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Large Chinese land carbon sink estimated 
from atmospheric carbon dioxide data

Jing Wang1,2,3,4, Liang Feng3,4, Paul I. Palmer3,4 ✉, Yi Liu1,2 ✉, Shuangxi Fang5,6 ✉, Hartmut Bösch7, 
Christopher W. O’Dell8, Xiaoping Tang9, Dongxu Yang1,2, Lixin Liu6 & ChaoZong Xia9

Limiting the rise in global mean temperatures relies on reducing carbon dioxide (CO2) 
emissions and on the removal of CO2 by land carbon sinks. China is currently the single 
largest emitter of CO2, responsible for approximately 27 per cent (2.67 petagrams of 
carbon per year) of global fossil fuel emissions in 20171. Understanding of Chinese land 
biosphere fluxes has been hampered by sparse data coverage2–4, which has resulted in a 
wide range of a posteriori estimates of flux. Here we present recently available data on 
the atmospheric mole fraction of CO2, measured from six sites across China during 
2009 to 2016. Using these data, we estimate a mean Chinese land biosphere sink of 
−1.11 ± 0.38 petagrams of carbon per year during 2010 to 2016, equivalent to about 45 
per cent of our estimate of annual Chinese anthropogenic emissions over that period. 
Our estimate reflects a previously underestimated land carbon sink over southwest 
China (Yunnan, Guizhou and Guangxi provinces) throughout the year, and over 
northeast China (especially Heilongjiang and Jilin provinces) during summer months. 
These provinces have established a pattern of rapid afforestation of progressively larger 
regions5,6, with provincial forest areas increasing by between 0.04 million and  
0.44 million hectares per year over the past 10 to 15 years. These large-scale changes 
reflect the expansion of fast-growing plantation forests that contribute to timber 
exports and the domestic production of paper7. Space-borne observations of 
vegetation greenness show a large increase with time over this study period, supporting 
the timing and increase in the land carbon sink over these afforestation regions.

The global mass and growth of atmospheric CO2 can be determined 
by surface-based measurements (www.esrl.noaa.gov/gmd/ccgg/
trends/). The largest anthropogenic emissions of CO2 include fossil 
fuel combustion, cement production and human-driven changes to 
land use1. Reconciliation of bottom-up emission estimates of these 
anthropogenic processes, accounting for widely assumed uncertain-
ties, with atmospheric CO2 measurements reveals a surprisingly invar-
iant airborne fraction of 44 ± 14%8. The remainder is absorbed by the 
ocean and land biosphere9. Sparse measurements of partial pressure 
of CO2 in the surface ocean, pCO2

, taking advantage of large-scale spa-
tial–temporal correlations, allow estimation of ocean CO2 fluxes10, 
although regional campaigns highlight large flux variations in succes-
sive years11. The residual of these mass balance terms yields the mag-
nitude of the land biosphere carbon balance9. Current understanding 
of the land biosphere, encapsulated in numerical models, requires 
additional uptake to be reconciled with the data-driven residual term, 
even accounting for uncertainties1. Therein lies the crux of the chal-
lenge faced by the science and policy communities: effective mitigation 
of fossil fuel CO2 emissions within a large-scale, dynamic natural carbon 
cycle that we do not quantitatively understand.

China overtook the United States in 2006 as the single largest emitter 
of CO2, mainly due to the fossil fuel combustion and cement production 

sectors12. These emission estimates have large uncertainties13 that 
translate into larger uncertainties for residual terrestrial biosphere flux 
estimates2,3 (see Methods). Sparse in situ observations over China result 
in a large model spread of a posteriori terrestrial fluxes estimates2,3,14, 
with values highly sensitive to available data4.

Constraints on CO2 flux estimates
In this study, we use newly available in situ CO2 mole fraction data 
(collectively describing weekly flask and hourly continuous measure-
ments) over China (see Methods section ‘Data’ and Supplementary 
Information; Extended Data Fig. 1) from 2009 to 2016 to show how 
these data can revise the provincial and national carbon balance of 
China. We corroborate our unexpected a posteriori flux estimates 
through independent satellite remote-sensing measurements of veg-
etation greenness, soil water availability, a posteriori fluxes inferred 
from satellite column observations of CO2, and consecutive Chinese 
forest censuses.

We use several sources of data to investigate the Chinese carbon 
balance (see Methods and Supplementary Information): in situ meas-
urements of CO2 mole fraction, satellite column observations of CO2, 
leaf area index (LAI), normalized difference and enhanced vegetation 
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indices (NDVI and EVI, respectively), liquid water equivalent thickness 
derived from gravity anomalies, and above-ground biomass inferred 
from microwave measurements. The atmospheric data are interpreted 
using the GEOS-Chem atmospheric transport model coupled with a 
Bayesian inversion tool to infer CO2 fluxes from the atmospheric data 
(see Methods).

CO2 fluxes inferred from atmospheric data
First, we use an atmospheric inversion to estimate the magnitude and 
distribution of land biosphere CO2 fluxes over China (see Methods). 
Inversion SR-1, which uses only the ObsPack GLOBALVIEWplus data 
(Fig. 1a) provided by the Earth System Research Laboratory (ESRL) of the 
National Oceanic and Atmospheric Administration (NOAA), shows a CO2 
sink over most of China (Fig. 1b), mainly focused over central, northeast 
and southern China. These data are consistent with a mean annual net 
uptake estimate for the terrestrial biosphere of −0.66 ± 0.52 petagrams of 
carbon per year (Pg C yr−1; 2010–2016), varying from −0.52 ± 0.54 Pg C yr−1 
in 2015 to −0.77 ± 0.47 Pg C yr−1 in 2016 (Fig. 1e, Table 1). We find that the 
annual Chinese carbon sink is mostly due to uptake during the growing 
season, particularly during June to August (Fig. 1f).

Including the Siberian tower data (see Data and Supplementary 
Table 1) broadly increases CO2 uptake over China and India. The addi-
tional Chinese mainland sites (Extended Data Fig. 1), together with the 
Siberian and Hong Kong data, in inversion SR-2 (Fig. 1c) have two major 
impacts on our understanding of the Chinese carbon budget. First, 
these data bring into sharper focus the distribution of Chinese CO2 

fluxes (Fig. 1c), increasing the net uptake over the southwest (mainly 
Yunnan, Guizhou and Guangxi provinces), and increasing net emissions 
over the northeast (mainly Heilongjiang, Jilin and Liaoning provinces) 
relative to SR-1 (Fig. 1d). Second, the resulting uncertainties of the 
Chinese CO2 budget are also much smaller than when using only the 
NOAA ObsPack data (Fig. 1f, Supplementary Fig. 6).

Table  1 reports annual CO2 fluxes for China. Using inversion 
SR-2, we find that the mean annual Chinese land biosphere sink is 
−1.11 ± 0.38 Pg C yr−1 over 2010–2016. The magnitude of this sink term 
is 68% larger than the a posteriori values inferred from SR-1 for the 
same period (−0.66 ± 0.52 Pg C yr−1), with uncertainties reduced by 
about 27% (Fig. 1f, Table 1; Supplementary Fig. 6). This revised sink 
term is substantially larger (that is, more uptake) than many recent 
estimates3,4,14–18 that cover various periods between 1980 and 2013 and 
inferred using different methods and data, including the inversion of 
atmospheric data (Table 1).

Our a posteriori estimate of CO2 uptake over southwest China 
(18–30° N, 95–110° E) accounts for about 32% of the uptake over the 
Chinese mainland. We also find evidence of substantial year-to-year 
variability of carbon uptake across southwest China (Fig. 2a, b), with the 
largest values during boreal summer months. As we discuss below, this 
variation is at least partly due to the young age structure of this forest 
ecosystem5,19,20 and variations in meteorology (Supplementary Fig. 13). 
The relatively smaller uptake over northeast China (compared with 
SR-1) is due to the elevated sink during the growing season (Fig. 2c, d,  
Extended Data Fig. 2) that is compensated by emissions during the 
rest of the year.
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Fig. 1 | Chinese terrestrial biosphere CO2 fluxes. 
a–c, Annual mean spatial distributions of CO2 fluxes 
(g C m−2 yr−1) for 2010–2016 (inclusive) 
corresponding to the a priori inventory (a) and to 
a posteriori CO2 fluxes corresponding to SR-1 (b) 
and SR-2 (c). d, Difference between SR-2 and SR-1 
(g C m−2 yr−1). In a, the blue, cyan, green and red dots 
denote NOAA ObsPack stations, the Hok Tsui (HKG) 
station from World Data Centre for Greenhouse 
Gases (WDCGG), Japan–Russia Siberia Tall Tower 
Inland Observation Network and the China 
Meteorological Administration (CMA) regional 
background stations, respectively. e, Annual CO2 
fluxes from the a priori inventory, and a posteriori 
fluxes inferred from (SR-1) NOAA ObsPack CO2 mole 
fraction measurements, and (SR-2) NOAA + Siberian 
+ CMA + HKG CO2 mole fraction measurements from 
2010 to 2016, inclusive. f, Corresponding monthly 
fluxes. In e and f, vertical bars and the orange 
envelope denote a priori and a posteriori 
uncertainties.
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Understanding the CO2 flux distributions
In the absence of independent downwind data that are sensitive to our 
a posteriori changes in Chinese CO2 fluxes, we also infer independent 
CO2 flux estimates from satellite column observations of CO2 from 
the Japanese Greenhouse gases Observing Satellite (GOSAT)21 and the 
NASA Orbiting Carbon Observatory (OCO-2) (see Methods). Using 
these satellite data, we find that a posteriori CO2 fluxes during the 
growing season (May to September) show larger uptake over central, 
northeast and southern parts of China than SR-1, consistent with the 
SR-2 inversion (Extended Data Fig. 3). Differences between these flux 
estimates can be partly explained by seasonal changes in clear-sky 
views (Extended Data Fig. 4) that are determined by cloud cover and 
aerosol loading. We find major data gaps over China in winter, where 
the a priori information plays a larger part in the a posteriori solution 
(Extended Data Fig. 5).

Using reports from quinquennial Chinese forest inventories22, we find 
that, since the 1990s, northeast and southwest China have experienced a 
period of rapid growth in forest area (Extended Data Fig. 6, Extended Data 
Table 1), reflecting national policies23. These findings are supported by 
remote-sensing observations of land cover (Extended Data Fig. 7), vegeta-
tion indices (Fig. 3a, Extended Data Fig. 8, Supplementary Figs. 11, 12) and 
above-ground biomass (Fig. 3b) that show small but significant upward 
trends. A consequence of the rapid increase of afforestation during the past 
30 years is that Chinese forests contain a large fraction of young and mid-aged 
trees (Extended Data Fig. 9), which are associated with a high rate of carbon  
sequestration6,20,24,25.

The southwest region, in particular the Guangxi autonomous region, 
is populated by eucalyptus, which is a fast-growing and high-yielding 
tree species with high potential biomass carbon sequestration26. These 
eucalyptus plantations are irrigated and fertilized, factors that would 
need to be considered in the overall environmental value of this carbon 
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Fig. 2 | Terrestrial biosphere CO2 fluxes. 
 a, b, Over northeast China (within 38–54° N, 
120–135° E); c, d, over southwest China (within 
18–30° N, 95–110° E). Monthly CO2 fluxes 
(Pg C month−1) from the a priori inventory and 
a posteriori fluxes inferred from SR-1 and SR-2 
are shown from 2010 to 2016 over northeast 
China (a) and southwest China (c); and 
corresponding annual fluxes (Pg C yr−1) over 
northeast China (b) and southwest China (d). 
Vertical bars and the orange envelope (a and c) 
denote a priori and a posteriori uncertainties.

Table 1 | Carbon dioxide fluxes over China and East Asia

This study (Pg C yr−1) Previous studies (Pg C yr−1)

Year SR-1 SR-2 Method Period Carbon balance Reference

2010 −0.60 ± 0.51 −0.99 ± 0.38 Inventory-satellite-based 
or process-based model 
estimation

1961–2005 −0.179a 16

2011 −0.74 ± 0.53 −1.32 ± 0.36 1980-1999 −0.177 ± 0.073b 15

2012 −0.74 ± 0.53 −1.25 ± 0.39 1990-2009 −0.224 ± 0.141b,c 14

2013 −0.61 ± 0.55 −0.87 ± 0.45 2001–2010 −0.966b 18

2014 −0.68 ± 0.49 −1.08 ± 0.39 2006–2009 −0.33b 4

2015 −0.52 ± 0.54 −1.03 ± 0.34 Atmospheric inversion 1996–2005 −0.35 ± 0.33a 15

2016 −0.77 ± 0.47 −1.25 ± 0.31 1990–2009 −0.270 ± 0.507b,c 14

2001–2010 −0.33a 17

2008–2012 −0.46 (−1.18 to −0.01)a,c,d 3

2010–2016 mean −0.66 ± 0.52 −1.11 ± 0.38 2006–2009 −0.45a 4

In this study, inversion SR-1 denotes NOAA ObsPack in situ data (including one site over China); inversion SR-2 denotes in situ data from NOAA ObsPack, Siberia, Hong Kong and from the  
Chinese mainland. Uncertainties represent one standard deviation from the mean value. 
aNet CO2 flux of terrestrial biosphere. 
bNet CO2 flux of terrestrial biosphere, including the contribution from the oxidation of reduced carbon. 
cEast Asia, including China, Japan, North and South Korea, and Mongolia. 
dEnsemble model median and range.
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sink. Correlative satellite data of leaf phenology and groundwater (Fig. 3, 
Supplementary Information) clearly show upward trends that together 
are consistent with a progressively larger biological carbon sink. Because 
it is a managed ecosystem, the southwest region appears to be insensi-
tive to wider changes in climate (Supplementary Figs. 13, 14), particularly 
during the 2009–2010 drought associated with reduced precipitation27.

We have shown that using atmospheric CO2 measurements collected 
at a small number of additional sites changes our understanding of 
the distribution of CO2 fluxes over China. This reflects the sparse and 
uneven distribution of ground-based measurements. Our use of satel-
lite observations to verify a posteriori fluxes inferred from the in situ 
data will enable extensive improvement in CO2 monitoring.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-020-2849-9.
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Methods

Data
In situ CO2 mole fraction observations. We use (weekly) discrete flask 
air samples from 105 sites and (hourly) continuous observations from 
52 sites that are part of the global atmospheric surface CO2 observa-
tions network. These are currently described by the Observation Pack-
age (ObsPack) obspack_co2_1_GLOBALVIEWplus_v4.1_2018-10-29 data 
product28 from NOAA’s ESRL. We also use an additional Chinese data 
from WDCGG at Hok Tsui (HKG) provided by Hong Kong Observatory.

We use CO2 mole fraction data from nine towers collected by 
the Japan–Russia Siberia Tall Tower Inland Observation Network 
( JR-STATION; Supplementary Table 1, Extended Data Fig. 1) over Sibe-
ria from 2009–201629,30. We also use weekly flask measurements and 
hourly continuous CO2 mole fraction measurements during 2009–
2016 of six new regional background sites over China (Longfengshan, 
Shangdianzi, Linan, Shangri-La, Jinsha and Akedala) (Supplementary 
Table 2, Extended Data Fig. 1) are operated by the China Meteorological 
Administration31,32. Further details about these CO2 observations are 
in Supplementary Information.

GOSAT observations. We use column CO2 data collected by GOSAT, 
launched in January 2009 in a Sun-synchronous orbit with a local overpass 
time over China around 13:0033. We use total column CO2 (XCO2) full-physics 
retrievals from GOSAT: v7.3 data product from the Atmospheric CO2  
Observations from Space (ACOS) from the Jet Propulsion Laboratory34.

OCO-2 observations. We use column CO2 data collected by NASA’s 
OCO-2, launched in July 2014 in a sun-synchronous orbit with a local 
crossing time over China around 13:3035. We use bias-corrected OCO-2 
V8r data36 in this study. We use only nadir observations over land with 
a warning level <12. After considering observation error correlations, 
we have thinned the data with a frequency of 0.1 Hz, corresponding to 
an approximate distance of 75 km between successive measurements.

NDVI and EVI represent composite properties of leaf area, chlorophyll 
and canopy structure. We use MOD13C2 (MODIS/Terra Vegetation 
Indices Monthly L3 Global 0.05° CMG V006)37 to get NDVI AND EVI 
information. The data are only retained with pixel reliability values 
masked as good data (‘0’) or marginal data (‘1’).

GRACE provides information about changes in the water column38–40. 
Rooting depths of Chinese terrestrial ecosystems are likely to be suf-
ficiently deep that we cannot establish a direct and immediate rela-
tionship between vegetation and changes in precipitation. Changes in 
gravity due to changes in water column depth provide a much stronger 
relationship with vegetation access to water. We use the surface mass 
change data based on the RL05 spherical harmonics from the Center 
for Space Research at University of Texas, Austin (CSR), Jet Propulsion 
Laboratory ( JPL) and Geoforschungs Zentrum Potsdam (GFZ). The 
three different processing groups chose different parameters and 
solution strategies when deriving month-to-month gravity field vari-
ations from GRACE observations. We use the ensemble mean of the 
three data fields and multiply the data by the scaling grid provided.

Above-ground biomass carbon. We use above-ground biomass carbon 
(ABC) estimates (1993–2012) based on harmonized vegetative optical 
depth data for 1993 onwards derived from a series of passive microwave 
satellite sensors41. These sensors include the Special Sensor Microwave 
Imager (SSM/I), Advanced Microwave Scanning Radiometer for Earth 
Observation System (AMSR-E), FengYun-3B Microwave Radiometer 
Imager (MWRI) and Windsat.

Models
To describe the relationship between surface fluxes of CO2 and 
atmospheric CO2, we use the GEOS-Chem global 3-D chemistry trans-
port model (v9.02). For our experiments we run GEOS-Chem with a 

horizontal resolution of 4° (latitude) × 5° (longitude), driven by the 
GEOS-5 (GEOS-FP from 2013) meteorological analyses from the Global 
Modelling and Assimilation Office Global Circulation Model based at 
NASA Goddard Space Flight Centre.

To describe atmospheric CO2, we use well established emission 
inventories as our a priori flux estimates: (1) weekly biomass burning 
emissions42; (2) monthly anthropogenic emissions43–45(we use 88% of 
ODIAC anthropogenic43,44 inventory in this study, details in Supple-
mentary Information); (3) monthly climatological ocean fluxes10; and 
(4) three-hourly terrestrial biosphere fluxes46.

We use an ensemble Kalman Filter (EnKF) framework47–49 to infer CO2 
fluxes from the in situ or space-based measurements of atmospheric 
CO2 concentrations. Surface flux f a(x, t) (in kg m−2 s−1) at location x and 
time t is given by47,49:

∑f x t f x t c BF x t( , ) = ( , ) + ( , ),
i

N

i i
a 0

where f 0(x, t) describes the a priori estimates (in kg m−2 s−1). The basis 
function set BFi(x, t) is defined as the pulse-like (monthly) CO2 fluxes 
over pre-defined geographical regions (in kg m−2 s−1). For each indi-
vidual basis function, we estimate the unitless scaling coefficient ci by 
optimally fitting the model to observation data. The coefficients for 
the basis function set represent the state vector c.

We use a total of 792 monthly basis functions split between 317 oce-
anic regions and 475 land regions. These regions are based on estab-
lished 22 regions in TransCom-350. To infer Chinese CO2 fluxes on a 
spatial resolution of 4° (latitude) × 5° (longitude) we further divide 
the Eurasia temperate region into 78 sub-regions.

We solve for the a posteriori state vector using the Kalman gain 
matrix K:

( )K H= + − ( ) ,a 0 obs 0c c y c

where ca and c0 represent the a priori and a posteriori estimates, respec-
tively; yobs denotes the atmospheric CO2 observations; and H describes 
the observation operator that relates surface fluxes to the observa-
tion data. In our case, H represents the GEOS-Chem model sampled 
at measurement locations, and in the case of satellite data also taking 
into account instrument sensitivity to CO2.

We assume a 50% uncertainty for monthly land terrestrial fluxes, and 
40% for monthly ocean fluxes49. We assume land (ocean) a priori fluxes 
are correlated with a correlation length of 500 (800) km.

We determine the terrestrial biosphere flux by subtracting the fossil 
fuel and cement production emission estimate (FF). This is a common 
approach2–4,51, based on an assumption about our knowledge of FF flux. 
Consequently, our biosphere fluxes depend to a certain degree on what 
we assume for anthropogenic emissions (Supplementary Table 3).

In addition to our control run (SR-2), we also report Chinese land 
biosphere fluxes that correspond to the ODIAC anthropogenic inven-
tory43,44. We find that our total net a posteriori emissions of CO2 over 
China (1.35 ± 0.38 Pg C yr−1) are not significantly different to our control 
inversion (1.37 ± 0.38 Pg C yr−1), suggesting that our a posteriori fluxes 
are robust. However, our a posteriori land biosphere fluxes represent a 
larger sink of CO2 (−1.47 ± 0.38 Pg C yr−1) compared to our control flux 
estimates (−1.11 ± 0.38 Pg C yr−1). Our larger a posteriori sink estimate is 
expected since we are subtracting a larger FF flux from the net emission 
estimate. This calculation also provides a crude measure of the land 
biosphere flux uncertainty due to uncertainties in FF fluxes.

In the EnKF framework, the Kalman gain matrix K is approximated by46:

K C Y Y Y R≈ Δ Δ (Δ Δ + ) ,T T −1

where R is the observation error covariance matrix. ΔC represents the 
ensemble of perturbations to the state vector that are used to construct 



the a priori error covariance, P ≈ ΔCΔCT where T denotes the matrix 
transpose47. To compare with observation, ΔC is projected onto obser-
vation space using the observation operator ΔY = H(ΔC). We assume 
no observation error correlations but include an additional 1.0 parts 
per million uncertainty to the reported observation errors to account 
for model transport errors.

The methodology we use to estimate annual uncertainty estimates 
from the ensemble Kalman filter with a lagged window is described in 
detail in Supplementary Information.

Data availability
GRACE data are available from http://grace.jpl.nasa.gov. ABC data are 
available from https://www.wenfo.org/wald/global-biomass. The NDVI, 
EVI and LAI data were retrieved from the online Data Pool, courtesy of 
the NASA Land Processes Distributed Active Archive Center, USGS/
Earth Resources Observation and Science Center (https://lpdaac.
usgs.gov/data_access/data_pool). CO2 mole fraction data from the 
Chinese sites used in this study are available at https://doi.org/10.17632/ 
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are provided with this paper.
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Extended Data Fig. 1 | In situ atmospheric CO2 measurements across East 
Asia. a, Map showing the location of atmospheric CO2 measurement sites over 
East Asia used in our numerical experiments. Coloured dots represent 
individual measurement sites referred to by letter codes (Supplementary 
Tables 1, 2). Blue dots represent NOAA ObsPack stations, the cyan dot 
represents the HKG station from WDCGG, brown dots represent Siberia 

stations and orange dots represent CMA regional background stations.  
b–g, CO2 mole fraction observations (in parts per million, ppm) at the six sites 
across China from 2009 to 2017 used in this study. Discrete (weekly) flask air 
samples, denoted by blue dots, and continuous (hourly) observations, denoted 
by black dots, are collected and analysed by the China Meteorological 
Administration. CRDS, cavity ring-down spectrometer.



Extended Data Fig. 2 | Monthly subcontinental Chinese CO2 flux estimates. 
a, Map showing the subcontinental geographical regions over China where we 
report a posteriori CO2 fluxes. Colours denote the proportion of each region 
that falls within mainland China. b–i, Monthly regional a priori and a posteriori 
biosphere CO2 fluxes (Pg C month−1) over China during 2010–2016. A posteriori 

fluxes are inferred from data used in the SR-1 and SR-2 inversions (see main 
text). Vertical bars and the orange envelope denote a priori and a posteriori 
uncertainties. NWC, northwest China; NC, northern China; NE, northeast 
China; TP, Tibetan Plateau; CC, central China; EC, eastern China; SW, southwest 
China; SE, southeast China, as shown in a.



Article

Extended Data Fig. 3 | Mean spatial distribution of a priori and a posteriori 
land biosphere CO2 fluxes from May to September, inferred from in situ and 
satellite observations of CO2. a, Our a priori fluxes. b, c, The a posteriori 
fluxes corresponding to inversions SR-1 and SR-2 (see main text) that use in situ 

data. d, e, A posteriori fluxes inferred from column observations of CO2 from 
GOSAT and from NASA’s OCO-2, respectively. Flux estimates reported 
represent a temporal mean from 2010 to 2015, except for e, which is only  
for 2015.



Extended Data Fig. 4 | Seasonal distribution and magnitude of satellite retrievals of column CO2 from December 2014 to November 2015. a–d, Data from 
GOSAT (v7.3 ACOS). e–h, Data from OCO-2 (v8r). See Methods section ‘Data’ for further information.
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Extended Data Fig. 5 | A priori and a posteriori monthly biosphere CO2 
fluxes over China inferred from the GOSAT CO2 column data and in situ data 
from 2010 to 2016. We also report a posteriori fluxes inferred from OCO-2 CO2 
column from September 2014 to December 2016. Vertical bars and shaded 

envelopes denote a posteriori uncertainties. Higher annual fluxes inferred 
from GOSAT and OCO-2 are due mainly to higher a posteriori fluxes during 
winter months when data coverage is sparse (Extended Data Fig. 4) and the 
fluxes are more influenced by a priori values.



Extended Data Fig. 6 | Changes in forest area, forest stocks and forest 
coverage over six key forested Chinese provinces and over the whole of 
China, 1973–2013. a–f, Values for Heilongjiang, Jilin, Liaoning, Yunnan, 
Guizhou and Guangxi provinces. g, Values for China. The x-axis labels refer to 

the National Forest Inventory of China’s State Forestry Administration:  
1st (1973–1976), 2nd (1977–1981), 3rd (1984–1988), 4th (1989–1993), 5th  
(1994–1998), 6th (1999–2003), 7th (2004–2008) and 8th (2009–2013).
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Extended Data Fig. 7 | Forest cover change over China during the period 
2002–2012. a, How land cover changed from 2002 to 2012: 0 (1) denotes 
non-forest (forest) in both 2002 and 2012, 2 denotes conversion from 
non-forest to forest between 2002 and 2012, and 3 denotes conversion from 

forest to non-forest between 2002 and 2012. b, The forest percentage change 
per grid box from 2002 to 2012. Data are presented on a 0.05° × 0.05° spatial 
grid.



Extended Data Fig. 8 | Multi-year mean of satellite observations of 
vegetation indices. a, NDVI. b, EVI. c, LAI. d, Solar induced fluorescence  
(SIF). e, Net photosynthesis (PSN). f, Gross primary production (GPP).  

g, Above-ground biomass carbon (ABC). See Supplementary Information for 
details. The mean is over 2010–2012, inclusive, for ABC, and over 2010–2016 for 
the other data.
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Extended Data Fig. 9 | Forest area and stock of five forest-stand age groups 
over six key forested provinces and over the whole of China. a–f, Forest area 
for Heilongjiang, Jilin, Liaoning, Yunnan, Guizhou and Guangxi provinces.  
g, Forest area for China. h–m, Forest stock for Heilongjiang, Jilin, Liaoning, 

Yunnan, Guizhou and Guangxi provinces. n, Forest stock for China. Forest 
stands are divided into five age groups: young, mid-aged, near-mature, mature 
and overmature. Data are taken from the 8th NFI.



Extended Data Table 1 | Summary statistics calculated from the 6th to 8th (and 9th where available) National Forest 
Inventory of China’s State Forestry Administration for China and six Chinese Provinces

The period defined for each China-wide census reflects the range of years of the individual provincial censuses.
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