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Rapid cellular calcium oscillations acti
this temporal response amplification is
a mystery. An elegant combination of e
encompasses non-linear inputs and ou
long-standing problem.

James W. Putney

At some point in their growth,
differentiation or function, every cell
in the body is affected by calcium
signaling, a process whereby external
signals interact with cells to cause their
cytoplasmic Ca2+ to rise. This rise in
cytoplasmic Ca2+ triggers cellular
Deciphering
Pathway

ate gene expression hours later. How
achieved has until now been largely
perimental strategies and a model that
puts now sheds new light on this

responses over time courses that range
from subsecond (neurotransmitter
release for example) to hours or days
(gene regulation and differentiation).
In this issue of Current Biology,
Kar et al. [1] describe a new and
intriguing level of complexity in the
process by which Ca2+ signals regulate
gene expression.
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Figure 1. Pathway of calcium–NFAT signaling.

Calciumsignalingmechanisms typically involve twodistinct setsof reactions:one responsible for
signal generation (producing the Ca2+ signal) and one responsible for processing the signal into
an appropriate downstream event (for example, gene transcription). In the study by Kar et al. [1],
the pathway is initiated by a receptor (R)/G-protein (G)/phospholipase C (PLC) mechanism, re-
sulting in the production of IP3 and discharge of Ca2+ stored in the endoplasmic reticulum via
the IP3 receptor (IP3R). This leads to the activation of the Ca2+ sensor STIM1, which in turn acti-
vates plasma membrane store-operated channels, comprising Orai1 subunits. Ca2+ entering
through the store-operated channels catalyzes the dephosphorylation of NFAT. Dephosphory-
lated NFAT translocates to the nucleus where it acts as a transcription factor for a specific set
of genes. The process is reversible, as NFAT becomes re-phosphorylated and exits the nucleus.
The findings of Kar et al. [1] define two critical non-linear components of the signal processing
cascade. First, the Ca2+ oscillatory period determines the rate of net cytoplasmic NFAT dephos-
phorylation and subsequent accumulation in the nucleus, a process of facilitation. Second, the
exit rate of NFAT from the nucleus is slow, permitting a second level of integration, or ‘memory’,
allotting sufficient time to activate gene transcription long after the Ca2+ signal has ended.
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The role of Ca2+ signaling in muscle
contraction has been appreciated for
over a century [2], and its role in other
relatively rapid responses for over fifty
years [3]. The ability of Ca2+ signals to
activate gene expression has a more
recent history (e.g. [4]), probably
owing to difficulties in linking rapid
cytoplasmic Ca2+ elevations to
substantially delayed biochemical
events. However, it is now generally
appreciated that Ca2+ regulation of
gene expression is a widely
encountered signaling mechanism [5].
When Ca2+ rises in the cytoplasm, it
binds to its most common cognate
receptor, calmodulin, which in turn can
activate one of three major pathways.
Two of these pathways culminate
in activation of the transcriptional
regulator CREB: one involves a
calmodulin-dependent kinase cascade,
and the other activates Ras followed
by recruitment of the ERK pathway.
In the third pathway, Ca2+–calmodulin
activates the widely expressed protein
phosphatase calcineurin, leading to
dephosphorylation of the NFAT
transcriptional regulators, which
permits their translocation into the
nucleus to activate a distinct set of
genes.

NFATs are a family of
Ca2+-dependent transcription factors
that play a central role in the
morphogenesis, development and
physiological activities of numerous
distinct cell types and organ systems.
Four members of the NFAT family
(NFAT1–4) are stimulated by a rise in
cytoplasmic Ca2+. In immune cells,
activated NFAT regulates numerous
inducible genes encoding cytokines
and cell-surface receptors that are
essential for T-cell development
and effective immune responses.
Calcineurin, a key element in the NFAT
activation mechanism, is a major target
for immunosuppressants like
cyclosporin A.
Attention in recent years has turned

to the nature (i.e. kinetics and
localization) of the Ca2+ signals that
regulate gene expression. In the vast
majority of instances, Ca2+ signals
involve a combination of Ca2+ release
from internal stores and Ca2+ influx
across the plasma membrane. And
typically these two modes of signaling
interact and regulate one another. In
excitable cells, a common theme is
activation of Ca2+ release by Ca2+

entering through voltage-activated
Ca2+ channels, a process known as
calcium-induced calcium release [6]. In
non-excitable cells, the most common
scenario is an initial release of Ca2+

stored in the endoplasmic reticulum,
induced by inositol 1,4,5-trisphosphate
(IP3), which leads to the activation of
plasma membrane store-operated
Ca2+ channels [7]. Under conditions of
maximal activation, the combination of
these two modes of Ca2+ mobilization
results in either a sustained elevation of
cytoplasmic Ca2+ or an elevation that
declines slowly over time. However, it is
unlikely that such monotonic signals
occur often in cells under conditions of
more physiological levels of activation.
Rather, Ca2+ signalsmore typically take
on the appearance of transient,
episodic elevations termed Ca2+ spikes
or Ca2+ oscillations [8]. Oscillatory
behavior generally reflects a
regenerative, all-or-none component.
In excitable cells this is usually
a voltage-dependent Ca2+ channel,
or the intracellular calcium-induced
calcium release ryanodine receptor.
In non-excitable cells, there are two
models for the mechanism of Ca2+

oscillations. One involves regenerative
and episodic activation of
phospholipase C by Ca2+, leading to
bursts of IP3 production. In an
alternative model, Ca2+ augmentation
of IP3-induced Ca2+ discharge
generates spikes of intracellular Ca2+

release.
Regardless of the mechanism of

Ca2+ oscillations, there is a general
consensus that they provide a digital
mode of Ca2+ signaling, resulting in
a high signal-to-noise ratio. Previous
studies have demonstrated that
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artificially imposed Ca2+ oscillations
more efficiently activate downstream
gene expression than sustained signals
that provide a similar average Ca2+ rise
[9]. Digital all-or-none signals reduce
ambiguity in signaling and provide
checkpoints to prevent spurious
low-level outputs. The simplest way
in which this can be accomplished is
by setting a significant threshold for
detection at one or more steps in
the pathway. Thus, in the case of
Ca2+ signaling, minor fluctuations in
cytoplasmic Ca2+ have no effect, but
the regenerative nature of Ca2+

oscillations assures some degree of
signal recognition, even at low
frequencies of oscillations.

In non-excitable cells, the burst of
cytoplasmic Ca2+ can be attributed
almost exclusively to the release of
store Ca2+ by IP3. Yet, in the absence
of external Ca2+, and thus without
store-operated Ca2+ entry, the
oscillations run down and signaling
fails. And, despite the fact that the
visible cytoplasmic Ca2+ signal results
from intracellular release, there is
strong evidence that, for the regulation
of certain genes, it is the Ca2+ entering
through the store-operated channels
that triggers the critical downstream
pathways [10]. This requirement
for Ca2+ entering through the
store-operated channels was
specifically demonstrated for the
NFAT pathway [11,12]. This must mean
that spatially restricted signaling
domains exist near the mouth of the
store-operated channels, resulting
from both a localization of the Ca2+

sensor and high Ca2+ levels close to
the channels. In the new work by
Kar et al. [1] an additional level of
complexity and specifity in this
signaling mechanism is revealed. Gene
expression in the NFAT pathway was
followed using an NFAT promoter–GFP
reporter assay. While the total amount
of GFP formed was a graded function
of agonist concentration, gene
expression occurred in an all-or-none
manner at the single-cell level.

As alluded to above, a long-standing
problem has been the mechanism of
linking rapid and relatively transient
Ca2+ signals on a timescale of
seconds/minutes to gene regulation
occurring several hours later. Kar et al.
[1] present novel kinetic datawhich they
use to construct a feasible model
demonstrating a series of integrating
steps in the Ca2+–NFAT–gene
expression pathway (Figure 1). This
pathway depends upon serial steps
with short-term and long-term
memories. That suchmemory occurs in
the early steps of the pathway was
elegantly demonstrated by
experiments utilizing a paired-pulse
strategy; paired Ca2+ signals produced
markedly supra-additive responses.
Kar et al. [1] reason that such
behavior can be readily reconciled
with the relatively rapid kineticsofNFAT
dephosphorylation and relatively slow
export of NFAT from the nucleus.

Interestingly, all-or-none activation
of gene expression was observed with
a physiological agonist (leukotriene
C4), or with the Ca2+ pump inhibitor
thapsigargin, under conditions of
graded Ca2+ influx. Thus, the
physiological pathway leading to
gene expression may have multiple
all-or-none checkpoints. There is
evidence that the all-or-none Ca2+

discharge in oscillating cells is
necessary to reach a threshold for
activation of store-operated channels
[13]. In the current study from Kar
et al. [1], a threshold of Ca2+ elevation
in the vicinity of the store-operated
channels seems necessary to
initiate the pathway, probably by
activation of spatially sequestered
calmodulin. This then is linked to
an all-or-none activation of
NFAT-regulated gene expression,
apparently linked to a threshold of
NFAT dephosphorylation and
translocation. This complexity can
provide multiple points for regulation,
as well as a high safety factor for
assuring appropriate timing of gene
regulation pathways.
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Cortical Development: The Sources
of Spontaneous Patterned Activity
A recent study has found that spontaneous neural activity in the developing
visual cortex has two distinct origins — local intracortical circuits and
spontaneous activity in the retina.
Marla Feller

Spontaneous correlated activity is
a ubiquitous feature of the developing
nervous system, and it is thought
to provide a robust source of
depolarization before neural circuits
mature. One of the most well-studied
structures where this spontaneous
correlated activity is observed is the
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