
edge-state transport mechanisms, we believe that
the spin/valley Hall effect is the only remaining
explanation for our findings.

The profound nonlocality described here is an
essential attribute of electron transport in graphene.
The nonlocality is consistent with neutral cur-
rents generated by the SHE at high T and, pos-
sibly, by the valley Hall effect at liquid-helium T.
Nonlocal transport, being directly sensitive to
neutral degrees of freedom, provides valuable in-

formation that is inaccessible by conventional
electrical measurements.
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Teleportation of Nonclassical
Wave Packets of Light
Noriyuki Lee,1 Hugo Benichi,1 Yuishi Takeno,1 Shuntaro Takeda,1 James Webb,2

Elanor Huntington,2 Akira Furusawa1*

We report on the experimental quantum teleportation of strongly nonclassical wave packets of
light. To perform this full quantum operation while preserving and retrieving the fragile
nonclassicality of the input state, we have developed a broadband, zero-dispersion teleportation
apparatus that works in conjunction with time-resolved state preparation equipment. Our approach
brings within experimental reach a whole new set of hybrid protocols involving discrete- and
continuous-variable techniques in quantum information processing for optical sciences.

In the early development of quantum infor-
mation processing (QIP), a communication
protocol called quantum teleportation was

discovered (1) that involves the transportation of
an unknown arbitrary quantum state |y〉 bymeans
of entanglement and classical information. Ex-

perimental realizations of quantum teleportation
(2, 3) and more advanced related operations (4)
in the continuous-variable regime have been
achieved by linear optics methods, although only
for Gaussian states so far. However, at least third-
order nonlinear operations are necessary for build-
ing a universal quantum computer (5)—something
that Gaussian operations andGaussian states alone
cannot achieve. Photon subtraction techniques
based on discrete-variable technology can pro-
vide useful nonlinearities and are used to gen-
erate Schrödinger’s-cat states and other optical
non-Gaussian states (6). Schrödinger’s-cat states
are of particular interest in this context, as they

have been shown to be a useful resource for fault-
tolerant QIP (7). It is therefore necessary to ex-
tend the continuous-variable technology to the
technology used in the world of non-Gaussian
states.

We have combined these two sets of tech-
nologies, and herewe demonstrate suchGaussian
operations on nonclassical non-Gaussian states
by achieving experimental quantum teleportation
of Schrödinger’s-cat states of light. Using the
photon subtraction protocol, we generate quan-
tum states closely approximating Schrödinger’s-cat
states in a manner similar to (8–11). To accom-
modate the required time-resolving photon de-
tection techniques and handle the wave-packet
nature of these optical Schrödinger’s-cat states,
we have developed a hybrid teleporter built with
continuous-wave light yet able to directly operate
in the time domain. For this purpose we con-
structed a time-gated source of Einstein-Podolsky-
Rosen (EPR) correlations as well as a classical
channel with zero phase dispersion (12). We were
able to bring all the experimental parameters up to
the quantum regime, and we performed successful
quantum teleportation in the sense that both our
input and output states are strongly nonclassical.

A superposition of the quasi-classical coher-
ent state ja〉 is one of the consensus definitions of
a Schrödinger’s-cat state jcat〉, typically written

A B C

Fig. 3. SHE in graphene and nonlocal transport mediated by spin diffusion. (A) Zeeman splitting at
charge neutrality produces two pockets filled with electrons and holes having opposite spin. (B) In the
presence of the Lorentz force, I gives rise to transverse spin currents I↑ and I↓. Because the force has
opposite signs for electrons and holes, the net charge current is zero, whereas the net spin current is
nonzero. The resulting imbalance in the up/down spin distribution can reach remote regions and generate
a voltage drop V. (C) RNL predicted in our model for the QHE regime (main panel) and the quasiclassical
regime (inset). The best-fit parameters n0 = 4 × 109 cm−2 and Landau level broadening G = 200 K are
typical for GBN and GSiO devices, respectively. RNL grows with decreasing n0 andG (17), which is consistent
with much larger RNL measured in our GBN devices.
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jcat〉ºja〉 T j − a〉. Such optical Schrödinger’s-cat
states are known to be approximated by multiple
photon subtractions from a squeezed vacuum
state (6). In these protocols, a squeezed vacuum
state %SðsÞj0〉 is weakly tapped via a subtraction
channel, where j0〉 is the vacuum state and %SðsÞ
is the squeezing operator with squeezing param-
eter s. When a photon detection event occurs in
the subtraction channel, %SðsÞj0〉 is projected by
the quantum action of the photon detector onto
a non-Gaussian state, which can be tuned to ap-
proximate a Schrödinger’s-cat state (8–10). The
approximation is not perfect and can be quan-
tified by means of the fidelity figure Fcat ¼
j〈catj %a %SðsÞj0〉j2 (13).

To represent the superposition nature of these
states, we use the Wigner formalism where for
any quantum state jf〉 one associates a quasi-
probability distributionW(x, p), where x and p are
the phase-space position and momentum param-
eters. W(x, p) is called the Wigner function and
holds information exactly equivalent to jf〉 (14).
Although the position %x and momentum %p quad-
rature operators and the vector state jf〉 are abstract
objects, W(x, p) is always a definite real-valued
function that can be numerically reconstructed if
one performs a complete phase-resolved sequence
of homodyne measurement %xcosqþ %psinq, a pro-
cess called quantum tomography (15, 16).W(x, p)
is not a true probability distribution, however, as
there exist quantum states whose Wigner func-
tions are not positive. jf〉 is defined to be a strongly
nonclassical statewhen itsWigner functionW(x, p)
fails to be a positive distribution. Negativity in
W(x, p) turns out to be an especially useful de-
scription of the nonclassicality of a Schrödinger’s-
cat state jcat〉; ja〉 and j−a〉 induce two “classical”
Gaussians in phase space, the superposition of
which creates an oscillating interference pattern
inducing negativity in W(x, p). In contrast, a sta-
tistical mixture of ja〉 and j−a〉would never show
such negativity.

In a quantum teleportation process, the input
Win and outputWout Wigner functions are related
by the convolution (denoted ○)

Wout ¼ Win∘Gexpð−rÞ ð1Þ

where r is the EPR correlation parameter, Gs is
a normalized Gaussian of standard deviation s,
and ħ (Planck’s constant divided by 2p) has
been set to 1 (17). When finite quantum entan-
glement r is used, Wout will be a thermalized
copy of Win. Only with infinite r will Gs be-
come a delta function so that Win = Wout. The
quality of quantum teleportation is usually eval-
uated according to the teleportation fidelity
F tele ¼ 〈finj %routjfin〉, which can be written as
Ftele = 1/[1 + exp(–2r)] for Gaussian states (18).
More important for our case, negative features
of Win (if any) can only be teleported and re-
trieved in Wout when Ftele ≥ 2/3 (19), a threshold

also known as the no-cloning limit (20). How-
ever, the practical lower bound on Ftele will be
higher because of decoherence and experimental
imperfection of Win (21). We have thus defined
the success criterion of Schrödinger’s-cat–state
teleportation as the successful transfer of its non-
classical features, or alternatively, successful tele-
portation of the Wigner functionWin negativity.

Our experimental quantum teleporter and
Schrödinger’s-cat–state source (Fig. 1) upgrade
the experiments described in (3) and (10), respec-
tively.We use three optical parametric oscillators
to generate the necessary squeezed vacua. One
is used for the Schrödinger’s-cat–state prepara-
tion; the other two are combined together on a
half beam splitter whose two exit ports are the
resulting pair of EPR-correlated beams. The tele-
portation is conducted in three steps. Alice first

receives both the input state and her EPR beam
and performs two joint quadrature measurements,
obtaining results x0 and p0. Bob then receives
Alice’smeasurementsb ¼ ðx0 þ ip0Þ=

ffiffiffi
2

p
through

the classical channels and applies the displace-
ment operator %DðbÞ on his EPR beam. A final
stage consists of a third homodyne detector for
tomography at the teleporter output. We em-
phasize that Alice and Bob do not assume any
prior knowledge of the input state and adhere to
unity-gain teleportation, so that the teleporter
does not have any restriction regarding the spe-
cific family of quantum states it can faithfully
teleport.

To benchmark our teleporter, we first evaluate
the fidelity Ftele of teleportation of the vacuum
state j0〉, the coherent state of amplitude zero. At
quantum optical frequencies where the mean

Fig. 1. Experimental setup. OPO,
optical parametric oscillator; APD,
avalanche photodiode; HD, homo-
dyne detector; LO, local oscillator;
EOM, electro-optical modulator; ADC,
analog-to-digital converter; FC, fil-
tering cavity. See (12) for details.

Fig. 2. Broadband teleportation of the vacuum state j0〉. (A and B) Experimentally measured power
spectra of the photocurrents calculated by Fourier transform are shown for the position (A) and mo-
mentum (B) quadratures. Blue, shot-noise input; green, quantum teleportation output; red, teleportation
output without entanglement. (C to E) Reconstructed Wigner functions of the input state j0〉 (C), quantum
teleported vacuum (D), and classically teleported vacuum (E).
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thermal photon number is virtually 0, this is
simply done by blocking the input port of the
teleporter. The teleported vacuum photocurrent is
expected to have uniformGaussian statistics with
a variance s2 = ½ + [exp(–2r)] (ħ = 1) from
whichwe can deduce teleportation fidelity (Fig. 2).
The blue traces are the shot-noise level, the noise
spectrum of the input vacuum j0〉. The red traces
are the classical limit of teleportation obtained by
turning off the entanglement between Alice and
Bob (r = 0). We measure 4.8 dB of added noise
above the shot noise, in agreement with the
expected teleportation fidelity of 0.5.WhenAlice
and Bob share entanglement, the added noise
drops to that shown by the green traces: 1.4 dB
above the shot noise around 1 MHz, correspond-
ing to a fidelity of 0.83. This is in agreement with
the experimental figure of −6.9 dB that we ob-
serve in direct measurement of the EPR corre-
lations shared between Alice and Bob.

In contrast to quantum teleportation experi-
ments conducted to date for narrow sidebands of
light (2, 3), our setup operates over a wide fre-
quency bandwidth, as required by the nature of
our input state. Because its generation relies on
the detection of a single photon and the induced
projection, a Schrödinger’s-cat state made via
photon subtraction is a short wave packet of light.
A phenomenological way to picture these wave
packets is to consider them as the closed boxes
containing the macroscopic superposition states
as in Schrödinger’s original idea. This requires
Alice and Bob to teleport every frequency com-
ponent of these “box-like” wave packets for
faithful teleportation to occur. In this way, Alice
and Bob do not need to actually teleport the
Schrödinger’s-cat states directly, but merely the
potential boxes containing them. Consequently,
Alice and Bob do not need to know when a
detection event occurs; rather, they are only con-
cerned with continuous and faithful “box” wave-
packet teleportation, whichever state lies in the

box. In fact, Alice and Bob actually teleport most
of the time a squeezed vacuum state %SðsÞj0〉.

In essence, our teleporter is a time-resolved
apparatus that deconstructs the input wave pack-
ets into a stream of infinitely small time bins and
reconstructs them at the output, within the extent
of what we refer to as the teleportation bandwidth.
This bandwidth is clearly visible in both of the
green experimental traces where the added noise
slowly increases with frequency (Fig. 2). This is a
direct consequence of the finite bandwidth of
squeezing used for entanglement.However, across
the frequencies relevant to our input state, telepor-
tation fidelity is always greater than the no-cloning
limit of 2/3, a necessary regime for negativity
teleportation. Avery careful implementation of the
classical channel has been required (12) to achieve
experimental realization of this fidelity.

To verify the success of Schrödinger’s-cat–
state teleportation, we perform experimental quan-
tum tomography of the input and output states
independently (Fig. 3). Both input and output
marginal distributions exhibit the characteristic
eye shape of photon-subtracted squeezed states,
with a clear lack of detection events around the
origin for any phase. Although necessary, this
feature alone is not sufficient to confirm the presence
of negativity in Win or Wout. The reconstructed
inputWigner functionWin shows the two positive
Gaussians of ja〉 and j−a〉 together with a central
negative dip [Win(0, 0) = −0.171 T 0.003] caused
by the interferences of the ja〉 and j−a〉 super-
position. The output Wigner functionWout retains
the characteristic non-Gaussian shape as well as
the negative dip [Wout(0, 0) = −0.022 T 0.003] to
a lesser degree. The degradation of the central
negative dip and the full evolution ofWin toward
Wout can be fully understood using Eq. 1 with a
model ofWin, as was done in (21). Given the mea-
sured input state negativity of Win(0, 0) = −0.171
and −6.9 dB of squeezing, the results of (21) pre-
dict an output negativity value of −0.02, in good

agreement with measured output negativity. Al-
though this figure does not take into account the
input-state squeezing, amore detailedmodel shows
that a squeezing parameter s = 0.28 affects out-
put negativity in the third decimal place only (12).
The experimental input and output states have an
average photon number 〈 %n〉 equal to 1.22 T 0.01
and 1.33 T 0.01, respectively (12). The increase
in the output-state size is due to teleportation-
induced thermalization. We calculate that the fi-
delityFcat is as high as 0.750 T 0.005 for the input
Wigner functionWin, with the nearest Schrödinger’s-
cat state having an amplitude |ain|

2 = 0.98 (12).
However, after the teleportation Wout, fidelity is re-
duced to 0.46 T 0.01,with the nearest Schrödinger’s-
cat state having an amplitude |aout|

2 = 0.66. If
Wout fidelity is calculated with |ain|

2 = 0.98, then
Fcat = 0.45 T 0.01.

We have demonstrated an experimental quan-
tum teleporter able to teleport full wave packets
of light up to a bandwidth of 10 MHz while at
the same time preserving the quantum character-
istic of strongly nonclassical superposition states,
manifested in the negativity of the Wigner func-
tion. Although Fcat and W(0, 0) drop in the tele-
portation process, there is no theoretical limitation
other than available squeezing, and stronger EPR
correlations would achieve better fidelity and neg-
ativity transmission. The various more complex
states generated as an application of photon sub-
traction so far (22, 23) can be, in principle, readily
sent through our broadband quantum teleporter.
This opens the door to universal QIP and further
hybridization schemes between discrete- and
continuous-variable techniques (24).
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Enhanced Enantioselectivity in
Excitation of Chiral Molecules by
Superchiral Light
Yiqiao Tang1 and Adam E. Cohen1,2*

A molecule or larger body is chiral if it cannot be superimposed on its mirror image (enantiomer).
Electromagnetic fields may be chiral, too, with circularly polarized light (CPL) as the paradigmatic example.
A recently introduced measure of the local degree of chiral dissymmetry in electromagnetic fields suggested
the existence of optical modes more selective than circularly polarized plane waves in preferentially
exciting single enantiomers in certain regions of space. By probing induced fluorescence intensity, we
demonstrated experimentally an 11-fold enhancement over CPL in discrimination of the enantiomers of a
biperylene derivative by precisely sculpted electromagnetic fields. This result, which agrees to within 15%
with theoretical predictions, establishes that optical chirality is a fundamental and tunable property of
light, with possible applications ranging from plasmonic sensors to absolute asymmetric synthesis.

Circular dichroism (CD) describes the
differential absorption of left- and right-
circularly polarized light by a chiral mol-

ecule (1). CD spectroscopy provides important
structural information and is widely used for
characterizing organic and biological molecules.
Yet CD measurements are challenging because
the signals are typically weak. For most small
molecules, the absorption cross sections for left-
and right-circularly polarized light differ by less
than one part per thousand (2).

The weakness of CD is a consequence of the
small size of most molecules relative to the wave-
length of light: The circularly polarized field
undergoes a barely perceptible twist over a dis-
tance of molecular dimensions (3). This twist
provides only a weak perturbation to the overall
rate of excitation. Finding ways to enhance CD
could lead to improved sensors and may open
the door to efficient absolute asymmetric syn-
thesis in which light provides the chiral bias.

Substantial effort has been devoted to calculating
CD spectra for a variety of molecules at multiple
levels of theory (4, 5) and to designing molecules
that show large optical dissymmetry at particular
wavelengths (2). These treatments focused on the
molecular aspects of CD, relying on circularly
polarized plane waves as the source of excitation.

With the advent of near-field optics, plas-
monics, photonic crystals, and metamaterials, sci-
entists now construct electromagnetic fields that
are far more contorted than is circularly polarized
light (CPL) (6, 7). Several groups have sought
to use metallic nanostructures to enhance chirop-
tical phenomena (8–10). Recently, Hendry et al.
reported enhanced CD in samples of proteins
adsorbed onto chiral metal nanostructures (11).
These experiments may lead to important prac-
tical applications, but the complexity of the
geometries has thus far prevented a quantitative
comparison with theory. Other groups have ap-
plied techniques of coherent control to enantio-
selective excitation of chiral molecules, but these
strategies are specific to a single compound or
narrow class of compounds (12).

We wondered whether it would be possible
to design non–plane-wave monochromatic so-
lutions to Maxwell’s equations that showed en-

hanced dissymmetry in their excitation of all
chiral molecules, regardless of molecular struc-
ture. Our intuitive picture was that enhanced
dissymmetry should occur if the field lines re-
oriented over a distance much shorter than the
free-space wavelength, ideally over molecular
dimensions. Then the spatial scales of chirality
in the molecule and the light would match (13).

To guide the design of superchiral light, we
sought a measure of optical chirality, a way to
determine whether one field couples more strong-
ly to molecular chirality than does another (14).
Such a measure must have certain symmetries.
Chirality is time even (a movie of a right-handed
screw shows a right-handed screw whether the
movie is played forward or backward), parity odd
(a mirror image of a right-handed screw is a left-
handed screw), and scalar (a right-handed screw
remains right-handed no matter its orientation). A
classification of thewell-known conserved electro-
dynamic quantities by their symmetries (Fig. 1A)
reveals a vacancy where there should be a time-
even, parity-odd scalar. Any measure of optical
chiralitymust lie in this empty fourth quadrant (15).

On the basis of these symmetry consider-
ations, we proposed the existence of a physical
quantity, optical chirality, defined in Fig. 1A. The
mathematical structure of optical chirality captures
the degree to which the electric and magnetic
field vectors E and B wrap around a helical axis
at each point in space. In the 1960s, Lipkin studied
this same quantity, but he and others dismissed
it as lacking physical significance (16, 17).

Is optical chirality observable? In the stan-
dard theory of CD, the dissymmetry factor, g(l),
measures the fractional difference in rates of
excitation between left- and right-circularly po-
larized light at wavelength l (18). We generalized
the theory of CD to include pairs of arbitrary
mirror-image fields and found that the dissym-
metry factor becomes (14)

g ¼ gCPL
cC

2Uew

� �
ð1Þ

where gCPL is the dissymmetry factor under cir-
cularly polarized light, c is the speed of light,
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