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long-lasting learned behavioural change as a result of pre-
vious experience matches the persistence of habituation 
effects observed in many animals.
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Introduction

By definition, learning is a process for acquiring memo-
ries by which adaptive changes in an organism’s behaviour 
arise as a result of experience (Okano et al. 2000). Because 
learning is not directly observable (i.e. we cannot directly 
access the traces past experiences have left in the memory 
of an individual), it can only be detected operationally when 
an observed behaviour has changed due to a past experi-
ence that the individual itself remembers (Kawecki 2010). 
Recognizing and quantifying such behavioral changes has 
proven to be no easy task in human and animal subjects, let 
alone in plants whose ability to behave is still an underap-
preciated phenomenon (Karban 2008). Even so, researchers 
have attempted to experimentally test (Applewhite 1972; 
Thellier et al. 1982, 2000) as well as conceptually validate 
[through mathematical models (Demongeot et  al. 2000; 
Bose and Karmakar 2008; Inoue 2008)] the idea that plants 
can learn and remember, since Sir J. C. Bose (1858–1937) 
first proposed this over a century ago. What these studies 
have shown is that plants are indeed capable of memory 
function (see Trewavas 2003; Thellier and Lüttge 2013); 
in all cases, the behaviour of the different plants included 
an ability to store and recall biological information in order 
to produce a specific (and somewhat predictable) develop-
mental (Karban and Niiho 1995; Goodrich and Tweedie 
2002; Reyes et  al. 2002), physiological (Baldwin and 

Abstract  The nervous system of animals serves the 
acquisition, memorization and recollection of information. 
Like animals, plants also acquire a huge amount of infor-
mation from their environment, yet their capacity to memo-
rize and organize learned behavioral responses has not been 
demonstrated. In Mimosa pudica—the sensitive plant—the 
defensive leaf-folding behaviour in response to repeated 
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ing research, we show that leaf-folding habituation is more 
pronounced and persistent for plants growing in energeti-
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play the learned response even when left undisturbed in a 
more favourable environment for a month. This relatively 
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Schmelz 1996; Ruuhola et al. 2007), morphological (Dos-
tál 1967; Thellier et al. 1982, 2000) or epigenetic response 
(Sung and Amasino 2004; Molinier et al. 2006; Kinoshita 
and Jacobsen 2012 and related articles in special focus 
issue). Defined by a fixed ‘blueprint’, such induced adap-
tive responses are extremely valuable at adapting the organ-
ism to its environment and, in fact, are part of an innate 
behavioral repertoire of an organism. However, this leaves 
open the question of whether plants, like animals, can show 
learned behavioral responses (i.e. a behaviour that an indi-
vidual develops by being taught).

It appears that the major impediment to resolving this 
issue lies in the absence of a robust behavioral test pur-
posely designed for recognizing the presence of functional 
features typical of systems capable of true memory and 
learning (Cvrčková et  al. 2009). We have performed this 
test here by applying ecological theory developed for ani-
mals (Lima 1998) to the defensive leaf-folding reflex of 
Mimosa pudica (hereafter referred to as ‘Mimosa’; Fig. 1a, 
b), a plant known for its leaf-folding behaviour in response 
to physical disturbance (Applewhite 1972), to examine the 
behavioral phenomenon of habituation in this plant. Often 
considered to be the simplest form of learning, habituation 
is an adaptive process that enables an organism to focus on 

the important information in its environment, while filter-
ing out stimuli or events that, over time, have repeatedly 
proven to be irrelevant and innocuous (Thorpe 1963; Eisen-
stein et  al. 2001; Hemmi and Merkle 2009; Rankin et  al. 
2009). Hence to meet these criteria, a plant must be able 
to select relevant things to memorize and actively access 
those memories to modify the timing, quality or quantity of 
its behavioral response when exposed to external stimuli. 
In this study, we conducted a series of experiments to test 
whether Mimosa can truly learn under these criteria, how 
long would it remember what was learned, and to what 
extent the environment influences its learned behaviour.

The rapid closure of Mimosa’s delicate leaves in 
response to mechanical disturbance is believed to be 
a defence tactic to reduce predation risk (Eisner 1981; 
Braam 2005; Fromm and Lautner 2007) and this leaf-
folding behaviour may be adaptive (Cahill et  al. 2013). 
Moreover, leaf closure is known to be sensitive to light 
levels and specifically, Mimosa plants are more likely to 
risk predation when foraging at lower light intensities 
(Jensen et  al. 2011). In this study, we subjected plants to 
repeated treatments that initially caused leaves to close but 
the response to which was unnecessary and non-adaptive, 
to test whether plants could learn that these stimuli should 

Fig. 1    Controlled drop system for habituation training of Mimosa 
plants. The sensitive plant Mimosa pudica was chosen as the ideal 
model for this study, because of its capacity to rapidly fold its leaves 
in response to physical disturbance. Disturbance causes the subleaf-
lets to rapidly fold up along the stem of each leaflet, and even the 
leaflet and leaf stem to droop downwards in a matter of seconds. 
Recovery time is variable and leaves may take a few seconds to sev-
eral minutes to re-open fully. The maximum leaf breadth before and 
after training was carefully measured tip-to-tip (as indicated by the 

white dotted line; a and b). The set-up consisted of a plastic vessel 
mounted with variable hangers onto a marked steel rail, which was 
in turn secured to a foam base. Tightly fitted in the host vessel, indi-
vidual potted plants were manually elevated to the 15-cm height mark 
and allowed to drop by sliding along the rail. The shallow depression 
in the foam base at the landing point of the vessel prevented it from 
bouncing at impact. The set-up ensured that a standard level of distur-
bance was administered to all plants and it was sufficient to force the 
closure of all leaves (c)
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be ignored. Specifically in our first set of experiments, we 
examined whether Mimosa plants grown under low- (LL) 
and high-light (HL) conditions differ in their rate of learn-
ing about an environmental stimulus and retaining what is 
learned. Based on the predictions by Jensen et  al. (2011) 
that predation risk (i.e. showing visible leaves) should be 
traded off with energetic gain (i.e. opportunity for photo-
synthesis with open leaves), we expected that individuals in 
the low-light environment would be the faster learners and 
more likely to retain the learned behaviour for longer. In a 
second set of experiments, we manipulated the light condi-
tions individuals experienced over time, thereby changing 
the trade-off between predation risk and energetic reward. 
We expected that individuals originally grown under the 
HL environment and later experiencing LL conditions 
would become faster learners, while those grown under the 
LL environment and transferred to higher light conditions 
would display a reduced response.

Materials and methods

Experimental set‑up and design

All experiments were done in a 5.30-m2 growth room with 
three compartments, separated from each other by sheets 
of black plastic. All training trials were conducted in the 
middle compartment, whereas all experimental plants were 
held in one of the side compartments, fitted with fluores-
cent lights to produce LL (90  μmol  m−2  s−1) and HL 
(230 μmol m−2 s−1) conditions respectively. Light intensity 
was measured directly above the plants in each compart-
ment prior to the commencement of the experiments. In a 
first series of experiments, we tested whether light condi-
tions influenced how Mimosa’s leaf-folding reflex habitu-
ates and how long habituation persists (i.e. short-term; 
after plants were left undisturbed for 6 days). In the second 
series of experiments, we examined long-term habituation 
of the reflex by re-testing 26 previously trained plants that 
were left undisturbed for 1  month and assessing whether 
Mimosa’s habituated response, like in animals (Sztarker 
and Tomsic 2011), can be evoked only if the plant is tested 
in the same environment where it was trained. All simi-
larly sized (6–8 cm tall) plants were obtained from a local 
commercial nursery (Cooperative Legnaia, Firenze) and 
directly transferred to the experimental growth room at the 
Department of Plant, Soil and Environmental Science at the 
University of Firenze. Here, plants were grown individually 
in 10-cm round plastic pots with a standard mixture (1:1, 
volume/volume) of loamy soil and organic compost (Neu-
haus N2). For the entire study, we maintained the health 
and growth of all plants by fertilizing with 1/5-strength 
Hoagland’s solution (Hoagland and Arnon 1950) and 

watering as needed (i.e. plants did not express any visible 
signs of nutrient or water stress). Throughout the study, 
all plants were exposed to identical 12-h light:12-h dark 
cycle conditions, 60–70 % ambient humidity and 21–24 °C 
temperature profiles (air temperature in the compartments 
housing the plants was recorded using an EasyLog EL-
USB 2 data-logger).

Habituation training of Mimosa’s leaf‑folding reflex

Consistent with the hypothesis of a trade-off between pre-
dation risk and energetic demand, we examined the effects 
of HL and LL conditions on the habituation training of 
the defensive reflex of this plant. Plants in individual pots 
were randomly assigned to either HL or LL conditions and 
then left undisturbed for 5 days until their scheduled train-
ing day. Plants were trained using a custom-designed con-
trolled drop system (Fig. 1c) for administering a standard-
ised stimulus (i.e. a 15-cm fall or drop) that successfully 
elicits the leaf-folding reflex. The response of individual 
plants was estimated by averaging the response of three 
randomly selected leaves and measured by how much these 
leaves re-opened (if at all) after a train of drops. Specifi-
cally, each leaf was carefully measured tip-to-tip using dig-
ital callipers; its response was then quantified as the maxi-
mum leaf breadth (mm) measured immediately at the end 
of a train of drops (Fig. 1b) relative to the undisturbed pre-
stimulus maximum breadth (Fig. 1a). Both before and after 
a train, the three leaves from each plant were measured in 
quick succession by the same individual observer.

We first tested whether Mimosa is able to remember a 
stimulus based on a brief, one-off experience by adminis-
tering one drop only in the morning and then again 8 h later 
to a group of 16 naïve plants (n = 8 per light treatment). 
Next, we trained a group of 56 naïve plants (n =  28 per 
light treatment) by administering seven consecutive trains 
of 60 drops each at either 5- or 10-s inter-stimulus inter-
vals, delivered at increasingly longer inter-train intervals 
but all within a single day.

Dishabituation test

To test whether the trained response in Mimosa was due 
to learning rather than caused by other processes such as 
fatigue or sensory adaptation (see Rankin et al. 2009), we 
conducted a standard dishabituation test by assessing the 
plants’ response following the presentation of a novel stim-
ulus. Dishabituation occurs when a novel stimulus [gener-
ally, more intense within a given stimulus modality (Rankin 
et  al. 2009; Kenzer et  al. 2013)] is briefly presented and 
elicits the recovery of the original behavioural response (in 
Mimosa’s case, leaf closure). The recovered response does 
not necessarily have to return to the initial levels observed 
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before habituation (Wiel and Weeks 1996), but may be less 
than or equal to baseline levels (Thompson 2009) or those 
seen immediately prior to the presentation of the dishabitu-
ation stimulus (Petrinovich and Widaman 1984).

In this study, we tested for dishabituation by placing 
individual plants in a close-fitting foam container attached 
to a shaker plate (Heidolph, Titramax 1000) and shak-
ing them at 250  r.p.m. for 5  s (Dis-hab treatment). This 
stimulus was chosen on the basis that it did not differ sig-
nificantly in modality from the habituating stimulus (Gris-
som and Bhatnagar 2009), but was nevertheless novel to 
the plant, and hence able to elicit the rapid leaf-folding 
reflex as effectively as the brief, one-off experience of the 
habituating stimulus when delivered during the initial test 
described above.

Short‑term memory of the habituated leaf‑folding response

To examine the short-term effects of 1-day training on the 
retention of the habituated response, all trained plants from 
both light treatments were re-tested 6 days later by observ-
ing the leaf-folding response as they received one train of 
60 drops.

Long‑term memory in Mimosa exposed to a new 
environment

To test the effects of a changing environment, we con-
ducted a second series of experiments where 13 plants 
(including five control plants) previously habituated to LL 
conditions were transferred to the HL treatment and vice 
versa, and then re-tested 28  days later by undergoing the 
complete training (i.e. 7 consecutive trains of 60 drops 
delivered throughout 1 day).

Statistical design and analyses

Analyses were conducted in R using the core and lme4 
packages (Bates et  al. 2011) to fit and compare linear 
mixed-effects models, the appropriate modern technique 
for dealing with this kind of nested, repeated measures 
data. For each analysis, we first fitted a full model and then 
conducted step-wise simplification to determine which 
terms were significant in the standard way (Crawley 2007). 
Specifically, at each step a simplified model with one term 
dropped from the previous best model (starting with the 
full model) was compared to the previous best model using 
both Akaike’s information criterion (AIC) and a likelihood 
ratio χ2-test (see Electronic Supplementary Material for 
more details). AIC values were computed for each of the 
candidate models and the model with the lowest AIC value 
was selected in the standard way as the best model of the 
observed data (Burnham and Anderson 2002).

Results

Habituation training of Mimosa

The initial test consisting of a brief, single-drop experience 
of the standardised stimulus (Fig. 1c; see details in “Mate-
rials and methods”) confirmed that irrespective of the light 
treatment, such a short-lived experience offers insufficient 
opportunities for this plant to learn (repeated-measures 
ANOVA, P = 0.24, F1,14 = 1.49). We used these untrained 
responses to construct light-specific control baselines 
(Fig.  2). Instead, we found that the leaf-folding reflex of 
plants undergoing full training (i.e. seven consecutive trains 
of 60 drops in a single day) habituates rapidly (Fig. 2). We 
observed leaves starting to re-open even before the first 
train of drops was delivered in full (i.e. after the first four 
to six drops) and when repeatedly elicited over the course 
of the training, leaves were not only completely open 
by the end of a train but also stopped closing altogether. 
Moreover, the leaf-folding reflex habituated more rapidly 
and leaves re-opened more fully under LL (Fig. 2; differ-
ence between light profiles, linear mixed-effects model, 
P < 0.0001, χ2 = 60). This result is perhaps not surprising 
from an energetic point of view given that Mimosa’s pho-
tosynthetic rate drops by up to 40  % when its leaves are 
closed (Hoddinott 1997), although it is important to note 
that plants did not exhibit any signs of light stress (e.g. no 
observable differences in size and appearance). The result 
shows that a greater ability to ignore a recurrent, yet harm-
less stimulus, in order to minimize energy waste and opti-
mize opportunities to forage for light is to be expected in 
environments where the available energy is more limited.

Response of the habituated leaf‑folding reflex to a novel 
stimulus

We found that the habituated response returned to origi-
nal baseline levels when the novel stimulus—a shake 
at 250  r.p.m. for 5  s—was applied (i.e. dishabituation; 
Fig. 2; differences between +6 h and DIS-hab, P < 0.0001, 
χ2  =  350 for both environments). This is an important 
result because it rules out the alternative explanation for 
a decrease in re-opening response due to exhaustion of 
energy or other resources. Moreover, it was interesting to 
find that the habituated response is only provisionally over-
ridden [as observed in animal studies (Grissom and Bhatna-
gar 2009)] and instead can be fully elicited again when the 
original familiar drop stimulus is re-presented 10 min later 
(Fig.  2; differences between DIS-hab and +10  min post-
DIS-hab, P < 0.0001, χ2 = 401, and no difference between 
+6  h and +10  min post-DIS-hab in both environments, 
P  =  0.19, χ2  =  1.7). The maintenance of the habituated 
response despite dishabituation confirms that the response 
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decrease cannot be attributed to fatigue or sensory adapta-
tion; instead it denotes the selective nature of habituation, 
an active learning process whereby plants (like animals) 
perceive an innocuous stimulus but choose not to respond 
to it while still remaining responsive to the surrounding 
environment.

Short‑term memory of the habituated leaf‑folding response

In our first experiment, we examined the effects of 1-day 
habituation training on the retention of the habituated 
response to find that changes in behaviour persist virtu-
ally unchanged 6 days later under LL conditions (Fig. 3; no 
difference between +6 h and +6d, P = 0.7, χ2 = 0.137), 
but declined by a considerable 23  % under more favour-
able HL conditions (Fig.  3; difference between +6 h and 
+6d, P < 0.0001, χ2 = 23.4). Because we now know that 
Mimosa plants can modify their leaf-folding behaviour rap-
idly (i.e. re-opening after the first four to six drops during 
initial training) and we quantified the degree of leaf open-
ness only at the end of the full train of drops, we recognise 
that we cannot irrefutably exclude the alternative hypoth-
esis that what we observed at the end of the full train of 
drops (as shown in Fig.  3) is simply rapid re-habituation 
rather than short-term memory. It is important to note, how-
ever, that during the delivery of the train of drops on day 6, 
we observed that some individuals did not close their leaves 

fully when dropped, whilst those that did, reopened them 
following just two to three drops. Such shortened response 
times suggests that these plants have a memory of previ-
ous experience. Moreover, our results suggest that plants 
in an energetically favourable environment can afford to 
reverse a formerly habituated response, and such reversal 
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can occur within a relatively short time-frame. Contrarily, 
plants experiencing an energetically more demanding envi-
ronment retained the habituated response unchanged to 
minimize energy loss, suggesting that stable habituation of 
Mimosa’s leaf-folding reflex can be produced and depends 
on the environmental context.

Long‑term memory in Mimosa

Strikingly, the habituated response of LL plants first re-
tested after being held undisturbed for 28 days (indicated 
by the green shading in Fig. 4) under the new HL conditions 
(i.e. +0  min after swap) remained unchanged (P =  0.51, 
χ2  =  0.44 compared to +0  min before swap; P  =  0.16, 
χ2 = 1.96 compared to +6 h before swap). However, when 
first re-tested in the new LL environment, the response of 
HL plants was significantly increased (P < 0.0001, χ2 = 26 
compared to +6 h before swap; P < 0.0001, χ2 = 30 com-
pared to +0 min before swap). After the swap, there was 
no difference between the two light treatments over time 
(P  =  0.9, χ2  =  3.5; Fig.  4). It is interesting to note that 
the results from the HL plants transferred to the LL treat-
ment indicate that plants quickly adapt their learned behav-
ioural responses to new environments, especially when the 
available energy has become more limited (i.e. exhibit an 
enhanced ability to ignore the recurrent yet harmless stim-
ulus than they had done before). Even more interesting, 

however, are the results from the LL plants transferred to 
the HL treatment. Contrary to our expectation of a reduced 
response, these plants continue to fully exhibit the learned 
behaviour that, in fact, proves to be especially useful in the 
new environment because it now affords maximum forag-
ing opportunity. Overall, plants whose leaf-folding reflex 
had habituated through earlier training in one light treat-
ment still exhibited the learned behaviour in the new light 
condition almost a month later (Fig. 4), demonstrating that 
a change in the training environment does not prevent this 
plant from expressing long-term habituation. Moreover 
following training 28  days later, plant responses in both 
treatments are more pronounced (i.e. greater degree of leaf 
openness) and overall variance levels in such responses are 
remarkably reduced by 85.3 % for LL → HL and 63.1 % 
for HL → LL plants when compared to the same responses 
during initial training (Fig. 4).

This not only excludes the possibility that this is simply 
rapid re-habituation, it demonstrates an increase in the ten-
dency of individuals to take a specific action in response to 
a known stimulus based on prior learning.

Discussion

Most probably the oldest form of learning, habituation 
can be observed across a wide range of organisms. Clearly 
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being able to generalize a learned response is of consider-
able adaptive value, as long as the response is stimulus-
specific enough to allow the organism to keep reacting to 
unknown, potentially dangerous, stimuli (Rankin et  al. 
2009). Our results indicate that this is the case for Mimosa; 
in fact, all experimental plants irrespective of their light 
treatment respond promptly by closing their leaves when a 
novel dishabituating stimulus is presented (Fig.  4), hence 
exhibiting stimulus specificity. Concomitantly, Mimosa 
can acquire an enduring memory of a past event, whereby 
the plant recognizes and generalizes the learned stimulus 
even when the context in which the memory was generated 
has changed (considering that each plant was immediately 
returned to its specific light environment in between each 
training session, the ‘context’ a plant experienced dur-
ing a whole training day would be best described by the 
combined ‘holding’ and ‘testing’ environment). In other 
words, Mimosa’s proficiency in responding appropriately 
to a known stimulus within a new context does not require 
brand-new learning but the capacity to ‘remember’ (i.e. 
recognize that a present cue has been previously encoun-
tered) and adjust slightly. It seems, then, that the trade-off 
between stimulus generalization and stimulus specificity is 
an essential feature of how plants (akin to animals) respond 
to their environment. As recently pointed out in the animal 
literature (Sztarker and Tomsic 2011), the final decision 
of how an organism will behave is based on the similar-
ity between the known stimulus and the new one, assessed 
along a perceptual gradient that is relevant to the individual 
species.

In this study, we have demonstrated the acquisition 
and expression of a long-lasting memory for a learned 
behaviour in this plant, but we have left unanswered the 
fundamental question of the mechanisms underlying this 
deceptively simple form of learning, the biological basis 
of which we still do not fully understand in any organism 
[but see work on invertebrates, such as crayfish (Krasne 
and Teshiba 1995); sea slugs (Glanzman 2009); and nema-
todes (Giles and Rankin 2009)]. The current hypothesis for 
neural organisms (primarily simpler invertebrate animals) 
proposes that there are a number of cellular mechanisms 
that are differentially activated to mediate short- and long-
term habituation (Rankin et al. 2009) and specifically, the 
long-term effects involve voltage-gated ion channels, neu-
rotransmitters and changes in protein synthesis [in Aplysia 
californica (Esdin et  al. 2010)]. Interestingly, the physio-
logical and cellular mechanisms of leaf movements associ-
ated with fast responses to environmental stimuli in plants 
like Mimosa have been known for some time (reviewed 
by Moran 2007), revealing that these plants employ sen-
sory and motor pathways (Shepherd 2012) with the direct 
involvement of voltage-gated ion channels (Fleurat-Les-
sard et  al. 1997), neurotransmitters (Roshchina 2001) and 

changes in protein synthesis [e.g. aquaporin (Uehlein and 
Kaldenhoff 2008)], all of which may also be utilized during 
the learning process. Hence, we propose that plants such 
as Mimosa offer a unique opportunity for investigating the 
biology of learning and memory, notwithstanding the cur-
rent belief that plant behaviour is a collection of simple, 
automata-like routines. After all, considerable progress in 
this research field over the last few decades has been made 
possible by the study of invertebrates as model species, a 
choice originally based on the assumption that these were 
simple animals performing simple tasks [yet, they have 
turned out to be far more complicated than we assumed 
(reviewed by Tomsic et al. 2009)].

So how do plants learn and remember?

Plants may lack brains and neural tissues but they do pos-
sess a sophisticated Ca-signalling network in their cells 
(Yang and Poovaiah 2003) similar to those underlying 
memory processes in animals (Perisse et  al. 2009). Spe-
cifically, intracellular Ca ([Ca2+]i) signals are known to 
regulate a large variety of functions in all biological organ-
isms (Berridge et al. 2000), including memory processing 
and formation of memory imprints of past events ranging 
from minutes to generations through gene expression (Per-
isse et al. 2009; Gális et al. 2009). Interestingly in animals, 
fluctuations in [Ca2+]i during learning seem to be essen-
tial in priming the organism for the formation of long-term 
memory, without affecting short-term memory (Perisse 
et al. 2009; Bauer et al. 2002). In plants, this same [Ca2+]i 
system is already known to contribute to the formation of 
stress imprints (Conrath et al. 2001) and may be responsi-
ble for the long-term memory we observed in Mimosa. As 
a matter of fact, in both animals and plants, fluctuations in 
[Ca2+]i levels are directly linked to stimulus–response cou-
pling through changes in the concentration of small mol-
ecules and proteins, including calmodulin (CaM). What is 
really interesting about this Ca2+ sensor is that CaM is one 
of the most conserved Ca2+-binding proteins in eukaryotes 
[>70  % sequence alignment similarity between animals 
and plants, albeit plants have a much larger repertoire of 
genes coding for CaM-target proteins (Yang and Poovaiah 
2003)]. The Ca2+/CaM signalling system controls the 
expression of genes whether their transcription occurs in 
the neurons of a big-brained animal (Limback-Stokin et al. 
2004) or in the root apex cells of a plant (Kim et al. 2009). 
This might be the starting point from which a minute, yet 
measurable Ca2+/CaM signal acting on voltage-gated ion 
channels (Halling et al. 2005) and their production of elec-
trical waves (Yellen 1998), culminates in the formation of 
memories and expression of the most remarkable behav-
iours in animals [e.g. Aplysia (Esdin et  al. 2010)] and 
plants alike.
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Beside the Ca2+ model, there is another possible hypoth-
esis to explain memory mechanisms in plants at the cellular 
level. It is now known that many non-neural cells are capa-
ble of processing information via ion flows generated by 
ion channels/pumps and propagated by cell:cell junctions 
[e.g. cardiac tissue (Chakravarthy and Ghosh 1997); bone 
cells (Turner et al. 2002)]. Simulating neural network-like 
dynamics, stable bioelectrical gradients among non-excit-
able cells could store information, memories and exhibit 
many other properties usually reserved for brains (Tseng 
and Levin 2013). Plants are no exception, especially when 
we consider that they have, in fact, well-developed path-
ways for the effective transmission of information via elec-
trical signals (Volkov et al. 2008).

Additionally at the molecular level, the role of epige-
netic reprogramming has been increasingly identified as a 
promising candidate mechanism for learning and memory 
storage in plants (Thellier and Lüttge 2013) and more gen-
erally, across all taxa (Ginsburg and Jablonka 2009; Ledón-
Rettig et  al. 2013). In principle, behavioral responses can 
be modified or refined through the integration of environ-
mental experiences (i.e. learning) via changes in chromatin 
status [modulated by acetylation and methylation of DNA 
and histone proteins (Allis et  al. 2007)]. In fact, it is well 
documented that epigenetic variations can be induced by 
external stimuli (Boyko and Kovalchuk 2008; Alvarez et al. 
2010; Yaish et al. 2011) and more specifically, that changes 
in chromatin methylation patterns are strongly produced 
following environmental stress (e.g. Molinier et  al. 2006; 
Chinnusamy and Zhu 2009; Verhoeven et  al. 2010; Ding 
et  al. 2012) and retained as a source of ‘stress memory’ 
[e.g. vernalization, whereby the flowering of plants requires 
priming by previous exposure to chilling (Sung and Ama-
sino 2004); induced plant defences, whereby an anti-herbi-
vore or anti-pathogen response is primed by environmental 
cues that reliably indicate an increased probability of attacks 
prior to their occurrence (Conrath 2009); acquired toler-
ance to drought stress, whereby exposure of young plants 
to a mild salt treatment primes enhanced drought tolerance 
in adult plants (Han and Wagner 2013)]. Yet, it should be 
cautiously noted here that these stress-induced changes in 
plant response resulting from previous experiences involve 
a priming input that modifies chromatin patterns but does 
not lead to an immediate phenotypic response [i.e. memory 
with delayed output (Ginsburg and Jablonka 2009)]. These 
are quite different from habituated responses like the one 
shown by the Mimosa plants in this study, where an input 
to the gene may produce a behavioral output that operates 
as a negative regulator of the gene, imposing an inhibitory 
epigenetic marking which, in turn, leads to a smaller behav-
ioral response when recurring stimulations of the same 
kind activate that gene [i.e. memory of inhibitory modifica-
tions and recall (Ginsburg and Jablonka 2009)]. Secondly, 

changes in chromatin marks seem to always require severe 
stress conditions and prolonged exposure to such conditions 
(reviewed by Pecinka and Mittelsten Scheid 2012), opening 
an important question as to whether epigenetic variations 
mediate memory and learning processes when organisms 
are not under stress. Obviously, different circumstances and 
environmental conditions affect the behavioral actions an 
organism takes in different ways; in turn, different behav-
iours during a learning experience can lead to function-
ally significant differences in the information acquired as 
a result of the experience [i.e. a learned response develops 
within the lifetime of an individual based on sensory feed-
back (Kawecki 2010)]. While any environmental factor can 
become a stressor, stress per se [i.e. the organism fails to 
respond adequately to unfavourable conditions (Pecinka and 
Mittelsten Scheid 2012)] is induced only when the inten-
sity of the conditions is too high or too low (i.e. beyond the 
relative sensitivity and threshold value of the organism). By 
creating situations in which individuals had an opportunity 
to acquire useful information without being exposed to such 
extreme conditions, our study suggests that it is worth inves-
tigating the epigenetic reprogramming more broadly to gain 
a complete view on its potential role as a likely molecu-
lar mechanism underlying learning and memory functions 
across living systems.

Conclusion

Once the domain of psychologists, research on learning and 
memory has extended its reach beyond the study of human 
behaviour to include several animal species and more 
recently, even machines. The recent emergence of interdisci-
plinary approaches like cognitive ecology, which focuses on 
the functional roles of learning in nature, and how different 
species obtain and make use of information about their envi-
ronment to survive (Dukas 2004), have revealed the excep-
tional importance that the ability to learn plays in biological 
evolution as a whole (Kawecki 2010). Because of the very 
fact that much of the advances in learning research come 
from humans and animals, the acquisition and use of infor-
mation through the learning process is implicitly accepted 
to be contingent on neuronal processes (or artificial neural 
networks modelled on their biological counterparts, in the 
case of machines), a view that inevitably excludes non-
neural organisms such as plants from the behavioral realm 
of learning, memory and decision-making (but see Trewa-
vas 2003). What we have shown here, however, leads to 
one clear, albeit quite different, conclusion: the process of 
remembering may not require the conventional neural net-
works and pathways of animals; brains and neurons are just 
one possible, undeniably sophisticated, solution, but they 
may not be a necessary requirement for learning.
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