

ANALYSIS REPORT No. 2307170062

DATE: 17.07.2023

PAGE 1/1

PA376062

E-Mail: Intertek Indien

Conscious Food Pvt Ltd Estate, Lok Bharati rd, Bhavan AndheritEast,Plot 7, Unit 2, Marol Ind. 400059 Mumbai India

Our reference no.	: PI2307140258					
Product	: Honey					
Sample description / Batch	IFS-230705038 - Honey - Lot No.: 1942 - Qty.: 1020.000MT,					
	Packing: 30kg x 34 Cans-Seal No.: 109269 - Sampling date:					
	: 04.07.2023,11:00-14:00-Name	Narendra, Sampling do	one by Intertek			
Sample received on / transported by	: 10.07.2023 via Parcel service	Seal	: sealed plastic bag 109269			
Sample temp. when received / stored	: RT	Sampling	: Intertek			
Packaging / Quantity	: Plastic container / ca. 350g	Start / End of analysis	: 14.07.2023 / 14.07.2023			

ANALYSIS REQUESTED: Honey profiling by NMR (101750)

Parameter	Result	Method
NMR profile	typical	PM DE01.308:2022-05 (a) 1
Detection of foreign sugars	no	PM DE01.308:2022-05 (a) 1
Verification of geographical origin	consistent	PM DE01.308:2022-05 (a) 1
Verification of botanical variety	not performed	PM DE01.308:2022-05 (a) 1

Information about the geographical and/or botanical origin can have a significant influence on all aspects of the Bruker Honey Profiling analysis and should always be provided/incorporated in case it is available. Intertek does not take responsibility for incomplete information provided by the customer.

(a) : accredited method. (na) : not accredited method. (1) Bruker Honey Profiling 3.1.2 / expert assessment This document may only be reproduced in full. The results given herein apply to the submitted sample only.

Interpretation:

The NMR profile is typical for honey, however following deviation(s) could be detected:

An increased content of ethanol could be detected in the NMR analysis, which can give a hint to ongoing or stopped fermentation. It is recommended to determine the exact glycerine or yeast content, as well as the organoleptic properties, in order to check whether the sample fulfills the legal requirements according to "Council Directive 2001/110/EC relating to honey, dated Dec. 20th, 2001; Article 1 in connection with Annex II.".

The NMR analysis indicates an elevated concentration of the 5-hydroxymethylfurfural content (above 40 mg/kg, below 80 mg/kg). According to the "Council Directive 2001/110/EC relating to honey, dated Dec. 20th, 2001; Article 1 in connection with Annex II.", the limits for 5-hydroxymethylfurfural are 40 mg/kg for honeys from non-tropical and 80 mg/kg for honeys from tropical regions.

The proposed geographical origin "India" could be confirmed after applying statistical classification models and expert assessment.

Marbe

Dr. Nickolet Ncube Responsible Scientist, Chemist

Analysis Report Honey-Profiling[™]

Sample ID: 1007186

Information/Declaration provided by customer:

Type of Sample:	Honey
Type of Honey:	Unknown
Botanical Variety:	undefined
Geographical Origin:	India
Information	PI2307140258

Disclaimer: this information will affect the applicability and validity of analyses and results.

Note: it is important to fill in these information in a correct and precise manner (e.g. variety in case of monofloral honey, and country of origin). The tests applied (and therefore the results received) are different from one type of honey to the other. Bruker does not take responsibility for wrong or incomplete information given by the customer.

 Measuring Date:
 12-Jul-2023 04:23:53

 Reporting Date:
 14-Jul-2023 15:15:38, 13 pages, Version 3.1.2

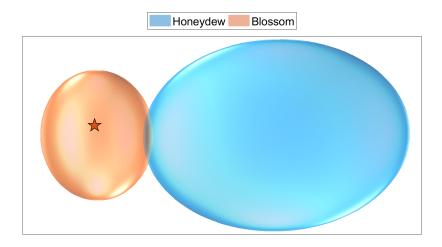
Results Summary

Type of Analysis	Result	Status
Origin, Type and Variety		
Type of Honey	Blossom	\bigcirc
Botanical Variety	Not Applied	\bigcirc
Country of Origin: India	Consistent	
Test of Markers of Foreign Sugars	Pass	
Composition and Comparison to Reference Group	Requires Interpretation	\bigcirc
Compliance for EU Market for		
HMF	Requires Interpretation	\bigcirc
Sucrose	Compliant	
Glucose + Fructose	Compliant	

The data analysis is performed at Bruker BioSpin GmbH (Ettlingen, Germany) according to testing method AA-72-03-17 (Honey-Profiling 3.1.2), released on 09-May-2023 (DIN EN ISO/IEC 17025:2018 Accreditation Certificate D-PL-19229-01-00). All results solely refer to the tested sample as provided by the customer.

Geschäftsführer: Dr. Falko Busse | Bernd Gleixner | Patrick Minhorst

Rudolf-Plank-Straße 23 76275 Ettlingen, Germany Tel. +49(0)721 5161-0 Fax. +49(0)721 517101 Food-BAS@bruker.com www.bruker.com Deutsche Bank AG Karlsruhe Konto 13 15 16 · BLZ 660 700 04 IBAN: DE87 6607 0004 0013 1516 00 SWIFT-BIC: DEUTDESM660 USt-Ident.-Nr DE 143 239 759 WEEE-Reg.-Nr. DE 43 181 702 Steuer-Nr. 31190/39205 Handelsregister Mannheim HRB 10 23 68 Sitz der Gesellschaft: 76275 Ettlingen

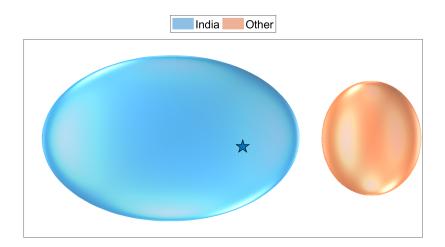


Origin, Type and Variety

Type of Honey

(Analysis-ID: HS3-CC-1000-18151)

This model is based on 14146 samples, thereof 1993 samples of reference group *Honeydew*. **Result:** Consistent with *Blossom*. The probability of consistency is 100.0%.


Botanical Variety

Verification of consistency is not possible as the declared botanical variety of the sample is unknown or Polyfloral.

Country of Origin: India

(Analysis-ID: HS3-CC-116-74243)

This model is based on 25067 samples, thereof 744 samples of reference group *India*. **Result:** Consistent with declared country *India*. The probability of consistency is 100.0%.

Test of Markers of Foreign Sugars

(Analysis-ID: HO-TAD-01/0833)

Following tests have been applied in order to detect foreign sugars:

ID	Description	Value	Graphics	Result
2	3.8113 / (1.95-2.02)	28.26		pass
3	3.9238 / (3.16-4.14)	0.0004212		pass
4	3.2890 / (1.95-2.02)	2.200	•	pass
5	4.0363 / (3.75-3.80)	0.00421	·	pass
6	5.3324 / (5.27-5.30)	0.1201	•	pass
7	3.0123 / (1.95-2.02)	0.02639	·	pass
8	3.5929	444		pass
9	5.0745 / (4.07-4.12)	0.002279		pass
10	3.2753	215.5	•	pass
11	3.7490 / (1.95-2.02)	0.49	•	pass
13	4.1961 / (3.16-4.14)	0.0000709	·	pass
14	3.3135 / (5.27-5.30)	0.1026		pass
15	4.6809 / (3.65-3.73)	0.00013469		pass
16	3.7715 / (3.65-3.73)	0.05105		pass
17	5.4913 / (4.60-4.67)	0.001837		pass
18	4.6327 / (3.16-4.14)	0.0004428		pass
19	4.2569 / (1.95-2.02)	0.1207	·	pass
20	3.2797	150.8		pass
102	5.3608 / (5.27-5.30)	0.0955		pass
103	5.4047 / (4.07-4.12)	0.0002426		pass
104	3.1817 / (1.95-2.02)	0.5190		pass
105	3.3476 / (5.27-5.30)	0.1358		pass
107	4.4974 / (5.27-5.30)	0.4322		pass
109	5.3901 / (1.95-2.02)	3.103		pass
110	5.4126 / (4.07-4.12)	0.000648		pass
127	4.2487	52.2		pass
128	5.3045 / (1.95-2.02)	0.1673		pass
129	3.5884 / (3.75-3.80)	0.001400		pass
130	4.9421 / (4.93-4.97)	0.1557		pass
131	3.5929 / (4.07-4.12)	0.00332		pass
133	4.9433 / (4.93-4.97)	0.07201	·	pass
134	4.2501	28.6		pass
135	3.9156 / (4.07-4.12)	0.02570		pass
136	5.2876 / (4.07-4.12)	0.000961		pass
140	3.2852 / (4.07-4.12)	0.003969		pass

ID	Description	Value	Graphics	Result
142	4.3176 / (5.27-5.30)	0.03958	·	pass
143	5.3371 / (5.27-5.30)	0.02808		pass
144	4.4347 / (4.07-4.12)	0.0002714		pass
155	4.1511	504.7		pass
156	3.3701 / (3.20-3.22)	0.08657		pass
157	4.1781 / (4.07-4.12)	0.0007891		pass
158	3.9283 / (5.27-5.30)	0.1876		pass
159	3.9246 / (5.20-5.25)	0.01823		pass
162	3.1784 / (5.20-5.25)	0.003551		pass
163	3.5929 / (3.16-4.14)	0.0001581	·	pass
166	3.6627 / (4.07-4.12)	0.02332		pass
167	3.2977 / (4.07-4.12)	0.003201		pass
168	3.3753 / (4.60-4.67)	0.1693		pass
169	3.7579 / (3.65-3.73)	0.12753		pass
170	3.8885 / (3.75-3.80)	0.05189		pass
171	4.1651 / (1.95-2.02)	3.797	· · · · · · · · · · · · · · · · · · ·	pass
172	3.1637	22.964		pass
186	3.6579 / (1.95-2.02)	20.09	·	pass
188	5.3236 / (1.95-2.02)	0.04135	·	pass
189	2.3484 / (1.95-2.02)	0.02804		pass
191	3.7932 / (4.07-4.12)	0.2106		pass
1000	min. fructose/glucose	1.13		pass
1001	max. fructose/glucose	1.13	•	pass
1002	turanose [g/100g]	0.63		pass
1003	sucrose [g/100g]	0.0		pass
1004	total sugar [g/100g]	77.8		pass
1005	proline [mg/kg]	234		pass
1006	DHA(D), mannose(M) [mg/kg]	D=3.5, M=74		pass

Result: There are no indications for the presence of foreign sugars.

Notes:

- The column *ID* is the marker's identification number.
- The column *Description* indicates either the NMR spectral region(s) (in ppm) concerned by the marker, or the molecule when it has been identified.
- The column *Value* is the result obtained for the marker.
- For columns *Graphics* and *Result* please refer to detailed description in section "General Remarks" at the end of this report.

DHA and Mannose

Compound	Value	Unit	LOQ	Reference	Range	Flag
mannose	<loq< td=""><td>g/100g</td><td>0.01</td><td><0.01</td><td>0.02</td><td></td></loq<>	g/100g	0.01	<0.01	0.02	
dihydroxyacetone (DHA)	<loq< td=""><td>mg/kg</td><td>5</td><td><5</td><td></td><td></td></loq<>	mg/kg	5	<5		

Note: the reference range is based on 327 India samples in the Honey-Profiling Database.

Guideline:

- Mannose is a mono saccharide not found in honeys with a pH value lower than 5, but that is
 regularly found in industrial sugars. In rare cases, however, the presence of mannose cannot be
 excluded for certain geographic origins and/or botanical varieties. A concentration of mannose
 exceeding 0.02 g/100g in honey with a pH < 5 could indicate the presence of foreign sugars
 or industrial processing practices which are not suitable for honey. An expert interpretation is
 suggested when mannose is present in the honey.
- Dihydroxyacetone and/or methylglyoxal are only known to be naturally present in Leptospermum genus honeys from Australia and New Zealand. A concentration exceeding 5 mg/kg in other types of honey is not typical and could indicate the presence of foreign sugars or industrial processing practices which are not suitable for honey. An expert interpretation is suggested in such cases.
- DHA and mannose are often observed simultaneously in various types of sugar syrups.

Deviations in the sugar profile, fermentation parameters and comparison to reference group could also indicate adulterations. Please check the section "Composition and Comparison to reference group" in addition.

Composition and Comparison to Reference Group

Quantitative Analysis of Compounds

(Analysis-ID: HO-Q/3.1.0)

Parameters labelled with * are calculated parameters. The reference range is based on 327 India samples in the Honey-Profiling Database.

Sugars:

Compound	Value	Unit	LOQ	Reference Range	Flag
glucose + fructose *	77.8	g/100g	20.0	60.0 77.2	\bigcirc
fructose / glucose *	1.13	-	-	0.96	
fructose	41.3	g/100g	10.0	31.4 42.2	
glucose	36.5	g/100g	10.0	26.9 38.6	
sucrose	<loq< td=""><td>g/100g</td><td>0.5</td><td>< 0.5 g/100 g in reference dataset</td><td></td></loq<>	g/100g	0.5	< 0.5 g/100 g in reference dataset	
turanose	0.63	g/100g	0.2	0.5 2.2	
maltose	0.6	g/100g	0.5	<0.5 2.0	
melezitose	<loq< td=""><td>g/100g</td><td>1.0</td><td>${<}1.0~{ m g}/100{ m g}$ in reference dataset</td><td></td></loq<>	g/100g	1.0	${<}1.0~{ m g}/100{ m g}$ in reference dataset	
maltotriose	<loq< td=""><td>g/100g</td><td>1.0</td><td>< 1.0 g/100 g in reference dataset</td><td></td></loq<>	g/100g	1.0	< 1.0 g/100 g in reference dataset	
gentiobiose	<loq< td=""><td>g/100g</td><td>0.3</td><td><0.3 g/100g in reference dataset</td><td></td></loq<>	g/100g	0.3	<0.3 g/100g in reference dataset	
raffinose	<loq< td=""><td>g/100g</td><td>0.1</td><td>0.1 0.3</td><td></td></loq<>	g/100g	0.1	0.1 0.3	

Acids:

Compound	Value	Unit	LOQ	Reference Range	Flag
citric acid	<loq< td=""><td>mg/kg</td><td>50</td><td><50 162</td><td></td></loq<>	mg/kg	50	<50 162	
malic acid	<loq< td=""><td>mg/kg</td><td>100</td><td><100</td><td></td></loq<>	mg/kg	100	<100	
quinic acid	<loq< td=""><td>mg/kg</td><td>300</td><td><300 mg/kg in reference dataset</td><td></td></loq<>	mg/kg	300	<300 mg/kg in reference dataset	

Amino Acids:

Compound	Value	Unit	LOQ	Reference Range	Flag
alanine	<loq< td=""><td>mg/kg</td><td>5</td><td><5 24</td><td></td></loq<>	mg/kg	5	<5 24	
aspartic acid	<loq< td=""><td>mg/kg</td><td>150</td><td><150 mg/kg in reference dataset</td><td></td></loq<>	mg/kg	150	<150 mg/kg in reference dataset	
glutamine	<loq< td=""><td>mg/kg</td><td>200</td><td><200 mg/kg in reference dataset</td><td></td></loq<>	mg/kg	200	<200 mg/kg in reference dataset	
leucine	<loq< td=""><td>mg/kg</td><td>40</td><td><40 110</td><td></td></loq<>	mg/kg	40	<40 110	
proline	234	mg/kg	200	225 863	
valine	<loq< td=""><td>mg/kg</td><td>10</td><td><10 14</td><td></td></loq<>	mg/kg	10	<10 14	
tyrosine	<loq< td=""><td>mg/kg</td><td>50</td><td><50</td><td></td></loq<>	mg/kg	50	<50	
phenylalanine	<l0q< td=""><td>mg/kg</td><td>100</td><td><100 568</td><td></td></l0q<>	mg/kg	100	<100 568	

Indicators for Fermentation and Processing:

Compound	Value	Unit	LOQ	Reference Range	Flag
2,3-butanediol	<loq< td=""><td>mg/kg</td><td>20</td><td><20 327</td><td></td></loq<>	mg/kg	20	<20 327	
5-hydroxymethylfurfural (HMF)	47	mg/kg	5	<5 122	\bigcirc
acetic acid	26	mg/kg	10	<10 113	
acetoin	25	mg/kg	20	<20 187	
ethanol	230	mg/kg	5	<5 3283	
lactic acid	30	mg/kg	10	<10 234	
formic acid	39	mg/kg	5	<5 113	
fumaric acid	<l0q< td=""><td>${\sf mg}/{\sf kg}$</td><td>5</td><td><5 7</td><td></td></l0q<>	${\sf mg}/{\sf kg}$	5	<5 7	
pyruvic acid	15	${\sf mg}/{\sf kg}$	10	<10 32	
succinic acid	13	mg/kg	5	8 94	

Markers:

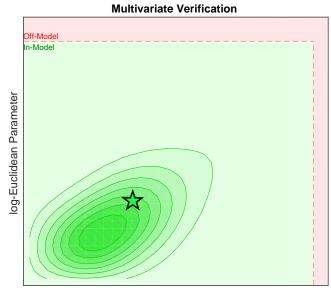
Compound	Value	Unit	LOQ	Reference Range	Flag
3-phenyllactic acid	<loq< td=""><td>mg/kg</td><td>300</td><td><300 mg/kg in reference dataset</td><td></td></loq<>	mg/kg	300	<300 mg/kg in reference dataset	
methylglyoxal (MGO)	<loq< td=""><td>mg/kg</td><td>30</td><td><30 33</td><td></td></loq<>	mg/kg	30	<30 33	
kynurenic acid	<loq< td=""><td>mg/kg</td><td>60</td><td><60 mg/kg in reference dataset</td><td></td></loq<>	mg/kg	60	<60 mg/kg in reference dataset	
shikimic acid	<loq< td=""><td>mg/kg</td><td>80</td><td><80 mg/kg in reference dataset</td><td></td></loq<>	mg/kg	80	<80 mg/kg in reference dataset	

Guideline:

- Values of fructose/glucose ratio exceeding 1.95 or below 0.85 are not typical for honey and could indicate the presence of sugar syrups.
- Low concentrations of turanose (less than 0.35 g/100g) is a marker for the presence of foreign sugars (see section "Markers of Foreign Sugars").
- Atypical concentrations of sugars in comparison to reference range can be related to foreign sugars/adulteration or to the botanical varieties present in the honey. Expert interpretation is suggested.
- The presence of gentiobiose is common for Linden Tree honey.
- The presence of quinic acid is common for honeydew.
- HMF is a sugar degradation product formed under influence of heat. According to EU-Directive (2001/110/EC), HMF can be found naturally in honey in concentrations up to 80 mg/kg in regions with tropical climate. A higher concentration of HMF is due to processing of honey which can sometime correlate with adulterations. A concentration of HMF exceeding 200 mg/kg should be regarded as suspicious.
- Concentration of ethanol exceeding 400 mg/kg indicates fermentation of the honey, which could be related to unripe honey.
- Acetoin can be elevated in Eucalyptus honey.
- The presence of kynurenic acid is common for Chestnut honey.
- The presence of shikimic acid is common for honeydew.

Statistical Comparison with the Reference Group

The models are based on 327 samples from India in the Honey-Profiling Database.


Univariate Verification

Applied Model: India Result: Typical for India.

Multivariate Verification

Applied Model: India Result: Typical for India. (Analysis-ID: HS3-NTV-116-74261)

(Analysis-ID: HS3-NTV-116-74261)

log-Mahalanobis Parameter

Sample: 1007186

Codex Alimentarius and EU-Directive 2001/110/EC:

Following parameters are required according to Codex Alimentarius and EU-Directive 2001/110/EC. The concentrations are obtained by direct quantification. Parameters labelled with * are calculated parameters.

				Official Reference		
Compound	Value	Unit	LOQ	min	max	Flag
glucose + fructose *	77.8	g/100g	20.0	45	-	
sucrose	<loq< td=""><td>g/100g</td><td>0.5</td><td>-</td><td>15</td><td></td></loq<>	g/100g	0.5	-	15	
5-hydroxymethylfurfural (HMF)	47	mg/kg	5	-	80	\bigcirc

Following flags are used according to Codex Alimentarius and EU-Directive 2001/110/EC:

Compound	Flag	Concentration	Declaration	Interpretation
glucose +		$< 45 { m g}/100 { m g}$	All	Not compliant
fructose		< 60 g/100g	Blossom	Not compliant for blossom honey
		\geq 60 g/100g	All	Compliant
		\geq 45 g/100g	Honeydew	Compliant for honeydew honey
	0	\geq 45 g/100g, $<$ 60 g/100g	Unknown	Compliant for honeydew honey and blends of honeydew honey with blossom honey. Not compliant for blossom honey.
sucrose		> 15 g/100g	All	Not compliant
		10-15 g/100g	Acacia, Eucalyp- tus	Not compliant for false acacia (<i>Robinia pseudoacacia</i>), and red gum (<i>Eucalyptus camadulensis</i>)
		\leq 5 g/100g	All	Compliant
		\leq 10 g/100g	Acacia, Eucalyp- tus	Compliant for false acacia (<i>Robinia pseu- doacacia</i>), and red gum (<i>Eucalyptus ca- madulensis</i>)
		\leq 15 g/100g	Lavender	Compliant for <i>Lavandula spp.</i>
	•	5-10 g/100g	All, except Aca- cia, Eucalyptus, Lavender	If $\leq 15g/100g$: compliant for lavender (Lavandula spp.) and borage (Borago of- ficinalis). If $\leq 10g/100g$: compliant for false acacia (Robinia pseudoacacia), al- falfa (Medicago sativa), Menzies Banksia (Banksia menziesii), French honeysuckle (Hedysarum), red gum (Eucalyptus ca- madulensis), leatherwood (Eucryphia lu- cida, Eucryphia milliganii) and Citrus spp.
HMF		> 80 mg/kg	All, except Indus- trial honey	Not compliant, except for baker's honey
		\leq 40 mg/kg	All	Compliant
		> 80 mg/kg	Industrial honey	Compliant for baker's honey
	•	40-80 mg/kg	All	Not compliant, except for baker's honey and honeys of declared origin from regions with tropical climate and blends of these honeys

General Remarks

Targeted Markers for Foreign Sugars

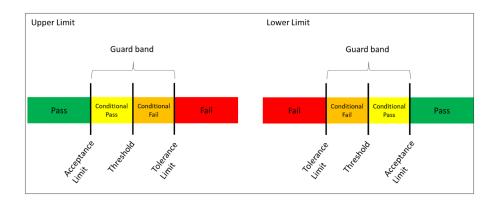
This test aims at detecting foreign sugars. It does rely on the analysis of the concentrations of certain known molecules and on absolute intensities or intensities ratios of marker peaks. The Honey-Profiling report contains several tens of markers. Some of these markers are independent on the variety and the origin, in order to be able to analyze blends, while there are also many markers specific to countries or varieties.

The values obtained for each marker are compared to the thresholds for purity.

Reported and visualized results:

- Result Pass (green): Markers with an upper limit: The value of the marker is below the acceptance limit Markers with a lower limit: The value of the marker is above the acceptance limit Conclusion: There are no indications for the presence of foreign sugars.
- Result Conditional Pass (yellow):

The value of the marker is between the acceptance limit and the threshold Conclusion: There is no indication for the presence of foreign sugars. However, for one or more markers the determined values are close to the threshold.


• Result Conditional Fail: (orange)

The value of the marker is between the threshold and the tolerance limit Conclusion: There is a strong indication for the presence of foreign sugars. However, the determined values are close to the threshold. It is recommended to perform additional tests in order to better evaluate the risk.

• Result Fail: (red)

Markers with an upper limit: The value of the marker is above the tolerance limit Markers with a lower limit: The value of the marker is below the tolerance limit Conclusion: There is a strong indication for the presence of foreign sugars.

The black dot represents the current sample.

Presence of foreign sugars is due to deliberate dilution of honey with sugar syrups or wrong beekeeping practices in terms of artificial feeding of bees.

All conformity statements in this section are based on the "Non Binary Statement with Guard Band" according to ILAC G8:09/2019. Please find in the following table the values for acceptance limit (conditional pass), threshold (conditional fail) and tolerance limit (fail).

ID	Description	Conditional Pass	Conditional Fail	Fail
2	3.8113 / (1.95-2.02)	>68.95	>69.44	>69.92
3	3.9238 / (3.16-4.14)	< 0.0003172	< 0.0003039	< 0.0002905
4	3.2890 / (1.95-2.02)	>5.792	>5.838	>5.884
5	4.0363 / (3.75-3.80)	>0.01113	>0.01131	>0.01148
6	5.3324 / (5.27-5.30)	>0.1683	>0.1703	>0.1723
7	3.0123 / (1.95-2.02)	>0.06929	>0.07134	>0.07340

ID	Description	Conditional Pass	Conditional Fail	Fail
8	3.5929	>2186	>2227	>2269
9	5.0745 / (4.07-4.12)	< 0.001662	< 0.001495	< 0.001329
10	3.2753	>407.8	>414.9	>422.0
11	3.7490 / (1.95-2.02)	>11.53	>11.56	>11.59
13	4.1961 / (3.16-4.14)	>0.0002284	>0.0002327	>0.0002369
14	3.3135 / (5.27-5.30)	>0.1677	>0.1717	>0.1757
15	4.6809 / (3.65-3.73)	< 0.00009264	< 0.00008224	< 0.00007184
16	3.7715 / (3.65-3.73)	>0.06283	>0.06399	>0.06515
17	5.4913 / (4.60-4.67)	>0.002301	>0.002341	>0.002380
18	4.6327 / (3.16-4.14)	< 0.0003476	< 0.0003379	< 0.0003282
19	4.2569 / (1.95-2.02)	>0.7715	>0.7759	>0.7803
20	3.2797	>262.1	>268.0	>273.9
102	5.3608 / (5.27-5.30)	>0.0993	>0.1014	>0.1036
103	5.4047 / (4.07-4.12)	>0.0007708	>0.0008079	>0.0008450
104	3.1817 / (1.95-2.02)	>0.6635	>0.6750	>0.6865
105	3.3476 / (5.27-5.30)	>0.2320	>0.2346	>0.2372
107	4.4974 / (5.27-5.30)	>0.4436	>0.4481	>0.4527
109	5.3901 / (1.95-2.02)	>5.355	>5.408	>5.460
110	5.4126 / (4.07-4.12)	>0.001797	>0.001879	>0.001960
127	4.2487	>366.4	>382.3	>398.2
128	5.3045 / (1.95-2.02)	>0.6017	>0.6092	>0.6168
129	3.5884 / (3.75-3.80)	>0.006261	>0.006470	>0.006679
130	4.9421 / (4.93-4.97)	>0.1832	>0.1862	>0.1892
131	3.5929 / (4.07-4.12)	>0.01423	>0.01446	>0.01470
133	4.9433 / (4.93-4.97)	>0.08613	>0.08758	>0.08904
134	4.2501	>237.5	>244.2	>251.0
135	3.9156 / (4.07-4.12)	< 0.02216	< 0.02141	< 0.02065
136	5.2876 / (4.07-4.12)	>0.004380	>0.004442	>0.004505
140	3.2852 / (4.07-4.12)	>0.008687	>0.008959	>0.009231
142	4.3176 / (5.27-5.30)	>0.07307	>0.07400	>0.07494
143	5.3371 / (5.27-5.30)	>0.04644	>0.04885	>0.05127
144	4.4347 / (4.07-4.12)	< 0.0001627	< 0.0001543	< 0.0001460
155	4.1511	<307.6	<268.2	<228.8
156	3.3701 / (3.20-3.22)	< 0.07742	< 0.07561	< 0.07380
157	4.1781 / (4.07-4.12)	< 0.0004571	< 0.0003843	< 0.0003115
158	3.9283 / (5.27-5.30)	>0.4156	>0.4226	>0.4295
159	3.9246 / (5.20-5.25)	< 0.01303	< 0.01167	< 0.01031
162	3.1784 / (5.20-5.25)	< 0.002753	< 0.002590	< 0.002427
163	3.5929 / (3.16-4.14)	>0.0008186	>0.0008317	>0.0008449
166	3.6627 / (4.07-4.12)	< 0.02052	< 0.02000	< 0.01949
167	3.2977 / (4.07-4.12)	< 0.002394	< 0.002260	< 0.002126
168	3.3753 / (4.60-4.67)	>0.1892	>0.1935	>0.1977
169	3.7579 / (3.65-3.73)	< 0.08739	< 0.08315	< 0.07891
170	3.8885 / (3.75-3.80)	< 0.03880	< 0.03725	< 0.03570
171	4.1651 / (1.95-2.02)	>6.362	>6.421	>6.480
172	3.1637	<10.563	<8.554	< 6.544
186	3.6579 / (1.95-2.02)	>24.14	>24.33	>24.52
188	5.3236 / (1.95-2.02)	>0.06624	>0.06742	>0.06859
189	2.3484 / (1.95-2.02)	>0.03043	>0.03164	>0.03285
191	3.7932 / (4.07-4.12)	>0.3806	>0.3999	>0.4192
1000	min. fructose/glucose	<0.90	<0.85	<0.80
1000	max. fructose/glucose	>1.90	>1.95	>2.00
1001	turanose [g/100g]	<0.38	<0.35	<0.32
1002	sucrose [g/100g]	>14	>15	>16
1005	total sugar [g/100g]	<46	<45	<44
1004	proline [mg/kg]	<171	<160	<149
				D>7, M>250
1005	DHA(D), mannose(M) [mg/kg]	D>3, M>150	D>5, M>200	

Classification Models

Analysis of origin, type and variety relies on a statistical classification analysis. The test applied is a classification analysis with the aim to check the consistency of the declared meta-information of the sample (geographical origin or botanical variety). The consistency with a group is expressed as posterior probability in the range from 0% to 100%. A posterior probability exceeding 50% is being regarded as consistent with the respective group. The underlying statistical models are based on a dimension reduction (Principal Component Analysis and/or Linear Discriminant Analysis used) followed by a Linear (or Quadratic) Discriminant Analysis for final classification.

Within the discrimination space figure, the ellipsoids are representing the modeling samples and the star represents the actual sample under investigation.

Verification of origin is not possible on blends from different countries.

Expert interpretation is necessary before deducing any conclusions.

All conformity statements in this section are based on the "Binary Statement for Simple Acceptance Rule" according to ILAC-G8:09/2019.

Quantitative Analysis

Quantitative values are compared with the distribution of concentration of the reference samples in the Honey-Profiling Database, for the same type of honey. Deviations to the reference range can be linked with adulterations or with specificities of the honey (e.g. untypical floral/ plant sources or production regions). For this reason, an expert interpretation is suggested in case of deviations.

All conformity statements in this section are based on the "Binary Statement for Simple Acceptance Rule" according to ILAC-G8:09/2019.

Univariate and Multivariate Verification Models

Verification models are non-targeted analyses comparing the whole NMR-Profile of a specific sample with one corresponding group of reference spectra (within the Honey-Profiling Database). All spectral data points are taken into account irrespective of whether the signals are caused by already identified molecules or not.

In the univariate analysis, the NMR spectrum is checked for any unusual low or high signal intensities, while taking into account the natural variability of a respective reference group. The chemical shifts (positions of the signals in the spectra) of the deviating signals are indicated. A guideline gives a list of possible molecules with their chemical shifts that could be responsible for the deviations.

The multivariate models take into account the relation between different signals in the NMR spectrum.

Deviations to the group of reference spectra can be linked with adulterations or specificities of the honey (e.g. untypical floral/ plant sources or production regions). For this reason, an expert interpretation is suggested in case of deviations.

All conformity statements in this section are based on the "Binary Statement for Simple Acceptance Rule" according to ILAC-G8:09/2019.

FAQ - Frequently asked Questions

For more information please visit our website and read our FAQ at

http://www.bruker.com/en/products-and-solutions/mr/nmr-food-solutions/honey-profiling/honey-profiling-faq.html and the solution of the solut

END OF REPORT