
Rethinking I/O: Using HPC resources within HEP

Jim Kowalkowski
Scalable I/O Workshop

23 Aug 2018

• Greatly increase usage of HPC resources for HEP workloads
– After all, many more compute cycles will be available in HPC than anywhere

else.

• Can we …
– Provide for large-scale HEP calculations

– Demonstrate good resource utilization

– Use tools available on HPC systems (we believe this is a practical decision)

• Scalable I/O has been one of the major concerns

What we have been challenged with

8/23/2018 J.Kowalkowski – Scalable I/O Workshop2

• Big Data explorations (SCD)
– New (to HEP) methods for performing analysis on large datasets

– Began with Spark, moved to python/numpy/pandas/MPI

• HDF for experimental HEP (Fermilab LDRD 2016-010)
– Organizing data for efficient access on HPC systems (HDF)

– Organizing programs for efficient analysis of data with Python/numpy/MPI

• HEP Data Analytics on HPC (SciDAC grant)
– Collaboration between DOE Office of High Energy Physics and Advanced Scientific

Computing Research (ASCR supports the major US supercomputing facilities)

– Physics analysis on HPC linked to experiments (NOvA, DUNE, ATLAS, CMS)

Efforts have been underway to tackle challenges

7/23/2018 3 J.Kowalkowski – Scalable I/O Workshop

• How ought data be organized and accessed?
– Assuming usual HPC facility with a global parallel file system

– A deeper memory hierarchy than we are used to

• How should the applications be organized?
– Is our current programming model appropriate?

– How do we achieve necessary parallelism?

– What libraries should we be using?

• How will the operating systems and run-time environment affect our computing
operations and software?
– Are the software build and deployment tools we have in place adequate?

– What if we could analyze an entire dataset all at once?

– Can we benefit from tighter integration of workflow and application?

Questions to be addressed

8/23/2018 J.Kowalkowski – Scalable I/O Workshop4

• Choose representative problems to solve
– NOvA analysis workflows, LArTPC processing, generator tuning

• Choose toolkits and libraries that could help
– HDF5

– ASCR data services geared towards HPC

– Python with numpy, MPI, and Pandas

– Container technology

– DIY as a solution for data parallelism

• Facilities to be used initially:
– NERSC Cori (KNL and Haswell)

– ALCF Theta

Plan of attack

8/23/2018 J.Kowalkowski – Scalable I/O Workshop5

• We aim to greatly reduce the time it takes to process HEP data.

• We need to redesign our workflows and code to take full advantage of
HPC systems.
– to use well-established parallel programming tools and techniques

– to make sure these tools and techniques are sufficiently easy to use

– We need programs that are adaptable to different “sizes” of jobs (numbers of
nodes used) without changing the code.

– We want data designed for partitioning across large machines.

• We want to partition data (and processing) by things that are meaningful in
the problem domain (events, interactions, tracks, wires, . . .), not according
to computing model artifacts (e.g. Linux filesystem files).
– parallelism implicit

Guiding principles, requirements, and constraints

7/09/2018 6 J.Kowalkowski – Scalable I/O Workshop

• LArTPC wire storage, access, and processing

• Event selection for neutrino analysis

• Object store for physics data

• Physics generator data access

Experimental contexts for our work

8/23/2018 J.Kowalkowski – Scalable I/O Workshop7

LArTPC wire storage, access, and processing

8/23/2018 J.Kowalkowski – Scalable I/O Workshop8

• LArIAT is a LArTPC (Liquid Argon Time Projection Chamber) test beam experiment

• Converted all LArIAT raw data sample to one HDF5 file
– Started with 200K art/ROOT data files

– ~42 TB of digitized waveforms (4.2 TB compressed)

– 15,684,689 events.

– Waveform data from u and v wireplanes (240 wires per plane, 3072 samples per wire)

• Reorganized the data using HDF to be more amenable for parallel processing

• Processing the entire LArIAT raw data sample
– First step of reconstruction is noise reduction using FFTs

Noise removal from LArIAT waveforms

8/23/2018 J.Kowalkowski – Scalable I/O Workshop9

Parallelism is entirely implicit, and entirely data parallel.

Example MPI code: processing many events at one time

8/23/2018 J.Kowalkowski – Scalable I/O Workshop10

first and last are calculated by library code, to tell
this function call what part of the data set it is to
work on.
adc_data = adcdataset[first:last] # read block of array
adc_floats = adc_data.astype(float)
view data as an array of wires, rather than as events
adc_floats.shape = (nevts*WIRES_PER_PLANE, SAMPLES_PER_WIRE)
waveforms = transform_wires(adc_floats) # real work done here
view the data as events again
waveforms.shape(nevts, WIRES_PER_PLANE, SAMPLES_PER_WIRE)

• All the real work is done in the numpy library, implemented in C.
– The library can use multithreading, or vectorization, to get the most performance from the

hardware.

• The script that launches the application specifies how many processes to use:
– mpirun -np 76800 python process_lariat.py <filename>

– This starts 76800 communicating parallel instances of our program — equivalent to
running 76800 jobs all at once.

Example code: processing many wires

8/23/2018 J.Kowalkowski – Scalable I/O Workshop11

def transform_wires(wires):
ftrans = numpy.fft.rfft(wires, axis=1)
filtered = THRESHOLDS * ftrans
return numpy.fft.irfft(filtered, axis=1)

Processing speed for full analysis being done

8/23/2018 J.Kowalkowski – Scalable I/O Workshop12

• Entire LArIAT dataset processed in three minutes (at 1200 nodes)

• Shows perfect scaling

• Read + decompression speed for the whole application

• Nearly perfect strong scaling

Read speed – how does the I/O scale?

8/23/2018 J.Kowalkowski – Scalable I/O Workshop13

• Different colors correspond to different ranks in the application

• Slower iterations within the application are twice as slow as faster ones (81 iterations
in whole run)

We should be able to do better …

8/23/2018 J.Kowalkowski – Scalable I/O Workshop14

Event selection for neutrino analysis

8/23/2018 J.Kowalkowski – Scalable I/O Workshop15

Traditional solution for oscillation parameter measurement

7/09/2018 16 J.Kowalkowski – Scalable I/O Workshop

• We want to minimize …
– Reading

– Communication and synchronization between ranks

• We organize the data into a single HDF5 file, containing many different tables
– some tables have one entry per slice

– some have a variable number of entries per slice

• We want to process all data for a given slice in a single rank.
– the slice is NOvA’s “atomic” unit of processing, like a collider event.

– for data that represent per-slice information, this is trivial

– for other data, we need to do some work to ensure each rank has the correct data.

High-level organization of processing

7/09/2018 17 J.Kowalkowski – Scalable I/O Workshop

HPC solution

7/09/2018 18 J.Kowalkowski – Scalable I/O Workshop

Parallel event pre-selection

7/23/2018 19

files

17K
art/ROOT

files

17K art

grid jobs

17K art
conversion
grid jobs dcache

17K HDF
files in
dcache

Globus

NERSC

Globus
transfer
NERSC

17K HDF
files on

Cori

MPI

job

MPI
combine

job on Cori

One
HDF file
on Cori

• Current situation
– NOvA slice data held in 17K ROOT files across

– ~27 million events are reduced to tens using ROOT macros applying
physics “cuts”

• New method
– Data prepared for analysis using workflow shown below

– End state: >50 groups (tables), each with many attributes

MPI Build

index

MPI Build
global
index

HDF

read

HDF
parallel

read

MPI

cuts

MPI
apply all

cuts

Aggregate
results

J.Kowalkowski – Scalable I/O Workshop

• Each rank reads its “fair share”
of index info from each table.
– identifies which rank should handle

which event, for most even balance

– identifies range of rows in table that
correspond to each event (all slices)

• Event “ownership” information distributed to all ranks
– this assures no further communication between ranks is needed while evaluating the

selection criteria on a slice-by-slice basis.

– perfect data parallelism in running all selection code

• Each rank reads only relevant rows of relevant columns from relevant tables
– all relevant data read by some rank

– no rank reads the same data as another

Distributing and reading information

7/09/2018 20

sel_nuecosrej vtx_elastic

rank 0

rank 1

Index info read by rank 1
Table row read by rank 0

J.Kowalkowski – Scalable I/O Workshop

def kNueSecondAnaContainment(tables):
df = tables['sel_nuecosrej’]
return (df.distallpngtop > 63.0) & \

(df.distallpngbottom > 12.0) & \
(df.distallpngeast > 12.0) & \
(df.distallpngwest > 12.0) & \
(df.distallpngfront > 18.0) & \
(df.distallpngback > 18.0)

def vtxelasticzCut(tables):
df = tables['vtx_elastic']
df['good'] =

(df.vtxid == 0) & (df.npng3d > 0)
KL = ['run', 'subRun', 'event', 'slice']
return df.groupby(KL)['good'].agg(np.any)

• Selection can be done on multiple columns
of a table.

• Logical operations are connected by &
operator.

• Data parallelism is totally implicit.

• Returns an array with one logical value per
slice.

• vtx_elastic table has one entry per vertex;
may be more than 1 per slice.

• groupby combines results for all vertices in
one slice.

• Returns an array with one logical value per
slice.

7/09/2018 21

Example selection code

J.Kowalkowski – Scalable I/O Workshop

• NOvA has taken ownership of our HDF “ntuple” production code
– They will use this in their own future production.

– Especially interested in using for machine learning; many tools work with HDF5 files.

• We will be comparing performance with C++-MPI implementation.

• Integration with larger workflow that is also part of the SciDAC project
– use of changes in event selection criteria to evaluation systematic uncertainties in the

mixing parameter measurements

– one integrated MPI program, to take best advantage of HPC platform.

Current status

7/09/2018 22 J.Kowalkowski – Scalable I/O Workshop

Object store for physics data

8/23/2018 J.Kowalkowski – Scalable I/O Workshop23

Goals:

• Manage physics event data from simulation and experiment
through multiple phases of analysis

• Accelerate access by retaining data in the system
throughout analysis process

• Reuses components from Mochi ASCR R&D project

Properties:

• Write-once, read-many

• Hierarchical namespace (datasets, runs, subruns)

• C++ API (serialization of C++ objects)

Components:

• Mercury, Argobots, Margo, SDSKV, BAKE, SSG

• New code: C++ event interface
Map data model into stores

HEPnOS: Fast Event-Store for HEP (on HPC)

BAKE SDS-KeyVal

HEP Code

RPC RDMA

PMEM LevelDB

C++
API

7/23/2018 24 J.Kowalkowski – Scalable I/O Workshop

Our first use of HEPnOS

7/23/2018 25

Event currently
interacts with
art/ROOT File

• Make high-volume reconstructed physics object data
available to analysis workflows

– Use existing art framework and gallery library

– Starting point: Use actual LArSoft Tracks, Hits,and
Associations from ProtoDUNE simulation

• Allow HPC facility services to distribute data at any
scale, using existing HEP abstractions
– Runtime ROOT File I/O replacement using HEPnOS

– Include all levels (or layers) of data aggregation with
metadata

• Data distribution and data parallelism implicit to user

art modules/user code
Algo 3Algo 1 Algo 2

Event “Proxy”

get<product>(key)

Source

Prepare
“correct”
proxy

HEPnOS C++ API

load

Interaction with proxy

Interaction with HEPnOS
User path

J.Kowalkowski – Scalable I/O Workshop

• Prototype test programs are running:
– one to read from existing art/ROOT data files, and to write to the new data store

– one to read from the new data store, and verify the integrity of the data

• We are using Docker containers for easy portability of development environment
– Some of us develop on macOS laptops, others on a variety of Linux installations

– We will deploy to NERSC (through Shifter) and ALCF (through Singularity)

• The dataset (description and name) is included in the namespace
– Interesting to have direct access to any part from any process on any node

– Opens up new workflow possibilities

– Can readily represent and access things below the event, such as NOvA slices

Current status and future direction

7/09/2018 26 J.Kowalkowski – Scalable I/O Workshop

Physics generator data access

8/23/2018 J.Kowalkowski – Scalable I/O Workshop27

• Adequate predictions of many observables require input from matrix element
generators
– e.g. Getting angular distribution of jets correct

• ME generators (Sherpa, MadGraph) are used to generate high-multiplicity parton-
level events
– LHE description is the typical representation

– Used as input to Pythia8 to get fully simulated events

• XML-based LHE data format is unsuitable for HPC

• Task is to write LHE data in HDF5 instead
– We can accumulated all the XML data into one HDF5 file

– Also working on writing HDF5 directly from Sherpa

• Will work seamlessly with our new DIY-based generator applications that tie
together Pythia8, LHAPDF, and Rivet

Matrix element (ME) calculations and physics generators

8/23/2018 J.Kowalkowski – Scalable I/O Workshop28

• I/O will not be an issue

8/23/2018 29

Generator data available for any size study

J.Kowalkowski – Scalable I/O Workshop

• Organization of running Pythia8 on
HPC facilities

• This work may be useful to inform other projects that are ongoing or starting

• NOvA has embraced the work we are doing here
– Took ownership of the HDF writer module

• Converting full HEP experiment datasets has been very difficult
– Heavily influenced by ROOT tree structure (NOvA tuple organization)

– Complexity of data structures (LArSoft RawDigits class and others)

– Some data structures have been reorganized (vectorization becomes straightforward)

• Python was excellent for prototyping; further work is needed to determine if we are
getting the best performance possible.
– Pandas provides a powerful set of abstractions for analysis tasks

– Comparisons of C++ and python/pandas forthcoming

Summary

8/23/2018 J.Kowalkowski – Scalable I/O Workshop30

• Performance studies and tuning will continue

• Upcoming C++ codes will be using DIY, and possibly additional HPC-centric
workflow tools such as Decaf

• Will be working with HEPCloud on integrating dataset handling.

• Looking into
– Adding Summit as a platform

– Making sure that analysis involving heterogeneous computing is handled

• As we move towards working within the art framework, similar techniques will be
applied:
– read the right information into memory,

– use vectorized libraries for high-level operations on the data,

– use the network to round up results that are distributed around the system

Future directions

8/23/2018 J.Kowalkowski – Scalable I/O Workshop31

• People involved in one or more of these projects
– M. Paterno (FNAL), T. Peterka (ANL), R. Ross (ANL), S. Sehrish (FNAL)

– C. Green (FNAL), H. Schulz (University of Cincinnati), B. White (FNAL)

– N. Buchanan (CSU, NOvA/DUNE), P. Calafiura (LBNL, LHC-ATLAS), Z. Marshall (LBNL,
LHC-ATLAS), S. Mrenna (FNAL, LHC-CMS), A. Norman (FNAL, NOvA/DUNE), A. Sousa
(UC, NOvA/DUNE)

– A. Austin (ANL), S. Calvez (Colorado State University), P. Carns (ANL), P.F. Ding (FNAL),
M. Dorier (ANL), D. Doyle (Colorado State University), X. Ju (LBNL), R. Latham (ANL), S.
Snyder (ANL)

Acknowledgements

8/23/2018 J.Kowalkowski – Scalable I/O Workshop32

This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, Scientific Discovery through
Advanced Computing (SciDAC) program.

• Extend physics reach of LHC and
neutrino experiments
– Event generator tuning

– Neutrino oscillation and cross-section
measurements

– Detector simulation tuning

HEP Data Analytics on HEP: Goals

9/24/201833

• Transform how these physics tasks
are carried out through ASCR math
and data analytics
– High-dimensional parameter fitting,

– Workflows supporting automated
optimization

– Distributed dataset management
storage and access (in situ) for
experiment data

– Introduction of data-parallel
programming within analysis
procedures

• Accelerate HEP analysis on HPC
platforms

http://computing.fnal.gov/hep-on-hpc/
J.Kowalkowski – Scalable I/O Workshop

