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To find the scaling factor, Smax, that maximizes the correlation between
the trait distance matrix and D, the time space product matrix, we calcu
lated the Pearson correlation coefficient between these matrices for 200
(500 for the simulated data) scaling factor values (Fig. 1). The scaling factor
value in the time space product matrix that produced the strongest correla
tion with the trait distance matrix is recorded as Smax, the mobility estimator.

Simulation Tests. The reliability and the robustness of the Smax statistic in re
covering information about past mobility was explored using a spatiotem
porally explicit simulation model. The simulation world consists of a grid of
8,000 by 8,000 demes. Each simulation starts with one entity placed in a
randomly chosen deme and lasts 20,000 generations. The model simulated
exponential population growth to a carrying capacity of 10,000 entities, fol
lowed by a stochastic birth death process (54) mobility, and trait mutation.
We generated spatiotemporal trait variation data under different mobility
parameter values using the same Smax estimation protocols as described above
for each dataset. A total of 10,000 independent replicates of the simulations
and analyses were generated, and the utility of the Smax statistic in recovering
information about mobility was assessed by correlation.

The migratory process was modeled as Gaussian random walks: In each
generation, each entity moves independently in the x and y directions by dis
tances picked randomly from a normal distribution with mean = 0 and SD = σmig.

This corresponds to the average distance moved in a single step (dmig) of π=2
p

σmig = 1.2533 σmig. Thus, dmig is the parameter of interest. We choose
1,000 random values of dmig from a uniform distribution with a range of 1 100.
We modeled drift as a Moran type birth death process (54). At each generation,
each entity undergoes binary fission with probability P = 0.1, creating a duplicate
of itself at the same location. The two entities subsequently move and evolve
independent of each other. When the number of entities reaches or exceeds the
carrying capacity (10,000), excess entities are deleted at random among all en
tities present in that generation. Mutation was modeled as a one dimensional
Gaussian random walk for each trait (Ntraits = 50). Each trait was assigned an
initial value of 1,000, and new (mutated) values were picked from a random
normal distribution with mean equal to the current value and SD fixed at 0.05.

Following a burn in period of 10,000 generations, entities were sampled
from simulations with a probability of 0.00001 at each generation. The x and
y coordinates, time of sampling in generations, and the values for the
50 traits were recorded for all sampled entities.

Pairwise trait distances betweenall sampled entities in each of the simulated
datasets were calculated using the Euclidean distance formula as follows:

Mij =
Xn
k 1
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where Mij is the distance between the two entities i and j; dik and djk are the
values of the trait k for individuals i and j respectively; and n is the number
of recorded traits.

Out of 10,000 simulations, 9,866 (98.66%) resulted in an EC greater than
zero. To match the simulated data with the empirical data, we filtered the
simulated data based on themeasured EC values and removed all simulations
that produced an EC value smaller than 0.001. This resulted in 9,155 simu
lations being used in the correlation analysis.

To assess the reliability of the Smax statistic in recovering information
about mobility, R2 values were calculated for the correlation between the
simulated dmig values and their corresponding Smax values.

Human Mobility in Late Pleistocene and Holocene. We considered genome
wide data comprising 354,199 SNPs typed in 329 West Eurasian (i.e., west
of the Ural mountains) individuals (SI Appendix, Fig. S2) temporally ranging
from ∼39,000 1,000 y before present (see SI Appendix, Fig. S1). We merged
the overlapping SNPs typed in archaeological samples published in refs. 22
26 and 55 61 (see SI Appendix, Table S1 for list of samples and references)
that met the geographic and temporal criteria described above. No addi
tional bioinformatic processing of the data were carried out for this study.

The 329 individuals were assigned to one of following three groups based
on their estimated age and subsistence strategy based on their archaeo
logical context: pre LGM hunter gatherers n = 19 (temporally ranging from
39,000 y B.P. to 26,000 y B.P.), post LGM hunter gatherers n = 47 (temporally
ranging from 19,000 y B.P. to 5,000 y B.P.), and Holocene farmers n = 263
(temporally ranging from 10,000 y B.P. to 500 y B.P.).

Sliding window analysis was performed on all individuals in the dataset
postdating 16,000 y B.P. The Smax statistic was estimated for 121 overlapping
4,000 y windows, each differing by 100 y.

To take age uncertainty into account, we report the mean scaling factor
angle from 10,000 replicates with sample dates randomly resampled from
their age ranges. We estimated 95% confidence intervals through a jack
knifing procedure in which a randomly chosen sample in each window was
removed from analysis, and the 0.025 and 0.095 quantiles were calculated
from the resulting distribution.

To estimate the IBD signal through time, we fitted a linear model of
genetic distances as a function of geographic distances in each time window
(with sample jackknifing and age resampling as before, using the lm
function from the R package base version 3.2.2) (53) and reported the slope
of the line.

Confidence Intervals and Robustness of Smax Estimator. We tested the as
sumption that there is an IBD pattern by correlating the genetic (trait) dis
tance matrices in all time bins and in all windows with the respective
geographic distance matrices and the date resampled temporal distance
matrices and calculated the P values for these correlations. We find a positive
and statistically significant IBD pattern in space in all windows (SI Appendix,
Fig. S3 A and B, respectively and SI Appendix, Fig. S6). The isolation by
temporal distance pattern is positive and significant for most windows, but
some windows show negative correlations or are not significant. We find
that these windows correspond to time periods where we observe low EC (SI
Appendix, Fig. S3C) and also low P values for the EC (Fig. 4B).

To account for the uncertainty in sample ages, we calculated the scaling
factor angle 10,000 times using dates resampled at random from a uniform
distribution for each sample, as described above, and report the average of
the scaling factor angle of the given distribution as a point estimate.

We also performed a leave one out analysis (10,000 replicates, combined
with sample date resampling) to explore the combined effect of sampling and
dating uncertainty and constructed approximate equal tailed 95% confi
dence intervals for all groups and windows.

To assess the statistical significance of Smax estimates, we consider the EC
defined as the Pearson correlation coefficient between the trait difference
matrix and the time space product matrix when S = Smax, minus the Pearson
correlation coefficient between the trait difference matrix and either the
temporal or geographical distance matrix alone, whichever is higher.

To obtain a null distribution of EC, we permuted trait data for individuals
among the spatiotemporal sample locations 10,000 times and calculated EC
for each permutation, as described above. Finally, we calculate the pro
portion of EC values from the permuted datasets that are equally high or
higher than that obtained from the observed data. This permutation test
permits assessment of how frequently the EC for the observed data are
produced by chance alone or, alternatively, as the result of the method used
for estimating the Smax statistic. The resultant P value is the probability of
observing an equally high or higher EC value in permuted, supposedly
signal less data, and provides an indication of the information content of
each dataset.

Simulated Scenario of Changing Migration Rate. We modified our simulations
to represent a population experiencing two changes in migration rate,
resulting in three episodes of constant migration rate. We assumed a gen
eration time of 25 y and chose the effective population size to be 2Ne =
10,000, standard figures in population genetic models of European pop
ulations (62). We next chose three levels of migration with relative magni
tude on par with what was inferred from the empirical data: m1 = 0.0002,
m2 = 0.01, and m3 = 0.05. To ensure equilibrium conditions during the start
of the sampling period, we discarded the first 10,000 steps of the simulation
(using migration rate m1). We then simulated a time period of 20,000 y,
divided into three episodes with constant migration rate: m1 for 25,000
15,000 y ago, m2 for 15,000 10,000 y ago, and m3 for the last 5,000 y of the
simulation. This roughly corresponds to the time spans associated with
Mesolithic hunter gatherers, Neolithic farmers, and post Neolithic cultures
in our empirical dataset. From a population genetic point of view, whole
genome data as used in the empirical estimates correspond to a large
number of approximately independent replicates. Because our model does
not include recombination, we accounted for this effect by increasing the
sample size to 10,000 individuals. SI Appendix, Fig. S4 shows the migration
rate estimation using the Smax statistic using a 4,000 y wide sliding window.

R version 3.2.2 (53) was used for analyses throughout this manuscript. The
correlations between temporal, geographic, and trait distance matrices were
calculated using the mantel (method = “pearson”) function in R package
Vegan version 2.3.0 (63). The permutation and bootstrap tests were per
formed using the function sample in the R package base version 3.2.2 (53).

Loog et al. PNAS Early Edition | 5 of 6

EV
O
LU

TI
O
N



ACKNOWLEDGMENTS. We are very grateful to Robert Foley for valuable
discussions during the formulation of the approach, to Mike Parker Pearson
for advice on Holocene migration processes, and to Tamsin O’Connell for
advice on stable isotopes. L.L. was supported by Natural Environment Re
search Council, UK Grants NE/K005243/1 and NE/K003259/1 and European Re
search Council Grant 339941 ADAPT. M.G.T. was supported byWellcome Trust

Senior Investigator Award Grant 100719/Z/12/Z and Leverhulme Trust Grant
RP2011 R 045. A.M. and A.E. were supported by European Research Council
Consolidator Grant 647787 LocalAdaptation. M.M.L. was supported by Euro
pean Research Council Advanced Grant 295907, In Africa. M.K. was funded by
the Engineering and Physical Sciences Research Council through the Centre
for Mathematics and Physics in the Life Sciences and Experimental Biology.

1. Hanski I, Gilpin M (1991) Metapopulation dynamics: Brief history and conceptual
domain. Biol J Linn Soc Lond 42:3–16.

2. Lande R (1988) Genetics and demography in biological conservation. Science 241:
1455–1460.

3. Itan Y, Powell A, Beaumont MA, Burger J, Thomas MG (2009) The origins of lactase
persistence in Europe. PLOS Comput Biol 5:e1000491.

4. Klopfstein S, Currat M, Excoffier L (2006) The fate of mutations surfing on the wave of
a range expansion. Mol Biol Evol 23:482–490.

5. Powell A, Shennan S, Thomas MG (2009) Late Pleistocene demography and the ap-
pearance of modern human behavior. Science 324:1298–1301.

6. Kline MA, Boyd R (2010) Population size predicts technological complexity in Oceania.
Proc R Soc Lond B Biol Sci 277:2559–2564.

7. Cox MP, Hammer MF (2010) A question of scale: Human migrations writ large and
small. BMC Biol 8:98.

8. Gregoricka LA (2013) Residential mobility and social identity in the periphery:
Strontium isotope analysis of archaeological tooth enamel from southeastern Arabia.
J Archaeol Sci 40:452–464.

9. Makarewicz CA, Sealy J (2015) Dietary reconstruction, mobility, and the analysis of
ancient skeletal tissues: Expanding the prospects of stable isotope research in ar-
chaeology. J Archaeol Sci 56:146–158.

10. Bowen GJ (2010) Isoscapes: Spatial pattern in isotopic biogeochemistry. Annu Rev
Earth Planet Sci 38:161–187.

11. Pickrell JK, Pritchard JK (2012) Inference of population splits and mixtures from
genome-wide allele frequency data. PLoS Genet 8:e1002967.

12. Patterson N, et al. (2012) Ancient admixture in human history. Genetics 192:1065–1093.
13. Wright S (1990) Evolution in Mendelian populations. 1931. Bull Math Biol 52:241–295,

discussion 201–207.
14. Relethford JH (1994) Craniometric variation among modern human populations. Am J

Phys Anthropol 95:53–62.
15. Betti L, Balloux F, Hanihara T, Manica A (2010) The relative role of drift and selection

in shaping the human skull. Am J Phys Anthropol 141:76–82.
16. Underhill PA, Kivisild T (2007) Use of y chromosome and mitochondrial DNA pop-

ulation structure in tracing human migrations. Annu Rev Genet 41:539–564.
17. Goldstein DB, Chikhi L (2002) Human migrations and population structure: What we

know and why it matters. Annu Rev Genomics Hum Genet 3:129–152.
18. Nielsen R, Beaumont MA (2009) Statistical inferences in phylogeography.Mol Ecol 18:

1034–1047.
19. Pinhasi R, Thomas MG, Hofreiter M, Currat M, Burger J (2012) The genetic history of

Europeans. Trends Genet 28:496–505.
20. Wright S (1943) Isolation by distance. Genetics 28:114–138.
21. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292.
22. Allentoft ME, et al. (2015) Population genomics of Bronze Age Eurasia. Nature 522:

167–172.
23. Haak W, et al. (2015) Massive migration from the steppe was a source for Indo-

European languages in Europe. Nature 522:207–211.
24. Mathieson I, et al. (2015) Genome-wide patterns of selection in 230 ancient Eurasians.

Nature 528:499–503.
25. Fu Q, et al. (2016) The genetic history of Ice Age Europe. Nature 534:200–205.
26. Lazaridis I, et al. (2016) Genomic insights into the origin of farming in the ancient

Near East. Nature 536:419–424.
27. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: Combining

landscape ecology and population genetics. Trends Ecol Evol 18:189–197.
28. Reyes-Centeno H, et al. (2014) Genomic and cranial phenotype data support multiple

modern human dispersals from Africa and a southern route into Asia. Proc Natl Acad
Sci USA 111:7248–7253.

29. Depaulis F, Orlando L, Hänni C (2009) Using classical population genetics tools with
heterochroneous data: Time matters! PLoS One 4:e5541.

30. Guillot G, Rousset F (2013) Dismantling the Mantel tests. Methods Ecol Evol 4:
336–344.

31. Skoglund P, Sjödin P, Skoglund T, Lascoux M, Jakobsson M (2014) Investigating pop-
ulation history using temporal genetic differentiation. Mol Biol Evol 31:2516–2527.

32. Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in
population genetics. Genetics 162:2025–2035.

33. Foley RA, Lahr MM (2001) The anthropological, demographic and ecological context of
human evolutionary genetics. Genes, Fossils, and Behaviour: An Integrated Approach
to Human Evolution, eds Donnelly P, Foley RA (IOS Press, Omaha, NE), pp 223–245.

34. Collard IF, Foley RA (2002) Latitudinal patterns and environmental determinants of
recent human cultural diversity: Do humans follow biogeographical rules? Evol Ecol
Res 4:371–383.

35. Miller R (2012) Mapping the expansion of the Northwest Magdalenian. Quat Int 272–
273:209–230.

36. Menozzi P, Piazza A, Cavalli-Sforza L (1978) Synthetic maps of human gene fre-
quencies in Europeans. Science 201:786–792.

37. Skoglund P, et al. (2012) Origins and genetic legacy of Neolithic farmers and hunter-
gatherers in Europe. Science 336:466–469.

38. Hofmanová Z, et al. (2016) Early farmers from across Europe directly descended from
Neolithic Aegeans. Proc Natl Acad Sci USA 113:6886–6891.

39. Bocquet-Appel J-P, Naji S, Linden MV, Kozlowski JK (2009) Detection of diffusion and
contact zones of early farming in Europe from the space-time distribution of 14C
dates. J Archaeol Sci 36:807–820.

40. Isern N, Fort J (2012) Modelling the effect of Mesolithic populations on the slowdown
of the Neolithic transition. J Archaeol Sci 39:3671–3676.

41. Warmuth V, et al. (2012) Reconstructing the origin and spread of horse domestication
in the Eurasian steppe. Proc Natl Acad Sci USA 109:8202–8206.

42. Warmuth VM, et al. (2013) Ancient trade routes shaped the genetic structure of
horses in eastern Eurasia. Mol Ecol 22:5340–5351.

43. Sherratt S, Sherratt A (1993) The growth of the Mediterranean economy in the early
first millennium BC. World Archaeol 24:361–378.

44. Collis J (2003) The Celts: Origins, Myths & Inventions (Tempus, Stroud, UK).
45. Beaujard P (2010) From three possible Iron-Age world-systems to a single Afro-

Eurasian world-system. J World Hist 21:1–43.
46. Roseman CC, Weaver TD (2007) Molecules versus morphology? Not for the human

cranium. BioEssays 29:1185–1188.
47. von Cramon-Taubadel N, Weaver TD (2009) Insights from a quantitative genetic ap-

proach to human morphological evolution. Evol Anthropol Issues News Rev 18:237–240.
48. Shennan S (2000) Population, culture history, and the dynamics of culture change.

Curr Anthropol 41:811–835.
49. Eerkens JW, Lipo CP (2007) Cultural transmission theory and the archaeological re-

cord: Providing context to understanding variation and temporal changes in material
culture. J Archaeol Res 15:239–274.

50. Lycett SJ, Norton CJ (2010) A demographic model for Palaeolithic technological
evolution: The case of East Asia and the Movius Line. Quat Int 211:55–65.

51. Sinnott R (1984) Virtues of the haversine. Sky Telescope 68:159.
52. Clayton D (2014) SnpStats: SnpMatrix and XSnpMatrix Classes and Methods. Version

1.18.0. Available at https://www.bioconductor.org/packages/release/bioc/html/snpStats.html.
Accessed January 1, 2017.

53. R Core Team (2015) R: A Language and Environment for Statistical Computing (R
Foundation for Statistical Computing, Vienna), Version 3.2.2. Available at https://
www.R-project.org/. Accessed January 1, 2017.

54. Moran PAP (1958) Random processes in genetics. Math Proc Camb Phil Soc 54:60–71.
55. Keller A, et al. (2012) New insights into the Tyrolean Iceman’s origin and phenotype

as inferred by whole-genome sequencing. Nat Commun 3:698.
56. Gamba C, et al. (2014) Genome flux and stasis in a five millennium transect of Eu-

ropean prehistory. Nat Commun 5:5257.
57. Lazaridis I, et al. (2014) Ancient human genomes suggest three ancestral populations

for present-day Europeans. Nature 513:409–413.
58. Olalde I, et al. (2014) Derived immune and ancestral pigmentation alleles in a 7,000-

year-old Mesolithic European. Nature 507:225–228.
59. Seguin-Orlando A, et al. (2014) Paleogenomics. Genomic structure in Europeans

dating back at least 36,200 years. Science 346:1113–1118.
60. Skoglund P, et al. (2014) Genomic diversity and admixture differs for Stone-Age

Scandinavian foragers and farmers. Science 344:747–750.
61. Jones ER, et al. (2015) Upper Palaeolithic genomes reveal deep roots of modern

Eurasians. Nat Commun 6:8912.
62. Gronau I, Hubisz MJ, Gulko B, Danko CG, Siepel A (2011) Bayesian inference of ancient

human demography from individual genome sequences. Nat Genet 43:1031–1034.
63. Oksanen J, et al. (2015) vegan: Community Ecology Package. Version 2.3.0. Available

at CRAN.R-project.org/package vegan. Accessed January 1, 2017.

6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1703642114 Loog et al.


