planets based on the 

non-equilibrium thermodynamics of their coupled systems, including the presence of a 

biosphere and the possibility of what we call an “agency-dominated biosphere” (i.e. an 

energy-intensive technological species).   The premise is that Earth’s entry into the 

“Anthropocene” represents what might be, from an astrobiological perspective, a 

predictable planetary transition.  We explore this problem from the perspective of the 

solar system and exoplanet studies.  Our classification discriminates planets by the 

forms of free energy generation driven from stellar forcing.  We then explore how 

timescales for global evolutionary processes on Earth might be synchronized with 

ecological transformations driven by increases in energy harvesting and its 

consequences (which might have reached a turning point with global urbanization). 

Finally, we describe quantitatively the classification scheme based on the maintenance 

of chemical disequilibrium in the past and current Earth systems and on other worlds in 

the solar system.  In this perspective, the beginning of the Anthropocene can be seen 
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as the onset of the hybridization of the planet - a transitional stage from one class of 

planetary systems interaction to another.  For Earth, this stage occurs as the effects of 

human civilization yield not just new evolutionary pressures, but new selected directions 

for novel planetary ecosystem functions and their capacity to generate disequilibrium 

and enhance planetary dissipation. 

 

I. Introduction 

 

The recognition that human activities alter Earth’s climate has prompted debate 

concerning “planetary boundaries” (Rockstrom et al. 2009, Barnosky 2012, Lenton 

2008,  Brook et al 2013) required to keep the anthropogenic forcing (Steffen et al. 2015) 

within “safe operating limits”.  These studies concern Earth’s entry into a possible new 

geologic epoch called the “Anthropocene,” where humanity’s collective actions become 

the dominant driver for planetary changes (Crutzen 2002).  As two examples, more than 

50% of the Earth’s land surface area has been “colonized” for human uses (Hooke et al 

2012), and current anthropogenic flows of phosphorus are more than factor of 5 above 

“natural” rates (8 Tg P y-1 anthropogenic vs 1.1 Tg P y-1 natural).  In this paper, 

“Anthropocene” refers to the planetary state in which the effects of the collective action 

of a single species of the biosphere (humans on Earth) are felt at the planetary scale.  

This use of the term differs from the  strict sense of the formal geological timescale 

(Zalasiewicz 2017), which some researchers question (Zalasiewicz 2015).  Below, we 

define this planetary state more precisely in energetic terms.   

 

Earth’s entry into an anthropogenic era poses challenging questions for the long-term 

sustainability of global human civilization.  It is, in fact, not clear if a planetary civilization 

as energy-intensive as ours can be sustained for centuries.  While some aspects of this 

question rest within political science and sociology (Kennett & Beach 2013), a broader 

perspective is developing on the transition, that only a new collaboration among the 

physical, biological, and social sciences can address to illuminate and inform the 

choices we face.  This paper considers a perspective that we call the Astrobiology of the 

Anthropocene.  This perspective entails viewing the current transition of Earth and  
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civilization in their full astronomical and planetary contexts.  This means seeing  

civilization as another manifestation of the long co-evolution of the biosphere and other 

coupled Earth systems.  It also means broadening that view to ask if what we call the 

Anthropocene in this paper might be a generic consequence of any planet evolving a 

successful technological species.  We believe this perspective holds considerable 

benefits in understanding the true nature of the environmental challenges we face and 

articulating paths towards solutions.  

 

Understanding of the current state of the coupled Earth systems has not developed in 

isolation.  Only through intense study of Earth’s history of 3.8 billion years of habitation 

have we gained insights into the strong and complex interplay between the biosphere 

and other systems (Kasting & Canfield 2012, Arndt & Nisbet 2012).  The study of other 

solar system bodies has also provided powerful laboratories for understanding climate, 

in terms of radiative transfer, atmospheric chemistry, atmospheric dynamics and 

couplings to geological and near-planet space environments (Rockstrom et al. 2009).  

The recent explosion in exoplanet studies has also become relevant.  Researchers are 

on the threshold of characterizing exoplanet atmospheres, in which information 

concerning the chemistry, dynamics and, perhaps, the presence of bio-signatures, for 

these worlds is expected to be forthcoming (Howard 2013, Lineweaver & Chopra 2012, 

Seager 2013).   

 

In light of these advances, it is now possible to cast the question of boundaries and 

thresholds for Earth systems into a wider context concerning life and its planetary 

environment.  Instead of focusing purely on human impacts on Earth, it should now be 

possible to develop implicitly astrobiological frameworks for broadening our 

understanding of coupled system dynamics on any planet with any level of biosphere 

(Frank & Sullivan 2014).  From this perspective, one can develop a coherent account of 

the “rules of the game” for different planetary system interactions that are quantifiable 

and testable.  Developing even the outlines of such rules would be of scientific interest 

in their own right. In addition, understanding general features of such dynamics can also 

help define boundaries and thresholds we may be facing with our own impacts on Earth. 

http://findresearcher.sdu.dk:8080/portal/en/persons/donald-eugene-canfield(916eabe6-766d-4018-a5b0-3695497582bb).html
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Implicit in this framework is an assumption that Earth would not be the only world on 

which life evolves.  Indeed, our world would not be the only one to evolve an energy-

intensive technological species with the capacity for planetary-scale feedbacks.  Clearly, 

the existence of both life and intelligence on other worlds represents one of the greatest 

open questions in science.  The perspective we take here, however, assumes a fairly 

conservative answer to these questions (Frank & Sullivan 2014, 2016).  Such evolution 

only needs to occur a statistically relevant number of times (~ 1000) across all cosmic 

time and length scales for average properties of the kind we are interested in here to be 

relevant. As long as the probability for a habitable planet to develop a technological 

species once in its history is greater than 10-19, then meaningful averages must exist 

(Frank & Sullivan 2016).   

 

This paper takes a global, systemic, and inherently astrobiological view of sustainability 

for any energy-intensive technological civilization.  Viewing planets as thermodynamic 

systems, we first develop a classification scheme for different levels of coupled 

planetary systems in terms of their rates of free energy generation.  Next, we build on 

current evidence of ecosystem-evolutionary dynamics to explore how biospheric-

planetary systems interactions can evolve novel ecosystem functions, and apply this to 

“anthropocene"-like transitions. We conclude with a description of how the proposed 

framework can be applied in future investigations. 

 

II. Purposes of Planetary Classification: Beyond the Kardashev Scale 

We address the purpose in developing a new classification scheme for planets with life 

with an emphasis on energy-intensive civilization-building species.  Many classification 

schemes have been developed in the history of astrobiology, and the Search for 

ExtraTerrestrial Intelligence project (SETI, http://setiathome.berkeley.edu) in particular, 

with the Kardashev scale particularly influential (Cirkovic 2015).  At first glance, our 

approach bears similarity to the Kardashev scale.  Our strategy is substantively 

different, however, in both its intent and its understanding of the evolution of 

technological civilizations. It explicitly links to energy conversions within the planetary 
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environment and how these are constrained by thermodynamics.  These differences are 

important for filling gaps in previous research. 

 

The Kardashev scale was first proposed (Kardashev 1964) as a means of classifying 

technological civilizations (we refer to them below as exo-civilizations). The purpose of 

the Kardashev scale was to aid discussions of detectability through SETI efforts.  The 

scale was based on the exo-civilization’s energy consumption/manipulation levels.  A 

Type 1 civilization manipulated the entire energy resources of its home planet. A Type 2 

civilization manipulated the entire energy resources of its home star/planetary system. A 

Type 3 civilization manipulated the entire energy resources of its home galaxy.  The 

Kardashev scale was originally intended to help guide SETI by classifying its range of 

possible targets on an evolutionary scale.  Since then, however, it has also become a 

kind of gold standard for thinking that focused purely on the evolution of exo-

civilizations.  The literature on the Kardashev scale is long, encompassing topics from 

enhancements (Galantai 2004), criticisms (Galantai 2007), engineering (Armstrong and 

Sandberg 2013) and philosophy (Barrow 1999). 

 

Our proposed classification system is not intended as a means for structuring exo-

planet observational programs (though some may find it useful for such an endeavor).  

Instead, this scheme will structure a research program for understanding the trajectories 

of co-evolution of planets and life, explicitly to include the development of what we call 

agency-dominated biospheres, i.e. a sustainable exo-civilization.  Our thesis is that the 

development of long-term sustainable versions of an energy-intensive civilization must 

occur on a continuum of interactions between life and its host planet.  Developing this 

classification system would lay the foundations for future work on the co-evolution of life 

and planets along this continuum.  Thus, our research framework takes an explicit 

perspective in which long-term sustainable civilizations are not seen as “rising above” 

the biosphere.  Instead, the path to long-term sustainability demands learning how to 

“think like a planet” (Alberti 2016), by entering into a co-operative ecological-

evolutionary dynamic with the coupled planetary systems. 
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In this way, our classification differs from the Kardashev scale and its literature.  The 

Kardashev scale originated from a particular historical moment in thinking about exo-

civilizations, in which technology would be unconstrained, hence its focus on energy 

consumption alone.  Civilizations were expected to rise up the ladder of energy 

manipulation while the physical systems from which that energy was drawn would 

simply be brought to heel.  In this way, considerations of Type I civilizations represent a 

kind of planetary brutalism complete with implicit visions of world-girdling cities (e.g. 

Trantor in The Foundation trilogy of Asimov, 1951).   

 

In the years since Kardashev proposed the classification system, we have learned (the 

hard way perhaps) that biospheres are not so easily ignored.  From the work of 

Lovelock (1965, 1975), Lovelock and Margulis (1974) and others, a new scientific 

understanding of planets and life has emerged that includes recognition of their co-

evolution as coupled complex systems.  Those systems have their own internal 

dynamics which must be considered when mapping out trajectories of civilizations as a 

form of biospheric activity arising in a planet’s evolution.  Thus, it is not simply energy 

consumption which must be considered.  A thermodynamic perspective which includes 

the fundamental limits to how energy can be generated as well as the consequences of 

using that energy, i.e. entropy and free energy gradients, must be included in order to 

understand how civilizations rise to the level of Type I and, possibly survive long enough 

to move beyond their host world towards a Type II. 

 

Thus, our proposed classification implicitly includes another stalward of the astrobiology 

literature: the Drake Equation (Vokoch & Dowd 2015).  In particular, it is the final factor 

in that equation, the average lifetime of exo-civilizations (L) which is at issue. It is not yet 

clear that any long term sustainable version of our kind of civilization (rated as 0.8 on 

the Kardashev scale) is even possible.  This would imply low values of the average 

lifetime: L ~ 100 - 1000 y.  This is clearly a question relevant to the Fermi Paradox and 

so-called “Great Silence”.  A vast literature exists on these issues (Brin 1983, Cirkovic  

2009), including the role of catastrophes and the Kardashev scale.  These studies do 

not, however, address the thermodynamic and eco-evolutionary issues raised with our 
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classification scheme.  In particular, they do not lay out a framework for putting 

civilizations back within the proper context of the evolution of planetary biospheres.   

 

To summarize, our classification scheme is not intended to provide a new framework for 

exo-planet observations.  It is not meant to be a means to find exo-civilizations. Instead, 

it provides a framework for understanding the “Anthropocene” we are now experiencing 

on Earth in a general context.  By this, we mean understanding the strong forcing of the 

planetary systems by human civilization as a potentially generic phenomena that will 

occur for any planet.  We also offer a program that might aid in understanding what  

sustainable outcomes must look like.  In other words, if one does not know where one is 

going, it will be hard to get there.   

 

We now provide the theoretical basis for our classification system and enumerate those 

classes. 

 

III. The Five Classes of Planets  

We develop a classification based on the magnitude by which different planetary 

processes – abiotic, biotic, and technologic – generate free energy, i.e. energy that can 

perform work within the system.  Most importantly, these different forms of free energy 

reflect states of thermodynamic disequilibrium.  Examples of such disequilibrium states 

are (Kleidon, 2016): kinetic energy associated with atmospheric motion; unsaturated air 

over a water surface; the chemical composition of the atmosphere with its high 

abundance of oxygen and organic biomass at the surface.  

 

Using disequilibrium as a metric for a planetary systems evolutionary state, we then use 

Earth’s 4.5 Gy history, as well as other solar system bodies (planets and moons), to 

outline four planetary system classes.  In addition, current levels of human activity 

formulated in terms of free energy also allow us to anticipate what might constitute a 5th 

planetary class where the activity of an energy-intensive technological species drives 

planetary systems in a sustainable manner. 
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III.1 Thermodynamic Background 

Our classification utilizes a combination of thermodynamics, specific planetary 

conditions, and linkages between planetary sub-systems (Kleidon 2010, 2012, 2016).  

To understand how planetary systems perform physical (or chemical) work and 

generate disequilibrium states, we consider processes generating physical, chemical, 

and biologically related forms of free energy from stellar radiative forcing (Fig. 1).  In 

principle, energy could also be generated by nuclear fission and, possibly, fusion, which 

could provide an additional source of free energy.  We excluded it from consideration 

here, however, and focus on sustainable forms of free energy generation.  We also 

consider how energy-intensive technological species can drive free-energy generation, 

e.g. with technology such as photovoltaic cells. 

 

The flux of incident stellar radiation constitutes the principle thermodynamic forcing for 

planets.  The first law of thermodynamics states that this energy is being conserved 

when converted. Energy conservation does not, however, indicate what types of energy 

conversion and associated dynamics take place within coupled planetary systems.  

These internal planetary dynamics result from and are constrained by the second law of 

thermodynamics.  In a non-isolated system such as a planetary system that exchanges 

radiation, the second law must be evaluated in the context of the planetary entropy 

balance. This balance relates the change in the entropy of the planet (Sp), with entropy 

exchange by radiation as well as entropy production that takes place within the system: 

       

   𝑑𝑑𝑑

𝑑𝑑
=
𝑑𝑑

𝑑𝑑
+
𝑑𝑑

𝑑𝑑
+ ∑𝑑 𝑑𝑑 => 0       (1) 

    

where 𝑑𝑑 = stellar radiative energy flux; 𝑑𝑑 = planetary radiative flux, Th and Tc the 

temperatures at which the stellar and planetary radiative fluxes are emitted.  Thus, the 

first two terms on the right side are fluxes of radiative entropy associated with stellar 

and terrestrial radiation. The third term is the one that matters for our consideration, as it 

represents the sum of entropy production by internal dissipative processes. In the 

steady state entropy balance, this term represents the entropy production that results 

from all forms of planetary dynamics: frictional dissipation of motion; chemical reactions; 
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biotic respiration; energy use by a technological civilization.  In this way, internal entropy 

production acts as a constraint on how much work can be performed within the system.   

 

Planetary entropy production, however, does not discriminate processes that do not 

involve work (absorption of radiation and its re-emission or heat diffusion) from 

processes involving the generation and dissipation of free energy, as is for instance the 

case with motion that involves the generation of kinetic energy and its frictional 

dissipation.  This focus on free energy generation is the basis for our thermodynamic 

classification of planetary environments.  Planetary energy and entropy fluxes from 

stellar radiation set a global potential for the generation of free energy, denoted by Prad.  

To evaluate how much of this potential can be used to generate forms of free energy, 

we need to consider the linkages of the planetary environment as shown in Fig. 1. 

 

The starting point for such free energy generations is the connection between radiative 

fluxes and motion within the coupled planetary systems.  On planets with greenhouse 

atmospheres, the radiative heating and cooling take place at different places and times.  

Radiative heating of the surface and cooling of the atmosphere aloft sets up 

temperature differences driving atmospheric convection.  Convection is associated with 

the conversion of a fraction of the differential radiative heating into planetary motion, 

equivalently to the work heat engines perform.  This work generates free energy, (i.e 

kinetic energy), and a physical form of disequilibrium via velocity differences.  We 

denote this free energy by Pclim, as most of it is associated with the climate system 

dynamics.  Note that the rate by which work can be performed to generate planetary 

motion depends on the specifics of a planet.  For instance, it depends on whether the 

planet is tidally locked, the extent to which it is tilted, and whether it has water that can 

evaporate and that can drive moist convection upon condensation and change radiative 

exchange by formation of clouds.  These factors affect how differential radiative heating 

takes place in a specific environment, precluding simple, general expressions.  

 

When motion is generated in a planetary environment, it yields transport, mass mixing 

and enhanced chemical activity.  These processes drive hydrologic cycling associated 
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with further conversions of energy. Such conversions include generation of chemical 

free energy such as desalinization of rainwater, lightning-based nitrogen fixation, or the 

weathering of surface rocks.  Other means of chemical free energy generation include 

photochemistry, such as stratospheric ozone production via ultraviolet absorption and 

geochemical cycling due to the dynamics of planetary interiors. Together, these 

mechanisms generate chemical free energy and disequilibrium whose total generation 

rate we call Pchem.  The particular rates depend on the specifics on the planetary 

environment, e.g., the atmospheric composition and the presence of an oxic 

atmosphere, the presence of water, and a planet with plate tectonics as these affect the 

different mechanisms by which chemical free energy can be generated in the planetary 

environment.  

 

The presence of photosynthetic life directly converts a fraction of stellar radiation into 

chemical free energy.  We denote this generation rate by Pbio.  Note that the need for 

nutrients in producing biomass links biotic activity to Pclim and Pchem since they provide 

and mix chemical constituents.  

 

Last, but not least, the activity of a technological civilization relates to free energy 

generation processes by its energetic requirements for metabolic and socioeconomic 

activity.  Human appropriation of net primary productivity (Laland 2014) consumes some 

of the free energy generated by the biosphere to meet food demands while the 

consumption of fossil fuels drives socioeconomic activities.  Renewable energy draws 

from forms of energy that are generated within the planetary environment.  For instance, 

solar power draws directly from the potential Prad, while wind energy utilizes a fraction of 

Pclim.  We denote the energy appropriated for use by a technological civilization as Pciv. 

 

III.2 Class Specification  

We classify planets based on the magnitude of free energy generation by the different 

processes from the radiative forcing to the energy appropriation of a technological 

civilization.  The presence or absence of these generation processes, as well as the 

strength of their coupling to the planetary forcing, naturally separates planets into 
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different classes (Fig 2, 3). 

 

Class I: Planets without an atmosphere are characterized by states close to radiative 

equilibrium. For these worlds, a simple energy balance determines the surface 

temperature, in which absorbed stellar radiation approximately equals the emitted 

radiation from the planet (Fig 2).  Rotation, or the lack thereof, as well as heat storage 

provides an additional complication. Without an atmosphere with greenhouse gases, 

however, no mechanisms exist by which energy and entropy can drive significant 

energy conversions associated with additional planetary processes.  Thus, physical 

power is absent (Pclim = 0), as is chemical and biotic power (Pchem = Pbio = 0). The 

entropy production of the planetary system entirely results from radiative processes, in 

particular absorption and emission. Examples of Class I planets in our solar system are 

Mercury and the Earth’s Moon. 

 

Class II: For planets hosting atmospheres containing greenhouse gases, incident solar 

radiation creates thermal gradients between the surface and atmosphere where 

radiation is re-radiated back into space (Fig 2b).  These gradients drive the generation 

of kinetic energy associated with convective atmospheric flows.  Differential stellar 

energy deposition will also drive latitudinal and longitudinal circulation patterns. 

Particulate transport and chemical imbalances then follow leading to long-term 

disequilibrium.  Thus, Class II planets show significant power in geo-climate systems 

(Pclim >> 0), possibly some chemical power (Pchem ≥ 0), but no biotic activity (Pbio = 0).  

The entropy production of the planetary system in this class contains contributions by 

frictional dissipation, chemical reactions and other planetary processes.  Venus and 

Mars in their present states represent Class II planets.  

 

Class III: Biotic activity on a planet can be sustained by the use of chemical free energy 

from the environment, or by generating free energy out of stellar radiation.  It is possible 

that a planet may host what we term a “thin” biosphere meaning while it sustains biotic 

activity, it does not strongly affect planetary drivers and alter the evolutionary state of 

the planet as whole (Fig 2c). Thus, Class III planets have Pclim >> 0, Pchem > 0, and Pbio 
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> 0 but Pbio does not result in strong feedbacks to the planetary forcing.  There are no 

current examples of Class III planets in our solar system, but Earth in the early Archean 

after life formed but before the great oxidation event may have represented such a 

world.  Should Mars have developed life during the Noachian, when liquid water existed 

on its surface, then it too may have represented a Class III planet.   

 

Class IV:  Once life strongly feeds back to the radiative forcing of a planet, it becomes a 

Class IV world.  It hosts what we call a “thick biosphere” meaning all systems are 

strongly modified by life and that continual modification drives processes maintaining 

planetary disequilibrium (Fig 2d).  Earth’s “thick biosphere” is sustained by 

photosynthetic activity as it requires sunlight as an energy source.  The presence of life, 

as Lovelock, Margulis (Lovelock & Margulis 1974) and others (Kleidon 2010, 2012, 

2016) argued, dominates the coupling between planetary systems and results in 

planetary change, e.g., by altering the rate of chemical weathering (Schwartzman & 

Volk 1989) or surface energy and water balances on land (Shukla & Mintz 1982, 

Kleidon et al 2000).  Thus, Class IV planets are characterized by a greater share of 

biotically-generated power (Pbio >> 0) and strong feedbacks with the planetary radiative 

forcing.  Earth after the great oxidation event represents a Class IV planet. 

 

Class V:  As the final class, we imagine a planet in which the activity of an energy-

intensive technological species strongly shape free energy generation and feedbacks.  

Such a class is possible because the radiative planetary forcing can, in principle, be 

converted directly into free energy with a huge potential (Prad), but only if the 

intermediate step of radiative heating (i.e. the conversion of radiation into heat, e.g. by 

absorption at the surface) is prevented from taking place.  Photovoltaics can  

accomplish this step as a technological means to generate free energy from solar 

radiation unavailable to natural processes.  Such a state would be characterized by 

substantial generation of free energy by technology so that Pciv >> 0, and would be 

strong enough to affect the planetary radiative forcing.  The dissipation of this free 

energy by a civilization could then, in principle, dominate the entropy production of the 

planetary system.  We could expect such a planetary state of Earth in the future if 
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humanity successfully manages a transition to an energy system based entirely on solar 

energy.  Other forms of renewable energy with low feedback can also play a role. 

 

Finally, even with highly pessimistic assumptions about the probabilities for the 

evolution of technological civilizations over the history of the Universe (Frank & Sullivan 

2016), there likely have been many Class V planets across cosmic history (though we 

note that our galaxy could still be sterile now).  Such dynamics might intentionally 

evolve by eco-evolutionary dynamics. 

 
IV. Eco-Evolutionary Dynamics and Planetary Transitions 

 

The hypothesis that planetary transitions from Class IV to V are plausible is supported 

by emerging evidence of eco-evolutionary feedbacks on contemporary time scales. 

Eco-evolutionary dynamics are reciprocal interactions of ecological and evolutionary 

processes over time scales shorter than evolutionary biologists used to assume were 

necessary (Pimentel 1961, Schoener 2011). It is well established that changes in 

ecological conditions may drive evolutionary change in species traits that then alter 

ecosystem function (Post & Palkovacs 2009). The reciprocal/simultaneous outcome of 

such interactions are only beginning to emerge (Matthews et al 2011). Furthermore, 

increasing evidence that humans drive major micro-evolutionary change implies human-

driven phenotypic evolution might lead to ecosystem change on planetary scales 

(Palkovacs  et al. 2012, Alberti 2015).  When such changes are successfully directed 

towards the establishment of long term (sustainable) versions of a planetary biosphere, 

what we term “agency-dominated” biospheres, then the planet enters Class V. 

 

Research demonstrates how rapid evolution might affect ecosystem functions by 

changing functional traits—organisms’ morphological, physiological, phenological, or 

behavioral characteristics that regulate their effects on ecosystems (Loreau 2010). 

Individual trait variations have significant implications for ecosystem productivity and 

stability. For example, the evolution of traits that regulate consumers’ demand for 

resources affect nutrient cycling, and ultimately, the magnitude and spatial distribution 
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of primary production (Matthews et al 2011). Evolution of traits of ecosystem-engineers 

(any organism that creates, significantly modifies, maintains or destroys a habitat), such 

as dune and marsh plants and mangroves, can affect their functional roles in 

maintaining the structures of estuarine and coastal environments. 

 

With the emergence of the Anthropocene epoch, humans have become major selective 

agents capable of unleashing unprecedented evolutionary consequences (Alberti 2015). 

This is particularly evident in human-dominated environments (i.e. in emerging urban 

agglomerations, (Alberti 2016, Alberti et al 2017). Rapid urbanization affects eco-

evolutionary dynamics both by changing habitat and biotic interactions and by 

accelerating transitions of economies toward increased demand for resources. 

Examples of eco-evolutionary feedbacks associated with urbanization have been 

documented for many species of birds, fish, plants, mammals, and invertebrates (Alberti 

2015). Humans’ selective pressures on traits alter the population dynamics of multiple 

prey species, reconfigure trophic interactions, and ultimately drive changes in 

community dynamics that control ecosystem functions (Matthews 2011).  

 

The planetary impact of human activity— for instance measured by the free energy 

appropriated by humans to meet their metabolic activity (e.g., net primary production) 

and socioeconomic activity (primarily fossil fuel consumption)—is expected to increase 

in the future (Krausmann et al 2013). Yet, whether the increase in energy demand will 

be met by degrading the ability of the Earth system to generate free energy or enhance 

free energy generation within the Earth system, will depend on the capacity of humans 

to redirect current activities via technological innovations to increase efficiency of use of 

resources and solar radiation (Kleidon 2012).  

 

Human-driven eco-evolutionary feedbacks provide novel opportunities for evolutionary 

innovation. These innovations could redefine interactions between our technologically-

driven civilization and global ecological processes leading to unprecedented biospheric 

functions. From a thermodynamic perspective, these may involve novel free energy 

generation capacities. By extending the range of phenomena causing evolutionary 
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change to include niche construction (Matthews 2011), scholars working at the interface 

of physics and evolutionary biology have hypothesized that evolution could expand the 

capacity of biological systems to dissipate free energy, thus maintaining and enhancing 

a state far from thermodynamic equilibrium (Loudon et al. 2016). For example, Loudan 

et al. (England 2013) provided experimental evidence that evolution by niche 

construction affects dissipative ecosystem dynamics. 

 

From an astrobiological perspective, all planetary transitions beyond Class II imply 

emergence of eco-evolutionary innovations. The emergence of oxygenic photosynthesis 

in cyanobacteria represents one of the most remarkable evolutionary innovations in 

Earth's history. In the transition to the “Anthropocene”, a transition to a Class V world, 

will require humanity (or any technological species) to outperform microbes. 

 

One plausible scenario for this transition is planning of new biospheric functions. 

Alternatively, coupled human-natural systems self-organize to generate free energy as 

a result of eco-evolutionary processes. This implies a level of cooperation between 

agency (the technological species) and the biosphere that accounts for the inherent 

non-linearity and complexity of planetary systems.  Rethinking planetary evolution in the 

presence of humans implies expanding the notion of co-evolutionary causes.  This 

requires including ideas of niche construction and cultural co-evolution through both 

inheritance and social learning (Laland 2014). Understanding the role of coupled 

human-natural systems in planetary evolution would require bridging theories from 

geoscience, evolutionary biology and ecosystem science.   

 

V. Non-equilibrium Thermodynamic Measures of Planetary Transitions 

Given our focus on non-equilibrium thermodynamics in coupled planetary systems, we 

seek measures of planetary-scale non-equilibrium or disequilibrium that capture the 

cascade of new functions and complexity occurring as planets make transitions (if they 

make them) upward in class4.  

                                                
4  In most cases, however, planets will begin with primordial atmospheres due to outgassing.  The 
timescale for atmospheric loss is determined by the planet’s escape velocity and atmospheric 
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The specification of planetary disequilibrium has a long history in astrobiology.  The 

work of Lovelock and collaborators (Lovelock 1965; Lovelock 1975; Lovelock and 

Margulis 1974) led to recognition that the biosphere strongly influenced Earth’s 

geochemical environment, including the composition of the atmosphere. The co-

existence of long-term incompatible chemical species like oxygen and methane was 

proposed as one possible sign of life (Hitchcock and Lovelock 1967; Lederberg 1965; 

Lovelock 1965). Given that Earth’s atmospheric gases are modulated by biology 

(Catling & Kasting 2007), it is reasonable to expect some planetary atmospheres to be 

similarly perturbed away from chemical equilibrium by biogenic gas fluxes.  It is worth 

noting that chemical disequilibrium is often seen as the most promising means of 

identifying biospheres in exo-planet studies (Cockell et al. 2009). It has proven difficult, 

however, to quantify the signatures of biogenic non-equilibrium that could be detected 

from a distance (Simoncini et al. 2013; Seager et al. 2013), and to relate disequilibrium 

to the rate by which it is generated (Simoncini et al. 2013). 

 

Recently, Krissansen-Totton et al. (2015) carried out detailed chemical modeling of all 

the planets in our solar system to determine their degrees of chemical disequilibrium.  

Lippincott et al. (1967) and Lovelock (1975) made early attempts to calculate such a 

thermodynamic disequilibrium for the Solar System planets. Their calculations were, 

however, hampered by incomplete data of atmospheric compositions and crude 

thermodynamic data.  The final metric Krissansen-Totton et al. (2015) employed in their 

work was the Gibbs free energy (φ) normalized by the molar thermal energy RTp (where 

R is the gas constant and Tp is the average planetary temperature for each world).  

Thus (φ /RTp) provided a measure of chemical disequilibrium, normalized to the different 

levels of stellar flux received by planets at different orbital radii.  Table 1 shows the 

values from Krissansen-Totton et al. (2015) for two examples of a Class II planet 

(Venus and Mars) and Earth (as our example of a Class IV world).  As shown, Earth has 

substantially higher values of (φ /RTp) than either of the Class II planets, as we would 

                                                
composition.  Thus, most planets begin as Class II and evolve down to Class I or continue upwards if 
biotic evolution begins. 
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expect from the discussion of the classification system. 

 

To include planets in which a technological energy-harvesting species is active, 

however (including the current entry of Earth into the hybrid state between class IV and 

V), we must consider a different metric.  As shown in Kleidon (2010), it is possible to 

estimate the entire free energy or work budget for current Earth system processes.  

Beginning with a global solar irradiance of 1.6 x 1017 W, Kleidon (2010, table 2) provides 

estimates of the magnitude of work done for various processes such as atmospheric 

circulation, hydrologic cycling and terrestrial biospheric productivity.  Each form of work 

is categorized in terms of its source as kinetic (associated with velocities v), potential 

(associated with topography φ) or chemical (associated with chemical potentials μ or 

affinities A).  For the purpose of this research, we use chemical work as a measure of 

disequilibrium (Kleidon 2010, table 3). We make this choice because of the relationship 

between novel forms of free energy generation within a planetary system and the 

capacity of evolution to generate novel functions that then feed back to ecosystems 

(section IV).  For example, the evolution of photosynthesis allowed direct chemical 

capture (and use) of energy locked in solar photons in the early Earth systems.  This 

was more efficient than heat-engine forms of capture and use represented by 

mechanical mean to generate disequilibrium.  As biotic evolution progressed, the 

feedback and coupling to ecosystems, (both locally and cascading up to the biosphere 

as a whole), allowed for innovation which carried Earth from a thin biosphere (Class III) 

to its present hybrid state and, hopefully, towards a world that can sustain the presence 

of a long-lived energy-intensive technological civilization. 

 

With emphasis on generation rate of chemical free energy and work, we have chosen to 

use values for the Earth at different points in its evolution as a standard.  Thus, for a 

Class II planet without a biosphere, we use only abiotic components of chemical work 

on the present-day Earth.  This is likely an overestimate since the biosphere modifies 

the factors driving chemical free energy.  It allows a comparison, however, between 

different modes of free energy generation, as shown below. 
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For our characterization of a Class III world as those possessing a “thin” biosphere, we 

use the primary productivity of Earth during the Archean eon, before the establishment 

of an oxygen rich atmosphere.  Canfield (2005) calculated the total productivity from 

anoxygenic photosynthesis during this period as approximately 5% of the Earth’s 

current primary productivity.  We use this estimate to scale the values of net productivity 

in both terrestrial and oceanic systems given in Kleidon (2010). 

 

Considering Earth at the start of the proposed Anthropocene epoch to be in a hybrid 

state transitioning between a Class IV and Class V planet, we consider the work/free 

energy utilized by humans in the production of chemical disequilibrium.  Thus, we use 

the total human appropriation of primary productivity and our primary energy 

consumption given in Kleidon (2010) as measures of “technological” chemical 

disequilibrium generation. 

 

Finally, we consider what might occur on a Class V planet in which energy is harvested 

and utilized, but in a way imposing the smallest climatic impact possible.  As discussed 

in Section III, this may entail development of novel ecosystem functions occurring 

through the action of a technological species.  The species establishes an “agency-

dominated” biosphere that provides support for the civilization while maintaining its own 

viability.  Given the enormous uncertainties associated with this process, we consider 

two scenarios associated with alteration of the Sahara region.  Given the Sahara’s large 

area (A = 9 x 1012 m2) and current desert state, it may serve as a future site for 

developing large scale, (i.e planetary) projects aimed at sustainable energy harvesting 

or biospheric adaptation.  Before we begin, we note the total power used by human 

civilization as Pciv = 22 x 1012W (Kleidon 2016). 

  

We first consider the case of simple photovoltaic coverage of the Sahara. Using current 

industrial grade efficiency of photovoltaic panels (~ 20%) and a mean solar radiation of 

about 200 W m-2, we find an electric energy (i.e free energy) generation of Pciv = 360 x 

1012 W ( this is about 16 times the current worldwide primary energy consumption). 
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One could also consider “greening” the Sahara.  The large-scale cultivation of desert 

regions for both the production biomass energy and to produce beneficial climate 

feedbacks has been studied by a number of authors (e.g., Ornstein et al. 2009; Becker 

et al. 2013; Bowring et al. 2014).  It thus appears as a crude version of a candidate 

process indicative of a Class V planet as it requires the supply of water by technological 

means (e.g. desalination of seawater).  To calculate the free energy generation from 

greening the Sahara, we follow Bowring et al. (2014).  Using a maximum photosynthetic 

efficiency of 3 % and an efficiency of 1.5% for biomass production (to account for losses 

by autotrophic respiration) we find a chemical free energy generation (in form of 

biomass) of Pchem = 27 x 1012 W.  Using the mean energy content of sugar, this 

corresponds to about 10.7 x 1015 gC/yr, which is about 18% of the current productivity 

on land.  To accomplish the cultivation of the desert would require about 1.1 x 1013 

m3/yr of water (Bowring et al. 2014, this corresponds to 15% of the natural evaporative 

flux on land).  Since sea water would likely be required, we must include the energetic 

cost of desalination which requires a minimum of 3.8 MJ/m3 (a more realistic value of 

14.5 MJ/m3, see Elimelech and Phillip, 2011).  The energetic expense for desalination is 

therefore 1.3 - 5 x 1012 W.  Thus, we find that the energetic gain of about 27 x 1012 W 

outweighs the energetic cost of 1.3 - 5 x 1012 W by a factor of 5.4 - 20.8.  In other 

words, the Energy Return On Investment, EROI = 5.4 - 20.8.  Using the more 

conservative estimate of Pciv = 22 x 1012 W, we find that greening the Sahara yields 

more free energy generation than what is currently consumed by humans in terms of 

primary energy and the human appropriation of net primary productivity. Thus the total 

would be 22 + 27 x 1012 W or 49 x 1012 W. 

 

Table 1 and Figure 5 show results where the chemical free energy budgets for each 

planetary class.  Class I worlds with no atmosphere produce no chemical free energy.  

Class II worlds have only fluid systems (atmosphere and liquids) at their disposal but 

can still generate chemical free energy (and hence disequilibrium) via processes like 

weathering (i.e. runoff) or processes within liquid systems (i.e. desalination).  A Class III 

world also has these processes at work and so we carry forward the value of abiotic 

free energy generation used for the Class II world. The Class III world, however, also 
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includes biotic activity.  Using the net productivity of the Achaean Earth (Canfield 2005), 

we see that Class III worlds have a total chemical free energy budget higher than that 

for a Class II world.  Note that for this class, the contribution from the biotic component 

is smaller than that from abiotic sources.   

 

Moving forward, unlike the thin biosphere of a Class III world, the biotic activity in a 

“thick” system in a Class IV world (as in Earth before the advent of the Anthropocene as 

defined in the introduction) represents a significant fraction of the planet’s total chemical 

free energy budget.  In a Class V world, large-scale agent based biosphere adaptation 

via, for example, “desert greening” can increase the free energy available to a 

civilization by significant factor, while the capture of even a small fraction of stellar 

incident photons yields the highest free energy budget of all.  Finally, a hybrid planet like 

the Earth shows technological activity already capturing and contributing a significant 

fraction of the total chemical energy budget for the planet. 

 

VI. Conclusions 

The situation humanity finds itself at entry to the Anthropocene is likely not unique when 

seen in its proper astrobiological context. As long as the probability for energy intensive 

civilization evolution is > 10-22 per habitable zone planet, then humanity is not the only 

example of such evolution. Since the laws of thermodynamics hold for all planets, the 

kinds of feedback associated with the Anthropocene must also have occurred 

elsewhere. While the response of any given civilization will vary in ways that will depend 

on social, cultural, and other factors well beyond prediction, critical aspects of a 

successful response lie purely in the domain of planetary scale thermodynamics 

through a combination of physics and chemistry.  Thus, a classification of planet types 

that includes sustainable biospheres shaped by the agency of technological civilization 

is both meaningful and useful.  Our classification is based on thermodynamic 

considerations of different forms of free energy generation and disequilibrium states, 

clarifying life’s role in altering planetary systems and yielding greater levels of 

disequilibrium.    
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In all cases, the transition from one planetary class to another involves some form of 

evolutionary innovation. This innovation is made possible via coupled interactions 

between evolution and ecosystems resulting from the synchronization of timescales for 

the emergence of new genotypes, phenotypes and novel ecosystem functions.  We 

argue that the addition of new processes (biospheric functions) to the coupled planetary 

systems leaves imprints in the behavior (and hence dynamic states) of those systems.  

For the transition from a Class I to a Class II planet, the innovation is simply the 

additional degrees of freedom made possible by the addition of fluid components to the 

coupled systems in the form of an atmosphere and, potentially, a hydrosphere.  In the 

other transitions, the innovations are truly evolutionary as novel functions/behaviors 

emerge from within the coupled systems.  For the transition from a Class II to III planet, 

innovation involved the evolution of an entirely new system (the biosphere) while in 

transition from III to IV and IV to V the innovation was driven by evolution within the 

biosphere.  It might be argued that the transition from class IV to V planets involves the 

addition of a “technosphere” or “noosphere” which might eventually grow in extent and 

autonomy that it should also be considered as a separate system. 

 

The classification system outlined in this paper allows Earth’s entry into the proposed 

Anthropocene to be seen as a hybridization in the transition between different types of 

planets from IV to V.  We believe this astrobiological perspective is an essential expansion 

of the discussions of the Anthropocene and paths towards planetary sustainability, 

because any world hosting a long-lived energy-intensive civilization must share at least 

some similarities in terms of the thermodynamic properties of the planetary system.  

Understanding these properties, even in the broadest outlines, can help us understand 

which direction we must aim our efforts in developing a sustainable human civilization.   
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Table 1 
 

  Abiotic Biotic Technological Z = φ/RT_p  Notes 

Planetary Type      

 I 0 0 0   

II 2.8E+011 0 0 
~0.08 Mars 
~0.008 Venus  

III 2.8E+01 1.1E+002 0 
 

Class III biotic = 5% current 
Earth value 

IV 2.8E+01 2.5E+023 0 
~3.0 Earth  

Hybrid 2.8E+01 2.5E+02       2.2E+014   

V 2.8E+01 2.5E+02 

4.9 E+01 (DG + 
current value) 

3.8E+02 
(PC+current 

value)  

Class V Technological 
estimates should be 

considered lower 
limits 
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Table 1.0 Chemical Free Energy (Work) Budget in 1012 W vs. Planetary Type.  We show 
two estimates of free energy for Class V planets based on modifications of the 
Sahara. DG corresponds to desert greening while PC refers to photovoltaic 
coverage.  Table also includes dimensionless disequilibrium (Z) for Mars and 
Earth from Krissansen-Totton et al 2015.  

 
 
1From Kleidon (2010) Table 3. This value equals sum of desalinization (27 TW) and runoff 

(~1 TW). 
2From Canfield (2005) Table 1 where I estimated that he was finding a 5% of current 

Earth primary productivity (see next footnote) 
3From Kleidon (2010) Table 3. This value is sum of terrestrial (152 TW) and marine (63 

TW) productivity. 
4From Kleidon (2016)  
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Figure 1. Schematic showing generation of different forms of free energy (boxes in the 
center) via absorption of low entropy solar/stellar radiation.  Differential radiative 
heating/cooling provide gradients for planetary heat engines (Pclim), generating motion. 
Photochemistry/geochemistry generate chemical free energy at the rate Pchem, 
Photosynthesis generates chemical free energy at a rate Pbio to fuel life.  Last, a 
technological civilization relies on a rate of free energy appropriation Pciv from the 
biosphere and by technological means (i.e. photovoltaics as a form of solar-based 
renewable energy technology).  These processes feed back to the radiative forcing of 
the planet by heat transport and modified radiative characteristics associated with 
atmospheric composition (e.g., O3, CO2, and CH4), or with modified surface properties 
(i.e. vegetation). 
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Figure 2. Dominant processes for free energy generation and energy dissipation for 
different class planets.  Dissipation increases with class as new processes are added to 
the planetary systems (see text for details).  For Class V, an agency-dominated 
biosphere holds the planetary-systems within acceptable boundaries for energy 
intensive technological civilization.  
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Figure 3. Classes of planets with different abilities to generate free energy by different 
forms (see text for details). 
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Figure 4.  Free Energy Generation for Chemical Disequilibrium vs Planet Class 
 

 
 
 
Caption:  Chemical free energy generation from different sources across the five 
planetary classes (in TW = 1012 W).  Yellow corresponds to purely abiotic processes. 
Brown corresponds to purely biotic processes. Blue corresponds to technological 
processes. Note that all abiotic values are taken from current values for Earth.  Class III 
biotic chemical free energy generation is taken from estimates from Archean Earth net 
primary productivity (Canfield 2005); Class IV biotic chemical free energy taken from 
current values for Earth (Kleidon 2010); Hybrid Planet (HP) technologically sourced 
chemical free energy taken as net current human consumption. Class V technologically 
sourced chemical free taken as covering the Sahara with photovoltaics. 
 
 
 


